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Abstract:

The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for

the permanent disposal of defense-related transuranic (TRU) waste. US Environmental

Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound

basis that the WIPP disposal system will effectively contain long-lived alpha-emitting

radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE

submitted the 40 CFR Psi-t 191 Compliance Certl~cation Application for the Waste ‘

l.solation Pilot Plant (CCA) tothe EPA. The CCA proposed that the WITP site complies

with EPA’s regulatory requirements. Contained within the CCA are descriptions of the

scientific research conducted to characterize the properties of the WIPP site and the

probabilistic performance assessment (PA) conducted to predict the containment
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properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU

waste disposal at the WIPP complies with its regulations. Waste disposal operations at

WIPP comenced on March 28, 1999.

The 1996 WIPP PA model of the disposal system included conceptual and mathematical

representations of key hydrologic and geochemical processes. These key processes were

identified over a 22-year period involving data collection, data interpretation, computer

models, and sensitivity studies to evaluate the importance of uncertainty and of processes

that were difficult to evaluate by other means. Key developments in the area of

geochemistry were the evaluation of gas generation mechanisms in the reposito~,

development of a model of chemical conditions in the repository and actinide

concentrations in brine; selecting MgO backfill and demonstrating its effects

experimentally, and determining the chemical retardation capability of the Culebra. Key

developments in the area of hydrology were evaluating the potential for groundwater to

dissolve the Salado Formation (the repository host formation), development of a regional

model for hydrologic conditions, development of a stochastic, probabilistic representation

of hydraulic properties in the Culebra Member of the Rustler Formation; characterization

of physical transport in the Culebra; and the evaluation of brine and gas flow in the

.

Salado. Additional confidence in the conceptual models used in the 1996 WIPP PA was

gained through independent peer review in many stages of their development.

1.0 Introduction:
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The WIPP is a DOE facility for the permanent disposal of defense-related TRU waste.

The facility is located about 42 km east of the town of Carlsbad in southeastern New

Mexico (Figure 1), a region with semi-arid climate. The WIPP repository is excavated

655 m underground in the Salado, a Permian bedded salt (Figure 2). WIPP TRU waste is

created by defense-related industrial activities. 1 TRU waste is defined as waste

containing more than 100 nanocuries of alpha-emitting transuranic isotopes, with half-

lives greater than twenty years, per gram of waste, and not falling into another category.

TRU waste with a surface dose rate less than or equal to 200 millirem per hour is defined

as contact-handled TRU (CH-TRU). CH-TRU intended for WIPP is currently stored in

55-gallon mild steel drums or approximately 300-gallon standard waste boxes. About

850,000 containers of CH-TRU waste containing about 13,000 kg Pu will be disposed in

WIPP. TRU waste with a contact dose rate greater than 200 millirem per hour is defined

as remote-handled TRU (RH-TRU). RH-TRU with contact dose rates up to 1,000 rem

per hour can be disposed at WIPP. No more than 6.2 million cubic feet of CH- and RH-

TRU can be disposed at WIPP, and the total activity of RH-TRU is limited to 5.1 million

curies. TRU waste containing chemicals regulated by the Resource Conservation and

Recovery Act is referred to as mixed waste.

Political and regulatory actions have established the context for evaluating whether the

disposal of radioactive waste at the WIPP is in accordance with public safety and

environmental protection interests. Within this context, the concept of the WIPP disposal

system has been developed. The WIPP disposal system comprises the volume of rock

beneath a designated 16-square mile tract of land controlled by the DOE. The disposal
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system includes the repository, shafts, and other excavations associated with waste

disposal operations, seals and other engineered barriers, the disturbed rock adjacent to

excavations, and a large volume of intact rock. The EPA regulations specifj that the

DOE must demonstrate that the WIPP disposal system will effectively contain long-lived

alpha-emitting radionuclides within its boundaries for 10,000 years following closure.2’3’4

In 1996, the DOE submitted the CCA to the EPA.5 The CCA proposed that the WIPP

facility complies with EPA’s regulatory requirements. Contained within the CCA are

descriptions of the scientific activities conducted to characterize the WIPP site and the

PA conducted to predict the containment properties of the WIPP disposal system. In May

1998, the EPA certified that the TRU waste disposal at the WIPP complies with its

regulations.b Disposal of CH-TRU began at WIPP on March 28, 1999.

Geotechnical activities to select a site for a deep geologic repository in southeastern New

Mexico began in 1972, and the present site was selected in 1975?’8 Since 1975, Sandia

National Laboratories has been designated the Scientific Advisor for this project to the

DOE and its precursor organizations, the Atomic Energy Commission and the Energy

Research and Development Agency. During this period of time, environmental policies

in the US were evolving, affecting not only how the decision whether to open WIJ?P

would be made, but also the goals and activities of scientific research conducted. The

evolution of national policy on nuclear waste disposal and its effects on WIPP is

discussed in more detail by Rechard.8
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From 1974 to 1996, shifts in the high-level goals and strategies of scientific research

occurred, allowing three phases to be defined in general terms. Like colors in the

electromagnetic spectrum, these phases represent portions of a continuous process and

definitive events marking the transition points do not exist. Early investigations were

mainly of a general nature to gain a basic understanding and to confirm the absence of

unacceptable features in the vicinity of the WJJ?P site, although specific and focussed

experiments were conducted in certain disciplines.9>7 Through the 1980’s to the early

1990’s, perhaps spurred by the emphasis on quantitative predictions in 40 CFR Part 191?

scientific investigations became more focussed on characterizing the extent and nature of

processes occurring at the site, especially along potential release pathways and in the

disposal horizon, which was first excavated in 1982. The realism of WIPP performance

predictions improved as data became more definitive and the system-level models

became more comprehensive and sophisticated.lO>*1 This second phase culminated in

several system-level PAs providing evidence that WIPP complied with the EPA’s

regulations. 12’13The third phase commenced about 1992 and focussed on augmenting the

existing data base and models with specific additional information required to confirm

compliance with the EPA’s containment requirements, and in developing the CCA

license application itself. The third phase was strongly influenced by a management

assessment called the Systems Prioritization Method (SPM), which was conducted to

identi~ important sources of uncertain y and the technical activities that could reduce

those uncertainties.14’1 5’lb Experimental and model development activities will continue

until the WIPP is closed to support EPA regulatory oversight, site and facility monitoring,
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and mandatory recertification of the WIPP facility with EPA’s regulations every five

years.17’1*

The National Research Council has concluded that if the WIPP remains undisturbed by

human actions, isolation of actinides fi-om the biosphere is provided by the favorable

properties of the Salado, primarily its geologic stability and its isolation capability.lg

However, regulations specifi that performance of the WIPP shall be predicted based on

extrapolating current land-use practices in the vicinity of WIPP to 10,000 years. 18’6

Furthermore, although administrative controls will be implemented and passive markers

will be built to deter incompatible activities, the EPA regulations require the assumption

that controls and markers are ineffective beyond 100 years after closure.18>Because

potash and hydrocarbon resources occur in the WD?P vicinity and are currently being

developed and extracted, predictions of WIPP performance must include the potential

effects of such development inside the disposal system. These considerations lead to the

disturbed-performance (or human-intrusion) scenario as the dominant factor in evaluating

compliance with the EPA regulations (Figure 3). In the 1996 WIPP PA, the disturbed-

performance scenario incorporates: (1) the removal of waste and actinides to the land

surface when human intrusion occurs by one or more boreholes drilled through the

repository; (2) the long-term effects of plugged, abandoned, and degraded boreholes on

fluid flow in the disposal system, including possible penetration of high-pressure brine in

fractured reservoirs in the underlying Castile Formation; and (3) the effects on flow in the

Rustler due to possible mining of potash in the McNutt Potash Zone of the Salado (Figure

3). 5 Section 6.2,20,21
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Chemistry and hydrology are two of the general scientific disciplines applied to evaluate

the containment properties of the WIPP disposal system. Chemical conditions control the

formation of dissolved and colloidal actinides and the interaction of these actinides with

solids in the disposal system. Hydrology controls the movement of gas and liquid

through the disposal system, including the movement (or transport) of actinides with and

through those fluids. Together, the disciplines of chemistry and hydrology define many

of the conditions necessary to understand the movement of actinides from the repository

to the boundaries of the disposal system. During site characterization, general hydrologic

and chemical information was gathered for all rock types from the land surface to about

2000 m depth (Figure 4), and some stratigraphic layers were characterized in great

detail.22 Information about hydrology and chemistry of stratigraphic units was collected

in situ by a variety of sampling and testing techniques, as well as in laboratory

experiments. In situ data were gathered in boreholes drilled fi-om the surface (Figure 5),

and in boreholes and observations made from the access shafts and repository

excavations.

