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1. INTRODUCTION

The concept of “internal variables” plays a very important role in the theory of plasticity,

relating a macroscopic inelastic response of a material element to structural rearrangements (e.g.

of dislocations) within it (see, e.g., [1,2]). Traditionally these internal variables are divided into

two classes: “specific structural variables” [1] and “internal variables of the averaging type”

[1,2]. In the first case the general formalism is developed in terms of a finite number of discrete

scalar internal variables <i (j= 1,...,rr~, with each variable characterizing the extent of some local

microstructuml rearrangement taking place at one of n different sites within a given sample of

material. When the number of sites increases in proportion to the size of the sample, so also does

the number of structural variablesl [1]. The main utility of structural variables is the remarkable

nmnaliiy structure of constitutive laws of plasticity, which arises in the case when the rate of
::.

structural (e.g. dislocation) rearrangements depends only on the associated thermodynamic force

[1]. This normality structure

1 Conseque@iy,any function

implies that in the case of rate- independent flow theory the

depending on such structural wuiables, will be homogeneous degree one

(1-ID1)and will sati@ the followingfhdamentalprcperty [3]: F(4x) = ~(x)
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2 The so-called“machineequation”used to deseribedeformationof a sample in a testing machine gives an

exampleof suchusage.This equationincorporatesdeformationof both the sample,based on its eonstitutivemodel,

and the machine,based on the propertiesascribed to it. In the case of homogeneousyielding the machineequation

A

.

increment of plastic strain must be normal to the yield stn%ace,while for rate-dependent case the

existence of the flow potential can be proven.

However, in practice it is more convenient to operate with a few “internal variables of the

averaging type” which are related to specific structural variables in exactly the same way as

extensive and intensive fimctions in equilibrium thermodynamics and do not depend on the size

of the system under consideration. Thus plastic deformation is considered simidtaneousl y on

microstructural sca!e (specific structur&ariables) and macroscopic scale (averaging variables),

and it is important to understand how the connection between the two is established.

In the present work we demonstrate that the well-known Orowan equation relating the

density of gliding dislocations N~(“internal-variable of the averaging type”), their Burgers vector

b and their velocity Vg to plastic strain rate, under certain assumptions ean be related to Rice’s

thermodynamic approach with specific internal-variables. The Orowan equation plays a

remarkable role in dislocation density-related constitutive modeling of plasticity, and it an be

written as follows [4]:

k,, = Ngvgb (1)

here Vgand b are the lengths of the vectors Vg and b, respectively.

The Orowan equation (1) serves as a constitutive law relating the stress-strain response of a.

material el~ment to the unded ying dislocation dynamics2. For this reason it is important to



. + ,

understand the microscopic assumptions, with specific structural variables, which lead to this

constitutive equation. To clarify this connection was the goal of the present note.

2. SPECJFIC STRUCTURAL

The complete discussion of

VARIABLES AND THE OROWAN EQUATION

the discrete dislocation slip-model in terms of finite

deformations was given in [1], Withh the fiarnework of this model deformation is viewed as a

sequence of constrained equilibrium stiites, The change of the internal energy of a crystal
.:

between such neighboring states can be expressed:

Jv“skm- ~dYGK-t-e6(v”~)=8(v”u) (2)
L

Here q denotes a force per unit length of dislocation line and the integral is understood to be

tzdcen over al[ dislocation lines in the material sample, Differential G?Lis a themoelastically

invariant measure of arc length along dislocations, and &is an invariant measure of

perpendicular advance of dislocation lines along their stip planes. A complete description of

conceptual operations which result in the introduction of these measures can be found in Rice’s

original work [1]3,

Consider now q as a fimction of S, 0 and various