Conceptual models describe with words and diagrams the processes that occur within the

disposal system (or have a reasonable likelihood of occurring). It is recognized that

conceptual models can be formulated at varying levels of complexity and realism, and

this has occurred on the WIPP Project. In many cases, the conceptual models developed

to explain detailed observations are much more complicated than the conceptual models

explicitly represented in the 1996 WIPP PA. The requirements of the system-level PA
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model in most cases precluded the use of conceptual models accurate enough to also be

used to interpret experiments or understand the fine detail of process interactions. Thus,

the detaikd understanding gained from experiments and complex conceptual models is

used to identi~ and justify the required simplifications.23 Conceptual models form the

basis for the selection of mathematical models, which in turn govern the selection and

creation of numerical models and computer codes.

2.0 Conceptual Models of Chemical Conditions

Chemical reactions in the disposal system will control the concentration of actinides in

brine in the repository, the sorption of actinides on rocks along flow paths, and, to a large

extent, the pressure within the repository. Thus, chemical reactions are expected to play

an important role in the containment properties of the disposal system. A basic

evaluation program to determine and evaluate the in situ chemical composition of

disposal system rocks and their pore fluids through sampling began with the earliest site

investigations and continued for decades. Four specific programs supplemented the basic

evaluation program. A research program for gas generation due to waste and container

decomposition began in the 1970’s, was curtailed for many years in the mid-1 980’s, and

was renewed in the late 1980’s. Research into the possible concentration of actinides and

actinide complexes in disposal system brines began in the late 1980’s and continues.

Backfill materials were proposed and debated over the years, and in some cases tested, as

it was generally expected that a backfill material would be emplaced around and over the

waste for fire protection and to improve confidence in the long-term mechanical,

Larson, Development of the Conceptual Models..., Page 8
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hydrologic, or chemical properties of the waste disposal area. Formal designation of a

backfill material was not made until 1996 when MgO pellets were chosen for their

chemical effects. An investigation into the specific effects of the MgO pellet backfill

began in 1996 and continues. Experiments were conducted to investigate sorption of

actinides on geologic materials in the disposal system in the late 1970’s and early 1980’s,

were initiated again in 1988 and significantly increased through the early 1990’s. These

topics are discussed in this section, except for sorption, which is discussed in Section

3.2.2.

The major lithologies present in or adjacent to the repository horizon are “clean” halite,

polyhalitic halite, argillaceous halite, mixed argillaceous-polyhalitic halite, and anhydrite

interbeds. Halite lithologies contain at most 5 wt 0/0 insoluble (non-NaCl) minerals.

Anhydrite interbeds contain anhydrite, halite, polyhalite, magnesite, and clay. Mineral

constituents in these lithologies include halite NaCl, quartz Si02, magnesite MgC03,

anhydrite CaS04, gypsum CaS04*2H20, polyhalite K2MgCa2(S04)4*2H20, and clays.24

Samples of natural brine in the Salado have been collected from boreholes of various

dimensions drilled into the back, floor, and walls of the excavation.2572G>27’28Intragranular

brine occurs as fluid inclusions, and intergranular brine occurs at halite crystal interfaces,

in small fi-actures, and between halite crystals and trace minerals. The major ionic

constituents of Salado brine are Na+, Mg2+, K+, Cl-, and S042- with smaller amounts of

Ca2+, carbonate, borate, and bromide. Its total dissolved solids concentration is 345,000

to 385,000 mg/1,29 and ionic strength is about 7.66 molal (M).30 It is saturated with
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respect to evaporite minerals and has little potential for dissolving Salado minerals.31

Heterogeneity in brine composition over short distances in the Salado indicates lack of

mixing or flow over long periods of time.32

Larson, Development of the Conceptual Models..., Page 10
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Brine from the Castile or halite-unsaturated groundwater from units overlying the Salado

could enter the waste disposal area in the disturbed-performance scenario through hurnan-

intrusion boreholes. The major ionic constituents in Castile brine are Na+, Ca2+, Cl-, and

S042-.3]Castile brine is less concentrated than Salado brine with an ionic strength of

approximately 6.14 M,30 and contains significantly less Mg than Salado brine (0.02 M

versus about 1 M). Groundwater in the Culebra and Magenta and the Dewey Lake

Formation overlying the repository is undersaturated with respect to halite. If

undersaturated groundwater entered the repository by flow through intrusion boreholes, it

would dissolve halite and become compositionally similar to Castile brine.33

2.1 Gas Generation

Gas-generation research and experiments have focused on identifying the mechanisms

and rates of gas generation in the repository, taking into account the viability in

chemical composition of the waste and possible fhture conditions. In the late 1970s,

experiments were conducted to investigate the radiolytic degradation of cellulose and

similar materials (cellulosics), thermal decomposition of organic materials, microbial

degradation, chemical corrosion, and helium generation from radioactive decay.34 These

experiments tested the range of conditions from TRU waste to the high-temperature
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environment created by high-level waste. The main conclusions were drawn from data

for an essentially dry repository environment, because appreciable brine flow into the

excavation rrom the Salado was not then expected and undisturbed performance was

considered dominant. In a dry repository, microbial degradation was the most important

and uncertain process, followed in importance by radiolysis of cellulosics and chemical

corrosion. Thermal decomposition and dewatering were important at elevated

temperatures but probably insignificant at 25”C, approximately the temperature expected

for TRU waste-disposal areas. Gas generated by alpha decay was inconsequential for all

conditions. If the repository contained brine, the dominant gas would be H2 from anoxic

corrosion.”

The WIPP Final Environmental Impact Statement (FEIS)35 included an analysis of the

potential effects of gas generation in the WIPP repository. The analysis included

processes of gas flow in Salado salt, fracturing of Salado salt due to high gas pressure,

and salt creep in response to high gas pressure. Based on data available at the time, the

analysis concluded “there is little possibility of repository failure fi-om overpressurization

at gas-generation rates less than 5 moles per year per drum. Since these conclusions

depend on the gas-permeability and mechanical properties of the repository medium, they

will be subj ect to some revision when data are available from the actual underground

workings.’’35>‘“9-156 Based on this analysis, fhrther gas-generation experiments were not

conducted pending new data from underground workings.

Larson, Development of the Conceptual Models..., Page 11
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Beginning in 1982, observations of brine “weeps” on the walls of the excavations3G and

brine collecting in relatively short boreholes drilled from the repository excavations37

challenged the prevailing hypothesis that the repository would be dry, and caused a series

of scientific investigations. The observation of fi-ee-flowing brine combined with other

data led to the hypothesis that intercrystalline, brine-saturated porosity exists in the

Salado.38 Based on this hypothesis, estimates of Salado permeability were made.38’39’40

These estimates indicated Salado permeability to be about 10-2*m2, several orders of

magnitude lower than the values used in the FEIS analyses of gas-generation

consequences. Furthermore, the earlier FEIS estimates of Salado permeability were

found tobeunreliable.11’” 3-6 The prospect of brine in the waste, as well as the new

permeability data indicating the potential for high pressures to develop in the waste due

to gas generation without gas dissipation, led to are-start of gas generation experiments

in the late 1980’s.41

The late 1980’s and 1990’s gas-generation program focused on the processes of anoxic

corrosion and microbial degradation.42’43’44 Anoxic corrosion of ferrous metals in the

waste and containers was renewed as a concern because brine seepage from the Salado, as

well as the human-intrusion scenario, suggested presence of brine in the repository.

Microbial degradation was investigated fbrther because of its importance in the

experiments of the 1970’s.34 Radiolysis of seepage brine as a source of Hz was

investigated and found to be inconsequential.4574G Based on the 1970’s experiments and

conclusions, radiolysis of cellulosics was not considered due to low consequence.

Interest in thermal decomposition as a gas-generating process waned when the Nuclear

Larson, Development of the Conceptual Models..., Page 12



-,

For submittal to Reliability Engineering and System Safety

Waste Policy Act of 198247 designated the WIPP exclusively

generates little heat.

for TRU waste, which

A series of laboratory tests up to 24 months in duration was conducted from 1989 until

1995 to investigate metal corrosion and gas generation. These tests investigated

corrosion by reaction between brine or water vapor and major metals in current or

potential future waste (low-carbon steel, copper alloys, titanium alloys, and aluminum

alloys). The initial composition of the gas phase was varied to simulate potential

conditions in the WIPP. Data collected from these tests confirmed that anoxic corrosion

of low-carbon steel waste containers could be a significant source of H2 gas if brine is

present in disposal rooms, but found gas generation rates in humid conditions to be

negligible. Reduction in the rate of corrosion reactions due to formation of mineral

coatings (i.e., “passivation”) was found to occur in some situations, but such coatings

generally did not persist as chemical conditions evolved.48y44

Based on analogs from natural environments,49’50 a conceptual model of sequential usage

of electron acceptors has been applied to microbial degradation in the WIPP repository

since 1990.29 In the WITP repository, denitrification, S042- reduction, fermentation, and

methanogenesis are potentially significant microbial processes. The gaseous products of

these reactions are N2, H2, H2S, C02, and CH4.29 To quantify the possible rates of

microbial degradation, a series of laboratory experiments up to 3.4 years in duration was

conducted from 1991 until 1995.51’43 Various substrates, including cellulose and

irradiated plastics and rubbers, were examined for brine-saturated and humid conditions.

Larson, Development of the Conceptual Models..., Page 13
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Other experimental variables were the initial gas composition (aerobic or anaerobic), and

the presence of microbial inoculum, nitrate nutrients, and bentonite, a proposed backfill

material. Cellulose degradation generated COZ, NzO, and H2 (in some cases). CH1 and

H2S were not detected. Total gas production was negligible under humid conditions for

all substrates. Total gas production from plastic and rubber was insignificant, and

unaffected by radiation damage.

Considering all gas generation processes simultaneously, the dominant gas expected in

the repository is H2, with lesser amounts of CH4, N2 (or nitrous oxide intermediaries), and

H2S. C02 produced by microbial degradation will be removed from the atmosphere by

reaction with MgO backfill (see Section 2.3). To represent the creation of these gases in

the repository, the 1996 WIPP PA used the “average-stoichiometry” model.12>52 The

average-stoichiometry model uses general equations for gas generation fi-om anoxic

corrosion and microbial degradation. The equations are written so that uncertainty in the

quantities of reactants and products can be evaluated through parameter sampling.53

Furthermore, the rates of reaction are determined by sampled parameters, and the

occurrence of gas generation is dependent on the presence of brine. In the case of anoxic

corrosion, brine consumed by reaction is removed from the model, preserving an

important feedback between gas generation and brine saturation. The parameters

governing rates and stoichiometry of the anoxic corrosion and microbial degradation

models are determined by analysis of experimental data such as those described in

preceding paragraphs. The average-stoichiometry model does not explicitly calculate the

composition of gases produced by corrosion and degradation reactions.

Larson, Development of the Conceptual Models..., Page 14
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Although microbial degradation of cellulose has been demonstrated in laboratory

experiments,51’43” the occurrence of significant microbial gas generation in the reposito~

will depend on: (1) whether microbes capable of consuming the emplaced organic

materials will be present and active; (2) whether sufficient electron acceptors will be

present and available; [and] (3) whether enough nutrients will be present and available.”54

Uncertainty in the long-term viability of microbial degradation reactions was

acknowledged in the 1996 WIPP PA by assigning a 0.5 probability to the occurrence of

significant microbial activity. Similarly, even though irradiated plastic and rubber did not

degrade in laboratory experiments, the long-term chemical stability and therefore

biodegradability of plastics and rubbers, plus the possibility of cometabolism with

cellulose, led to the assignment of a 0.5 probability of plastic and rubber degradation

conditional on the occurrence of significant microbial activity.54’53

2.2 Actinides in Solution

Actinides in solution refers to the total concentration of actinides in liquid in the

repository, including dissolved actinides, actinide-organic molecule complexes, and

colloidal (suspended) actinides. Serious consideration of the concentration of actinides in

the repository brines began in the late 1980’s when it was recognized that credible PAs to

demonstrate compliance with EPA regulations required reliable estimates of actinide

concentrations in brine. However, the earliest considerations of actinides in solution

occurred in the 1970’s, when deterministic dose assessments were conducted for several
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scenarios of containment failure. The scenarios involving movement of brine fi-om the

disposal system included a very approximate model for actinide concentrations in brine,

in which it was assumed that the bulk mass of the waste, including actinides, could

dissolve at the same rate as halite into unsaturated groundwater circulating through the

repository via boreholes.35

A systematic program to collect data and develop models relevant to repository chemical

conditions and radionuclide chemistry began in 1989.29 The aim of this program was to

define the potential chemical conditions, dominant chemical reactions, and actinide

speciation and volubility in the repository over 10,000 years. Experiments to investigate

colloidal actinides were started in 1992,29’55and were significantly expanded when the

1994 SPM confirmed the that reducing uncertainty in this area would enhance confidence

in compliance with the EPA’s regulations. 14>15’16Although there are many radioactive

elements included in the WII?P waste inventory,l plutonium, americium, uranium,

thorium, and neptunium were the focus of the actinide volubility program because these

elements comprise more than 99°/0 of the solid actinide inventory.5G777

Given the absence of actinide concentrations based on specific data and models, until the

1996 WIPP PA actinide solubilities were estimated based on scientific experience and

extrapolation from literature data to WIPP conditions.

performance used bounding volubility limits, based on

A 1989 assessment of system

consideration of possible chemical

conditions. The volubility limits were 10-4M for all actinides in Salado brine, and 104 M

for all actinides in Castile brine.l 1 A 1989 PA methodology demonstration used 10-6M

Larson, Development of the Conceptual Models..., Page 16
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as a median value for a range of solubilities from 10-9M to 10-3M.57 Preliminary PAs

conducted in 199112 and 199258 included uncertainty in actinide concentrations developed

by a process of expert elicitation.597G0 Lack of actinide volubility data in the literature for

high ionic strength brines contributed to the overall uncertainties, as did the wide range of

plausible conditions for the waste-disposal area at the time (see Figure 6). The expert

elicitation process produced wide ranges of concentrations for use in the 1991 and 1992

PAs; for example, Pu(IV) as (Pu(OH)5)- was assigned a range from 2 x 10-16M to 4 x 10-6

M with a median value of 6 x 10-10M; Am(III) as (AmCIJ’ was assigned a range from 5

x 10-14M to 1.4 M with a median value of 1 x 10-9M.59’G0Due to the absence of a

comprehensive perspective on colloidal actinides, colloid effects were not included in the

1991 and 1992 preliminary PAs.GO

At the outset of specific experimental and modeling studies to determine chemical

conditions and actinide concentrations in WIYP disposal rooms, there was great

uncertainty in the possible conditions under which reliable estimates of actinide

concentrations would be required. As shown in Figure 6, uncertainty in pH ranged fi-om

about 3.5 to 11.5, and uncertainty in oxidation potential (Eh) encompassed the fill

spectrum of water stability.G1 Accordingly, the objectives of laboratory studies initiated

to study radionuclide chemistry were to: “(l) quantifi the speciation of Pu, Am, Th, and

U in neutral, acidic, and basic solutions of high ionic strength under a wide range of

redox conditions . . . for calculations of the solubilities of these elements in WIPP brines;

(2) determine, if necessary, the solubilities of Pu-, Am-, Th-, and U-bearing solids under

similar conditions . . . to validate the results of the speciation study... .“29 The conceptual
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model for actinide concentrations in brine would be developed in three steps: first, data

would be collected and analyzed to define the chemical reactions that might occur in the

range of possible chemical conditions in waste disposal rooms; second, a database would

be developed along with speciation-volubility models for those conditions; and, finally,

the conditions in disposal rooms would be modeled using speciation-volubility models to

determine actinide concentrations for specific conditions.

The conceptual model for actinide concentrations in brine was implemented in the 1996

WIPP PA through random sampling of a limited number of parameters. These

parameters allow estimation of actinide concentrations by simple algebraic equations

rather than by speciation-volubility calculations conducted during PA. Temporal and

spatial variation in the chemical conditions influencing actinide concentrations could be

incorporated only through gross generalizations. Thus, developing parameters to directly

represent the concentration of actinides in brine required a sophisticated understanding of

the potential liquid saturation and composition and gas pressure and composition in

waste-disposal rooms prior to development of parameter ranges. Estimates of the

the

variability in these physical conditions were provided during the course of experimental

studies by preliminaryPAs.12’13

The conceptual model for dissolved actinide concentrations is described in Novak and

others31 and the CCA.33 The overall chemical conditions in the waste-disposal area are

strongly influenced by the composition of Salado brines that could seep into the waste

disposal area and by Castile brines that could enter the repository through an intrusion

Larson, Development of the Conceptual Models..., Page 18
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borehole20. The pH of the waste-disposal area is expected to be moderated by MgO

backfill to approximately 9.5, and the oxidation potential of the disposal system is low,

due to corrosion of metallic iron in the waste containers and possible microbial activity.

Other potential influences on the aqueous chemical conditions are the presence of

cementitious materials in seals and some of the waste, and commercial organic

complexants (e.g., EDTA) in some of the waste.

The chemical conditions in the waste-disposal area are too complex to be described

exactly. Assumptions were made to make the problem tractable, using conservative

assumptions where necessary. Key assumptions include (1) complexation and

precipitation/dissolution (nonredox) reactions can be described with equilibrium

thermodynamics, (2) the effect of sorption of actinides on immobile substrates in

waste-disposal area can be ignored, and (3) actinide conversion among oxidation

(redox reactions) is not an equilibrium process31.

the

states

Except for actinides in the VI oxidation state, the Pitzer formalismG2 using the

thermodynamic data bases of Harvie and othersG3 and Felmy and WeareG4was the starting

point for estimating equilibrium actinide solubilities in the WII?P disposal rooms. This

initial model was extended to the WIPP system by adding to it the standard chemical

potentials of the aqueous and solid chemical species containing actinides, and the specific

ion interaction parameters required to describe the interactions between those species and

other constituents of disposal-room brines. Parameters for organic waste constituents

were also added to the data base. Data and supporting information were compiled for the
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actinide (HI) data base extensions used for Am(III), Pu(III), Cm(IIl),G5 ‘“149g’GG’G77G8’G9’70the

actinide (IV) database extensions used for Th(IV), U{IV), Pu(IV), and Np(IV),71’72’73and

the actinide (V) database extensions used for Np(V).74 At the time of the CCA, the

actinide (W) database was insufficiently developed to support equilibrium volubility

calculations. An empirical measurement of U(VI) concentration was used instead of

model predictions. 33>75

The FMT computer code implemented the Pitzer formalism and was used to calculate the

volubility of Am(III), Th(IV), and Np(V), which are chemical analogs for actinides of

interest in the III, lV, and V oxidation states.7G An oxidation state analogy, which asserts

that actinides in the same oxidation state exhibit similar chemical behavior, was used to

extend the behavior of analogue actinides to other elements (Table 1). Solubilities were

calculated for Salado and Castile brine. Implementation of the dissolved actinide model

in the 1996 WIPP PA is described in Stockman and others.77

Colloidal particles are generally defined as particles with at least one dimension between

1 run and 1pm that are maintained in suspension in a liquid through Brownian

motion.78’79 Colloids can form by a variety of physical and chemical mechanisms

including mineral fragmentation, intrinsic colloidal formation by actinides themselves or

microbial degradation of cellulosic materials (e.g., humic acids). Additionally, microbes

themselves may be considered to be colloidal particles because, though generally larger

than the specified colloidal size range, their specific gravity is generally equal to the

solution so they will not tend to settle out of solution by gravity. These four types of
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colloids – mineral fragments, actinide intrinsic, humic acids, and microbes – were each

separately investigated with respect to their potential to increase actinide concentrations

in brine.55

The colloidal actinide research results indicated that both mineral fi-agments and actinide

intrinsic colloids have little potential to enhance mobile dissolved actinide concentrations

under the expected chemical conditions at the WIPP site.33 Microbes and humic acids

will complex actinides and contribute to the actinide concentrations in brine. The

concentrations of actinides complexed by microbes and humic acids were represented in

the 1996 WIPP PA using two parameters.53 The first parameter was a proportionality

constant representing the microbial and humic contributions to actinide concentration in

brine. These proportionality constants were multiplied by the dissolved species

concentrations to obtain values for the microbial and humic contribution to the total

species concentration. A second parameter was included to indicate a maximum value

for complexation (or metal toxicity on microbes) via these two colloidal mechanisms.

Sorption of actinides onto fixed substrates in the waste-disposal area was not considered

because it would not affect actinide concentrations in brine unless most of the actinide

inventory were sorbed, which is considered unlikely.

2.3 MgO Backfill Effects

The potential for backfill to improve the long-term mechanical, chemical, and hydraulic

properties of the WIPP repository is well recognized, and is reflected in the research
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conducted in this topic and in the political and regulatory framework of WIPP.80 Until

salt was no longer considered for the disposal of high-level waste,8 the retardation of

actinide and fission-product movement by precipitation, sorption, and slow diffusion in

bentonite backfills was investigated,81 >82783>84as well as the mineralogic stability of

bentonite backfill.85 Although the possible use of crushed salt backfill to reduce

subsidence and fme potential was recognized early,8G’87’88concern over brine seepage horn

the Salado in the late 1980’s gave rise to sustained investigations on the potential of

crushed salt and bentonite backfills to reduce liquid flow to and through the waste

disposal rooms.89’90’91Furthermore, other aspects of backfill characteristics and options

were evaluated to varying extent, including gas getters and grouts.’ 1729792’93Thus, by

1991, the advantages of many options for backfill materials had been considered or

investigated, in variable detail, for mechanical, chemical, and hydraulic properties.

As discussed in Section 2.1, if gas generation by microbial degradation of carbon-

containing waste material occurs, a significant quantity of C02 maybe introduced into the

waste-disposal rooms. Carbonate ions are known to bind strongly to actinides, forming

stable, relatively soluble species. In late 1995 and early 1996, concerns were forming that

the relatively high solubilities might cause non-compliance with the EPA containment

requirements. Based on the backfill research available at that time, and in cooperation

with operations engineers at the management and operating contractor, Westinghouse

Electric Corporation, a backfill of MgO (periclase) pellets was selected to control COZ

concentrations and limit actinide volubility.94 MgO reacts with water,
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MgO (S)+ H20 (1) = Mg(OH)z (S), (1)
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forming brucite. Brucite reacts with carbonic acid,

Mg(OH)2 (s)+ H2C03 = MgC03 (s) + 2 H20, (2)

forming magnesite and water and virtually eliminating COZ from the disposal-room

environment. Furthermore, the MgO hydration reactions effectively buffer the disposal

room to a pH between 9 and 10, conditions of relatively low dissolved actinide volubility.

The only effects of MgO incorporated in the 1996 WIPP PA were its reduction of total

concentration of actinides in solution and elimination of C02 from the gas phase,

reducing the quantity of gas in the disposal rooms. Other effects were ignored on the

basis that they were beneficial, such as removal of water from the disposal room during

hydration, and the potential for the precipitated phases such as brucite and magnesite to

bind waste materials together, which could reduce the volume of cavings and spallings

releases. 95,96

The actual reaction mechanism for the formation of magnesite, MgC03, is more

complicated than suggested in equations (1) and (2). Figure 7 illustrates the four main

steps in the sequence as the formation of brucite by hydration, dissolution of brucite,

carbonation, and dehydration, which is a maturation process that may include formation

and destruction of several metastable phases .97
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The reaction mechanism for the formation of magnesite fi-om periclase needed

confirmation in WIPP-relevant conditions before it would be accepted by a mandated

peer-review panel.98’99’100The basic reaction was confirmed by immersing MgO pellets

in relevant brine solutions and exposing them to C02 by bubbling. Hydromagnesite,

aMgC03-Mg(OH)2. bH20, {a,b} = {3,3), {4,4], {4,3}, formed in the experiments as the

intermediary phase during the maturation process; magnesite was not formed in the

experiments, due to suspected kinetic inhibition. The morphology of precipitated

minerals was investigated to evaluate whether precipitated minerals would shield the

intenor of MgO pellets from further reaction; scanning electron microscope pictures show

no shielding (Figure 8). Data to support the eventual formation of magnesite in the

repository were obtained from laboratory studies and natural analogue studies reported

the open literature.97

in

3.0 Conceptual Models of Hydrology

The conceptual models of hydrology used in the CCA result from nearly continuous

investigation of northern Delaware Basin hydrology since 1974 conducted specifically for

the WIPP. During this period, the general hydrologic conditions from the surface to

depths exceeding 2,000 m were established through testing and monitoring programs

conducted from the land surface. For the geologic units that are plausible transport

pathways, specific hydrologic conditions and transport characteristics were determined

from testing and monitoring programs conducted in boreholes drilled fi-om the surface, in

underground boreholes drilled fi-om shafts or excavations, and in laboratories. Data have
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been collected on hydraulic potentials (heads), major element (chemical) composition,

and, in some cases, isotopic compositions.lO1 Direct examination of rock samples from

drill cores and in shail exposures has aided the development of conceptual models for the

flow and transport properties of the subsurface. Especially since the mid-1980’s,

hydrologic models have been used extensively to guide testing activities, to estimate

conditions in locations not directly tested, and to evaluate the effects of slow processes,

such as climate change, that cannot be directly tested. At the WIPP site, a monitoring

program for hydraulic potentials and chemical composition of groundwater in the near-

surface units is implemented, and activities occurring in the region with the potential to

affect subsurface fluid potentials are monitored.

3.1 Regional Hydrologic Conditions

A primary objective of locating the WIPP repository in the Salado was to isolate the

waste fi-om circulating groundwater. Accordingly, an early goal of site characterization

activities was to evaluate the potential for evaporite dissolution to affect waste isolation.

Dissolution has long been recognized as a primary process affecting landforms in the

vicinity of WIPP. 102’103For example, Nash Draw, about eight kilometers west of WIPP

(Figure 5), is a valley caused by dissolution of the upper Salado and subsidence and

erosion of overlying rocks. The investigation of dissolution features in the early years of

the project was extensive. However, because most dissolution was found to be of low

consequence to the isolation of waste,4G’20it is not central to the theme of this paper.

Summaries of the dissolution investigations conducted during characterization of the
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WIPP site are presented elsewhere.22320’7>104’105>10GOnly dissolution as it affects the

hydraulic properties of the Culebra is discussed in following sections.

Since dissolution does not threaten to breach the disposal horizon, all evidence suggests

that the TRU waste will remain isolated from the biosphere for a sufficient period of time

if it is not disturbed by human intrusion. However, in the human-intrusion scenario

considered in the 1996 WIPP PA, processes are assumed to occur that may move

radionuclides into geologic formations containing circulating groundwater. Groundwater

circulation is influenced by factors such as topography, climate, and geological conditions

that extend well beyond the boundaries of the WIPP site. Regional hydrologic conditions

have been investigated mainly through computer modeling, but in situ hydraulic testing in

the WIPP area, chemical and isotopic analyses of groundwater samples, and

electromagnetic geophysical soundings augment the model interpretations.

Characterization was directed at the more permeable units bounding the Salado (see

Figure 4) – the overlying Dewey Lake Formation, Magenta, and Culebra, and the

underlying Castile and Bell Canyon Formations. Early in site characterization, the

unnamed lower member of the Rustler Formation and its underlying Rustler-Salado

contact zone were thought to be a potential transport pathway, but interest in this

potential pathway waned after several tests in the unit found relatively low transmissivity

at the WIPP site.l 1‘‘“3-28‘t ‘w” Similarly, a few tests were conducted in the Tarnarisk and

Forty-niner Members of the Rustler Formation to confirm that they have very low

potential to produce or conduct water.1077108
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The conceptual model for regional hydraulic conditions supporting the CCA is based on

well-developed concepts of regional groundwater flow in groundwater basins. 109 A

groundwater basin is a three-dimensional closed hydrologic unit bounded on the bottom

by a rock unit with much lower permeability than the units above (i.e., an “impermeable”

unit), on the top by the ground surface, and on the sides by groundwater divides.

Differences in the elevation of the water table across the groundwater basin provide the

driving force for groundwater flow. All recharge to the basin is by percolation of

precipitation to the water table and all discharge from the basin is by flow across the

water table to the land surface. The pattern of groundwater flow depends on the lateral

extent of the basin, shape of the water table, and the heterogeneity of rock properties,

chiefly permeability, within the basin.1°9

The concepts of regional groundwater flow to develop models for fluid flow in the WIPP

area were first used by Davies in the late 1980’s. 110 His series of two-dimensional

numerical analyses investigated the magnitude of gravity and density driving forces for

groundwater flow, the role of vertical flux, the potential effects of river elevation

changes, and the role of long-term climate change. These results supported the idea that

long-term climate change could influence present-day flow systems.

In the 1990’s, a three-dimensional groundwater basin conceptual model was created for

the WIPP region above the top of the Salado.1°9 The model was implemented with a

computer code called SEC03D,11 *and had the capability to model transient motion of the

water table. Hydrostratigraphic units in the model were defined based on experience with
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WIPP rock types and structure-contour maps developed from geophysical logs.log

Geologic data for analogue rock types were used to develop “intact” hydraulic properties

resulting from depositional and diagenetic processes. The effects of post-depositional

alteration that has occurred in the region were incorporated through modified parameter

values. Uncertainty in the values of rock properties was assessed, and its impacts

evaluated through deterministic simulations.

The regional groundwater basin model was used to simulate how changes in infiltration

rates due to climate changel 12would influence the flux of groundwater laterally and

vertically through hydrostratigraphic units at the WIPP site. Climate change over the next

10,000 years was found to increase lateral flux through the Culebra by a factor of 1.0 to

2.25.113 This information was used to create the simple climate change model used in the

1996 WIPP PA. Regional groundwater flow modeling also predicted that all discharge

from the Culebra at the WIPP site occurs by lateral flow, indicating that contaminants

potentially released into the Culebra will move toward the accessible environment within

the Culebra and not move upward or downward into other units. Based on this modeling

result, a confined-aquifer groundwater flow model was considered reasonable for

simulating flow and transport in the Culebra in the 1996 WIPP PA.] 14

3.2 Culebra Fluid Flow and Transport

Geohydrologic investigations fi-om 1975 to the mid-1980’s were intended to gather basic

data on all of the rock types and stratigraphic units in the WIPP region. Beginning in the
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mid-1 980’s, however, geohydrologic investigations began to focus intensively on two

stratigraphic units – the Salado hosting the repository, and the Culebra. The Culebra

became the focus of investigation for several reasons. The Dewey Lake Formation was

thought to be unsaturated or partially saturated with perched groundwater, which is not

conducive to lateral transport.115 (The upper Dewey Lake is now thought to be saturated

and fi-actured in some places, but resistant to radionuclide transport because the iron-

bearing minerals it contains will retard radionuclide movement by sorption).1 lb Interest in

the Bell Canyon and other formations below the Salado waned as it was determined that

Bell Canyon rock properties and hydraulic gradients were not conducive to rapid lateral

transport. 115’107’35‘“7-*7Hydraulic tests conducted in the Magenta indicated lower

transmissivity than the Culebra, generally homogeneous porous medium behavior on the

scale of well tests, and regional transmissivity variation.1°8’117 Models of groundwater

flow in the Magenta indicated slow groundwater velocities.] 18 In contrast, as discussed in

the next section, by the mid-1 980’s, in situ well tests, regional pumping tests, and tracer

tests revealed the Culebra to: (a) be the most transmissive unit in the stratigraphic

sequence; (b) transmit water pressure pulses quickly over kilometers in some areas; (c)

have east-west transmissivity variation of more than six orders of magnitude in the

vicinity of WIPP; and (d) have hydraulically important fractures.

The hydraulic properties of the Rustler and Culebra have been affected by dissolution.

Precipitation and dissolution of gypsum in fi-actures accounts for some of the regional

variation in Culebra transmissivity.1 19 Halite dissolution in the Forty-niner, Tamarisk,

and unnamed lower member may also account for some transmissivity variation in the
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Rustler generally, however the timing of this dissolution is uncertain. Based primarily on

isopach maps of the Rustler Formation members and the relation between halite margins

and Nash Draw, the westward-thinning of halite in the Rustler has been attributed to post-

depositional dissolution.120>121’122 However, based on examination of Ruster sedimentary

features, the same phenomenon has been attributed to lateral variation in depositional

processes or syndepositional dissolution.123 Disagreement persists over the genesis of the

observed distribution of halite in the Rustler. However, even in the absence of consensus

regarding the origin of Rustler hydrostratigraphic features and properties, it is generally

accepted that the program of in situ testing and analysis have determined the Culebra

hydraulic properties sufficiently for the 1996 WIPP PA.98” 53

3.2.1 Culebra Groundwater Flow

A network of 57 wells had been completed to the Culebra by 1988, in which numerous

types of tests had been conducted, yielding information about its hydraulic properties and

conditions in the vicinity of WIPP. 124,115,107,125,126,108,127,128,129,130The testing techniques

used included drillstem tests, slug tests, pumping tests, hydraulic-interference tests, and

long-term monitoring programs. The drawdown and recovery of Culebra hydraulic head

in response to drainage into repository shafts was monitored, which was used in inverse

calibration techniques to provide information on hydraulic properties over a large region

of the central portion of the WIPP site. 131‘]32
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Groundwater models were also important in developing the conceptual model of

groundwater flow in the Culebra used in the 1996 WIJ?P PA. Inverse techniques were

first used to infer site-scale hydrologic properties of the Culebra in the late 1980’s and

have been used ever since. 133’132’134’1357136Haug and others modeled present-day

groundwater flow in the Culebra using a kriged transmissivity field derived from in situ

measurements. Through modeling steady-state conditions and transient flow caused by

drainage of the Culebra during construction of the WIPP shafts, they found that observed

head distributions could be matched only by increasing transmissivities in a region

southeast of the waste panels. 132 Geological data and in situ tests had previously

indicated a trend of higher transmissivity there, but model fits could not be obtained

without using transmissivity values quite in excess of any observed in previous tests or

inferred from geologic data. The high-transmissivity zone “discovered” in the

groundwater models sparked a series of surface-based geophysical investigations137’138

and in situ hydrologic testing in new boreholes H-1 7 and H- 19 with the goal of defining

the properties of the high-transmissivity zone. Despite the additional characterization

efforts, the exact dimensions of the high-transmissivity zone remain unknown.

To assess the uncertainties caused by the high-transmissivity zone and Culebra

heterogeneity generally, stochastic models using inverse techniques have been developed

and applied. ‘35’136For the 1996 WIPP PA, the inverse technique was used to create 100

realizations of Culebra transmissivity in the vicinity of WII?P.13G>114 Using the stochastic

transmissivity fields as a sampled input parameter, the 1996 WIPP PA results indicate
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that the most-likely pathway for transport of radionuclides away from intrusion boreholes

is the Culebra high-transmissivity zone. 114

Within the WIPP site but not directly over the repository, the upper Salado contains

potash. Potash mining is ongoing and is expected to continue, although mining within

the WIPP site is currently prohibited. The EPA regulations for the WIPP specifi a

conceptual model for the effects on groundwater flow in the Culebra of subsidence over

existing and hypothetical potash mines.5 The EPA developed its model of subsidence

effects by reviewing studies of analogs to WIPP mining and subsidence and through its

own modeling. Data was identified in the literature for New Mexico potash mines and

for longwall coal mines in West Virginia, Illinois, and Pennsylvania. Modeling analyses

in the literature were also identified, and supplemented by strain-modeling for conditions

relevant to the WIPP.139 ‘p”9-30’*“q” These literature reviews and modeling analyses led

the EPA to speci~ that mining effects could be incorporated solely by modifjing the

transmissivity of the Culebra.5 The DOE incorporated the EPA model by multiplying the

intact hydraulic conductivity of the Culebra above potash deposits similar to those being

mined currently by a factor randomly sampled between 1 and 1000.114 The probability of

future potash mining within the currently withdrawn WIPP disposal system is described

in Helton and others.21

3.2.2 Radionuclide Transport in the Culebra
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The potential mechanisms of radionuclide transport in the Rustler generally, and in the

Culebra in particular, have been of interest since the WIPP project was established, and

many studies have been conducted. For example, sorption data were collected for

samples from the Magenta and Culebra, with liquids of various compositions, in the late

1970’s and early 1980’s for many relevant actinides.1407141’142In 1980, soon after the

transmissivity of the Culebra was recognized to be strongly influenced by fractures,124

dipole tracer test was conducted in the H-2 wells, and later other in situ conservative

tracer tests were conducted to identify diffusion properties of the fractured rock.143

However, over time it was realized that the early chemical retardation data did not

a

differentiate between sorption mechanisms (adsorption and ion-exchange) and other

retardation mechanisms such as precipitation of actinide-bearing solids. 144 Similarly, it

was realized that the initial tracer tests in the Culebra were ambiguous because

experimental procedures, fi-acture network heterogeneity, or matrix diffusion all could

explain the observed results.145’14G

Theoretical and modeling studies investigating parameter sensitivity and importance for

radionuclide transport in the Culebra were conducted as well. For example, it was

calculated that natural flow in the Culebra and the size of the disposal system are such

that physical retardation by diffision of solute into matrix blocks effectively balances

advection in fracture networks, allowing use of equivalent single-porosity models.]47

By 1992 there was a feeling of confidence, but an inability to demonstrate conclusively,

that radionuclides entering the Culebra would diffuse from fractures into the rock mass
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and sorb to mineral surfaces. Insufficient data existed to eliminate alternative conceptual

models in which there was little diffusion into the matrix or no chemical retardation

(Figure 9). The effect of this conceptual model uncertainty was tested in a 1992

preliminary PA, showing significant differences among the three alternative models

considered (Figure 10).148 Some experiments to reduce uncertainty in actinide sorption

were initiated in the early 1990’s. However, a comprehensive approach was not adopted

until the 1994 SPM confirmed that reducing uncertainty in the Culebra transport model

would significantly enhance confidence in compliance with the EPA regulations. 14’15’16

Thus, although the basic ideas were in place more than a decade before, a rigorous basis

for the CCA conceptual model for radionuclide transport in the Culebra was developed

mainly by investigations conducted since 1994.

WIPP scientists charged with characterizing the radionuclide transport properties of the

Culebra divided chemical retardation into a separate program of investigation from

physical transporl and retardation. This is reasonable fi-om the perspective that physical

transport and retardation are affected only by the physical structure (e.g., fracture surface

area, matrix porosity, and tortuosity) of the medium while chemical retardation (sorption)

is affected by the chemical properties of the transporting fluid and rock (e.g., mineralogy).

Physical transport and retardation were investigated with a program of in situ

conservative tracer tests and laboratory diffusion tests. Chemical retardation was

investigated in a program of laboratory sorption tests. Despite the strong encouragement

for and even recommendation of an in situ sorbing tracer test by outside review groups,

the scientists involved believed such a test presented many practical problems in both
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procedures andanalysis thatcould cause ambiguous results. Considering its fielding and

interpretation problems, its high cost, and the presence of a reasonable alternative

approach, the in situ sorbing tracer test could not be justified. As discussed in the

following sections, coupled physical transport and retardation and chemical-retardation

experiments were conducted in the laboratory with flow-through experiments using intact

core horn the Culebra and some of the actinides of interest.

Culebra PhysicaI Transport and Physical Retardation

Solute transport occurs in the pore space of rocks. In the Culebra, the pore structure is

heterogeneous, as stated by Holt:149

“Within a fi-actured geologic material, such as the Culebra, pore space is present in both

the interconnected network of fi-actures and the blocks of geologic medium. In the

Culebra, this relationship is fbrther complicated because several scales of fracturing are

present [123’119],and several types of porosity occur within the fi-acture-bounded blocks.

In addition, fractures may not be the only advective transport path in the Culebra, as

interbeds of poorly cemented, silty dolomite may actively participate in advective

transport of solutes. Furthermore, diffision and slow advection into the fracture-bounded

blocks of dolomite may significantly affect solute transport in the Culebra.”

In the context of this complex pore structure, several lines of investigation were pursued

to characterize and quantifi the mechanisms of transport in the Culebra. The basic
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conceptual model was developed by describing in detail the pore structures of the Culebra

(Figure 11), with conceptual connections among diffision processes and the different

types of porosity, including a mathematical representation allowing comparison of

observed transport behaviors at different spatial and temporal scales. This framework

created a consistent basis for comparing results from the laboratory with those from the

field, and for extending interpretations to the larger distance and time scales necessary in

the 1996 WIPP PA.149

To characterize transport properties in situ, the H-19 seven-well cluster was installed at

the north end of the high-transmissivity zone in the most likely off-site flow path (Figure

5). The H-19 well cluster provided geologic data from drill cores, downhole geophysics,

and borehole imaging. 149 At the H-19 well cluster, hydraulic properties were

characterized with flow tests. 130 Two types of conservative tracer tests were conducted at

the H-19 and H-11 well clusters. 150 The multi-well convergent-flow tracer tests

characterized the relationship between heterogeneous advective porosity and diffusive

porosity by varying pumping rates and tracer diffision constants.151’152’153The single-

well injection-withdrawal tracer tests reduced the effects of advective porosit y and

provided better discrimination of diffision mechanisms and rates.151>154Simulations were

conducted to determine if fracture network heterogeneity alone could explain the

observed results. These calculations demonstrated that variability in fracture conductivity

could not reproduce experimental results.151
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The tracer-test analyses show that in situ observations cannot be matched with a single-

porosity, fi-acture-flow conceptual model, which holds that physical retardation by

diffision into slow-moving or stagnant pore fluids does not occur. Furthermore, the

experiments provided conclusive evidence of multiple rates of diffusion in the pore

structure of the Culebra (Figures 12 and 13). Experiments to image the diffision process

in the laboratory were also conducted to confirm that diffision occurs at multiple rates

into different types of porosity in the rock matrix. 155 The in situ flow and tracer tests at

H-1 1 and H-19, post-test analyses, and laboratory diffision studies demonstrate the

mechanisms and rates of mass-transfer through different types of porosity in the Culebra

in the most-likely flow path. All of these lines of evidence were used to support the

choice of computer models and parameter values used in the 1996 WIPP PA.l 14

Culebra Chemical Retardation

Post-1 992 sorption research focussed on the mineral dolomite [MgCa(C03)2], because it

comprises > 95°/0 of the Culebra. The potential for additional sorption on minor mineral

phases such as clay was not emphasized because the models of Culebra pore distribution

and physical transport were not being developed in sufficient detail to substantiate

transport to the locations of minor mineral phases.15G

The mechanisms of sorption and the shape of the sorption isotherms were investigated in

three laboratory approaches.55 The empirical (batch) sorption study was conducted to

rapidly establish minimum &s for a variety of WIPP-relevant conditions using crushed
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Culebra dolomite and manufactured chemical analogues for natural groundwater types

found at the WIPP site.55’15GThe mechanistic sorption study investigated the effects of

ionic strength, C02 concentration, pH, and actinide oxidation state on adsorption

behavior using carefi.dly controlled solution chemistry and crushed samples of pure

dolomite.157’158>15GThe intact-core column experiment used large-diameter intact cores

and WIPP-relevant brines to investigate the effects of advective fluid flow on sorption in

the Culebra. 159’160Because a linear-isotherm (IQ model was required for the 1996 WIPP

PA to allow significant reduction in computational effort,l 14the laboratory data were used

to choose effective IQ, even though, in some cases, more complicated isotherms were

observed. 156

3.3 Salado Fluid Flow and Transport

The initial interest in the hydraulic properties of the Salado was to estimate the quantity

of brine that could enter the waste-disposal rooms. The presence of approximately 0.1 to

1 wt YOof free (not chemically bound) pore fluid in the Salado was recognized early in

site characterization. 16179’162’163’164However, this pore fluid was thought to be contained

in intracrystalline pores with little interconnection.9’ ‘-20 In situ permeability tests of the

Salado conducted from the surface at AEC-7 evaluated the hydraulic conductivity of the

Salado,lG5 but these estimates were later determined to be unreliable.129 In the early-to-

mid 1980’s, observations horn the underground of brine seepage, as well as other tests,

led to the identification of intercrystalline porosity containing brine within the Salado.

Meaningfid estimates of the permeability associated with Salado intercrystalline porosity
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were not obtained until access to the underground was achieved in shafts and in the

repository excavation. Estimates of Salado permeability were derived from in situ

observations and tests, including flow into open boreholes,39’40>]‘Gtests in shafts and

around seals,lG7>lG8>1G9and hydraulic tests. 129’170

Due to brine seepage and possible high-pressure gas (see Section 2. 1), it was recognized

that fluid movement in and near the repository could occur as two-phase flow.

Laboratory and field experiments and modeling studies were conducted to build a

conceptual model of two-phase flow in the Salado. Because halite-rich stratigraphic

layers were considered to be impenetrable to gas due to capillary effects,171 efforts

focused on determining the two-phase characteristics and behavior of anhydrite interbeds.

The capillary pressure and relative permeability characteristic curves of Salado anhydrite

were determined fl-om tests on small rock samples in the laboratory.172 The gas-threshold

pressure of anhydrite interbeds was determined through in situ tests.173 Two-phase flow

computer codes were adapted to the WIPP situation to conduct PAs and sensitivity

studies, 174’58’175’176as well as to investigate the potential importance of countercurrent

flow in the slightly dipping strata,177 to evaluate the effects of fine details of

stratigraphy, 17sand to investigate the errors incurred in interpreting brine-inflow

experiments with single-phase flow models.179

The interaction of rock mechanics and fluid movement in the disturbed rock zone around

the excavation was recognized as important and several characterization investigations

were completed during the late 1980’s and early 1990’s. 1‘0’181‘1827183To validate models
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based on small-scale observations, a large-scale brine-inflow experiment was conducted

in Room Q, an approximately 3-m-diameter, 100-m-long horizontal borehole. Room Q

was instrumented with resistivity arrays to observe conductivity changes caused by

deformation and fluid flow,184 and included sumps for collection of brine.185 A network

of boreholes was installed around it in which hydraulic properties were measured and

pore pressures monitored.18b Long-term trends in Room Q data were analyzed from the

perspective of rock mechanics184 and hydrology.187”88 Room Q data and analysis indicate

that gas-filled porosity caused by dilation in the disturbed rock zone can become saturated

with brine flowing slowly horn lower permeability surrounding rock. This slow

resaturation may provide a source of brine to the disposal rooms.

Although parameters for undisturbed rock in the Salado were determined for the 1996

WIPP PA as accurately as possible from measured data, the properties assigned to the

DRZ are conservative to account for possible future disruptive events such as

earthquakes, that otherwise would have been difficult to eliminate from consideration.4b>20

There was little interest in predicting radionuclide transport in the Salado for the first

decade of site characterization. However, as discussed in Section 2.1, the higher than

expected brine inflow and lower than expected Salado permeability discovered in the

mid-1 980’s suggested that hydrogen fi-om anoxic corrosion could attain high pressure in

the repository, which could drive outward liquid flow.lsg Furthermore, the US EPA

issued 40 CFR Part 191, which formally implemented the disposal system concept and

the cumulative-release peflormance standard, in which any movement of radionuclides
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out of the disposal system is considered important even such movement does not threaten

the biosphere.2’3

The low permeability of the Salado indicates that fluid flow into intact Salado rock will

be slow and may not be capable of relieving pressure caused by gas generation. If the

repository pressure rises to lithostatic in the repository, the rock may respond

mechanically by hydrofracture. In 1992, development began of a phenomenological

model for incorporating the hydraulic effects of fracturing into the BRAGFLO two-phase

flow computer code.52 Confidence in the appropriateness of the model was developed by

review from an external group of rock mechanics and hydrology experts. 190 Observations

taken in the Salado form the basis for values of model parameters selected for the

hydrofracture model incorporated in BRAGFLO. The anhydrite interbeds in the Salado

contain interconnected, partially healed, thin, subhorizontal fractures. 191In situ hydraulic

tests of the anhydrite interbeds demonstrate pore-pressure dependence of permeability,173

indicating dilation of pore space, probably by the opening of pre-existing fractures, as the

local effective stress changes. Liquid hydrofracture tests conducted from the repository

horizon indicate pervasive alteration of the interbeds once pressure is high enough to

initiate new fractures or interconnect existing fractures, accompanied by a permeability

increase of about 5 orders of magnitude from initial values. 192’]93

The low permeability and high capillary pressure of halite-rich horizons indicates that

lateral flow more than a few meters from the repository into the Salado can be expected

to occur only in the anhydrite interbeds. A radial model for flow in the anhydrite
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interbeds was adopted based on a lack of regional trends in hydraulic properties suggested

by the continuity of fine stratigraphic details and similarity of Salado rock fabrics and

textures in the vicinity of WIPP.5 ‘ection‘4>194Since significant releases are not expected

to occur via flow through the anhydrite interbeds in either their intact or fractured state,

the potential for retardation in the anhydrite interbeds has not been quantified. A very

simple, advection-only model for actinide transport in anhydrite interbeds is implemented

in the 1996 WIPP PA.195’19G’77

4.0 Discussion: Validating Conceptual Models Used for the CCA

Shifts in emphasis of site characterization and model-building activities occurred subtly,

slowly and pervasively in the WIPP project. Early investigations focused on general

characteristics and unusual features with the aim of confirming the suitability of the

WIPP site from the perspective of sound scientific judgement.e~> 7 Early safety analyses

were conducted as an accessory to and in support of sound scientific judgement as a basis

for decision-making. e”g”35 Through the 1980’s, as the national policy for regulating the

disposal of nuclear waste matured, the emphasis shifted to characterization with the aim

of building conceptual models for use in process-level scientific modeling and total-

system PAs.

The validation of conceptual models as suitable for prediction of the long-term

performance of the WIPP disposal system has been a long-standing concern. As the

meaning of the term can be controversial, in this discussion “validate” is defined as “to
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support or corroborate on a sound or authoritative basis.’’197 This definition is consistent

with WIPP regulations, which state” ...there will inevitably be substantial uncertainties in

projecting disposal system performance. Proof of the future performance of a disposal

system is not to be had in the ordin~ sense of the word in situations that deal with much

shorter time frames. Instead, what is required is a reasonable expectation ... that

compliance will be achieved.”3’ at191“13(b)Even though certainty is not required, building

confidence in the conceptual models of hydrology and chemistry has not been simple.

Experience with WIPP has shown that confidence in conceptual models depends on

documented and retrievable records of work, consistency with or improvement on

standard scientific and engineering practices, and reasonable consideration of

alternatives. *9s Documentation is vital because documents, or records, form the basis of

decision-making, both in science and in regulatory proceedings. Consistency with

standard scientific and engineering practice is developed and tested through technical

peer review processes. Internal peer review by independent qualified peers has been a

consistent part of WIPP project activities since its inception, and external peer review is

acquired by publishing in refereed professional journals. Reasonable consideration of

alternatives is also assessed through peer review.

An important aspect of building confidence in conceptual and mathematical models has

been the use of external peer review groups. In addition to peer review as part of

publishing in the scientific literature, WIPP project managers and scientists have often

sought out and used external peer review groups. Two standing external review groups
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exist for the WIPP program. Since 1978, a National Academy of Science/National

Research Council Committee on the WIPP (NAS WIPP Panel) has provided review,

comment, and recommendations to the federal government and the DOE regarding

development at WIPP. In its most recent of 13 reports (NAS WIPP Panel reports are

summarized in 5, Chapter 9), the NAS WIPP Panel expressed confidence in the safety of

the WIPP if it is not disturbed by human activities, and cautioned against excessive use of

subjective scenarios of human disruptions in assessing WIPP safety.lg The State of New

Mexico has since 1978 chartered the Environmental Evaluation Group (EEG) to provide

independent oversight of DOE activities pertinent to WIPP. In addition to its role in

evaluating operational safety and monitoring the environmental conditions in the vicinit y

of WIPP, the EEG has contributed to the development of CCA conceptual models of

long-term performance though its comments on project documents, *99’200its sponsorship

of workshops and symposia,201 and independent analysis of issues of importance in

evaluating long-term performance.2027203’204The NAS WIPP Panel and the EEG have

been effective in influencing the development of WIPP conceptual models, since these

organizations have been involved in the conceptual evaluation, planning,

analysis of most WIPP-relevant technical activities since the late 1970’s.

execution, and

Other external review groups have also influenced the development of WIPP conceptual

models. Perhaps the most significant are external groups that have been chartered to

evaluate and guide technical activities around a particular topic or issue for a period of

years. Two such groups are the 1988-1993 Performance Assessment Peer Review Panel

for the system-level model of the WIPP disposal system,205 and the 1992-1996
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Geostatistics Expert Group for the use of inverse methods to infer the hydraulic properties

of the Culebra.20G In some cases, these groups participated in specific tests that were

conducted to evaluate WIYP models against academic or industry approaches. For

example, a test of inverse models for inferring hydrologic conditions was conducted

among a subgroup of the Geostatistics Expert Group.20G

Some external review groups were convened to evaluate the suitability of WIPP

conceptual r models at specific points in their development. Two of many such groups

convened for project feedback prior to the CCA are the 1993 Fracture Expert Group,190

which evaluated the development and application of the anhydrite interbed fi-acture

model, and the Perfommnce Assessment Review Team, which examined the suitability of

the WIPP dispcmal system model for predicting compliance with the EPA regulations.207

Soon after submitting the CCA to the EPA, the DOE convened a joint IAEA/OECD panel

to review the CCA ffom an international perspective.208 The most important independent

peer review panels of the WIPP project were convened in 1996-1997 to comply with

specific EPA regulations or to support specific claims in the CCA license application,5

chapter9’209two of which are important to this discussion. The Conceptual Model Peer

Review Panel examined the selection ofi basis for, and mathematical implementation of

all conceptual models included in the 1996 WIPP PA.5 Chapt”9’209’9s>99’100Over a one year

period, this panel examined technical documents, read previous peer review group

findings and project responses to those findings, and interviewed project technical staff.

To address Conceptual Model Peer Review Panel concerns, additional experiments and

modeling were conducted for the MgO backfi1197and spallings conceptual models .210>9G
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Eventually, the Conceptual Models Peer Review Panel found each conceptual model used

in the 1996 WIPP PA to be acceptable for use by being:

(1)

(2)

(3)

adequate;

inadequate but unimportant (e.g., the explanation for spatial variability in Rustler

hydraulic properties is inadequate but unimportant because the data base and

transmissivity fields are appropriate to describe the existing spatial variability); or

in the case of the spallings model,9579G’210conservative in its results. 100

The Natural Barriers Data Qualification Peer Review Panel was convened to evaluate the

adequacy of data collected prior to implementation of a quality-assurance program,

satisfying the specific requirements of the EPA’s 199640 CFR Part 194.5 Chapta9’209

The WIPP project has sought feedback on its conceptual models through participation in

cooperative, international technical committees. For example, the WIPP project has

participated in numerous workshops and symposia on hydrology organized by the

Swedish Nuclear Power Inspectorate (SKI) and/or the Nuclear Energy Agency (NEA) of

the Organisation for Economic Co-operation and Development (OECD). INTRAVAL

was organized by SKI to evaluate conceptual and mathematical models of groundwater

flow and radionuclide transport used in PA of radioactive waste repositories.

INTRAVAL focused on methods for validating conceptual and mathematical models of

geophysical, geohydrological, and geochemical phenomena using test cases submitted by

the participating organizations. In 1990, the WIYP project submitted the brine-flow tests
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fi-om the Salado as a test case to INTRAVAL to identify mechanisms controlling brine’

inflow. Teams fi-om Sandia National Laboratories, the (Dutch) National Institute of

Public Health and Environmental Protection, and the (French) Ecole Nationale Sup6rior

de Mines de Paris participated in the WIPP test case. All teams found that flow models

based on Darcy’s law could replicate the experimental data from the low-permeability

Salado rocks. The studies concluded that Darcy-flow models can reliably be used to

predict brine flow to WIPP excavations, provided that the flow modeling is coupled with

measurement and modeling of the pore-pressure field around the excavations.211 The

WIPP project also participated in the NEA/SKI GEOVAL-1990189’2 k2and 1994173

symposia and the NEA GEOTRAP project.21 1’213’214’23>215Other international working

groups and symposia with WIPP participation in the areas of hydrology and chemistry

include:

●

●

●

●

●

the INTRAVAL Culebra Test Case, with participation from AEA Technology (UK),

Universidad Polit6cnica de Valencia (UPV), Atomic Energy Control Board of Canada

(AECB), and the Bundesanstalt ftir Geowissenschaften und Rohstoffe (BGR);

the NEA workshop on Excavation Response in Geological Repositories for

Radioactive Waste;21G’217

the NEA workshop on Heterogeneity of Groundwater Flow and Site Evaluation;218

the NEA workshop on Gas Generation and Release from Radioactive Waste

Repositories;ls9 and

the NEA Site Evaluation and Design of Experiments (SEDE) and Performance

Assessment Advisory Group (PAAG) working groups.219
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The most rigorous external examination of the 1996 WIPP PA conceptual and

mathematical models occurred during the EPA’s own review of the CCA.G The EPA’s

review not only assessed the technical credibility of data and models used to support the

1996 WIPP PA, but also tested through audits that the data and information cited by the

DOE were documented and available for public review. The EPA sought out the

opinions of stakeholders, in some cases soliciting comments directly from specific public

stakeholder groups in private meetings. The EPA requested significant additional

information and explanation of data and models used in the CCA, and conducted

sensitivity studies and an independent verification test of the 1996 WIPP PA to evaluate

the importance of differences of opinion between the DOE’s positions in the CCA and

stakeholders.220 The record of the EPA review of the 1996 WIPP PA and CCA is

available in EPA Docket A-93-02. The index to Docket A-93-02 is on the World Wide

Web at Www.epa.govh-adiationlwippl.

5.0 Conclusion

The 1996 CCA used a model of the WIPP disposal system to perform a probabilistic

evaluation of its performance for the next 10,000 years. The performance assessment

model included conceptual and mathematical representations of key hydrologic and

geochemical processes. These key processes were identified over a 22-year period

involving data collection, data interpretation, computer modeling, and sensitivity studies

to evaluate the importance of uncertainty and of processes that were difficult to evaluate
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by other means. Key developments in the area of geochemistry were the evaluation of

gas-generation mechanisms in the reposito~, development of a model of chemical

conditions in the repository and the concentration of actinides in brine; selecting MgO

backfill and demonstrating its effects experimentally and determining the chemical

retardation capability of the Culebra. Key developments in the area of hydrology were

evaluating the potential for dissolution of evaporite rocks in the vicinity of WIPP,

development of a regional model for hydrologic conditions, development of a stochastic,

probabilistic representation of hydraulic properties in the Culebra; characterization of

physical transport in the Culebra; and the evaluation of brine and gas flow in the Salado.

Confidence in the conceptual models used to represent these processes in PA calculations

was gained through the use of various types of independent peer review in many stages of

their development.
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Wide Web at www.wipp.carlsbad.nrn.us through the main Library link to the Carlsbad

Area Office Library. Specific chapter numbers or Appendix titles have been provided to
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facilitate finding the referenced information. Through the World Wide Web, Chapters 1-

9 and appendices can be viewed, searched by section and with keywords, or downloaded,

and other attachments can be downloaded.
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Table 1. Oxidation states present in the WIPP and the application of the oxidation state

analogy to determine dissolved actinide concentrations in WIPP brines.

Species in WIPP Representtitive Actinide
(Volubility Upper Bound)

Pu(III), Am(III) Am(III)

rTh(IV), U(IV), Np(IV), Th(IV)
Pu(I?O

Np(v) Np(V)
U(VI) U(vl)
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Figure 1. Location of the WIPP site in southeastern New Mexico.
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Figure 3. General features of the disturbed performance (or human intrusion) scenario for

WIPP performance assessment.
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Figure 4. General stratigraphy of the WIPP site.
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FiWre 6. Uncertainty perceived from 1989 to 1995 in the range of plausible chemical

conditions in WITP repository liquids represented on an Eh-pH diagram.bl
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Figure 7. Ternary diagram showing steps in the reaction path for the formation of

magnesite from MgO pellet backfill.97
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Figure 8. SEM photomicrograph of hydromagnesite precipitated from Mg-O pellets

reacting with water and C02. Morphology of the crystals indicates no passivation of the

interior of MgO pellets by reaction products .97
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Figure 9. Perceived conceptual model uncertainty for radionuclide transport in the

Culebra Dolomite during the period 1990-1994.222
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Figure 12. Analysis of the H-19 tracer test data found that double-porosity, single-rate-

of-diftision models could not match observations. The multiple-porosity, multiple-rate-

of-diffusion model, which accounts for heterogeneity in matrix block size and the

tortuosity of porosity, can explain the data observations.223
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Schematic diagram of a multiple- Schematic diagram of a double- .
porosity model with multiple rates porosity model, used in 1996
of diffusion, used to interpret the WIFP PA calculations.

H-11 and H-19 tracer tests.

Fi=mre 13. Double-porosity models with multiple rates of diffusion in matrix blocks are

used to interpret in situ tests in the Culebra Dolomite. Multiple rates of diffusion are

caused by heterogeneity in the size of matrix blocks and by heterogeneity in the pore

structure (tortuosit y) within each matrix block. Single-rate of diffusion, double-porosity

models were used in the 1996 WIPP PA. Matrix block size and tortuosity were sampled

randomly fi-om a distribution derived from experimental data.2Z4
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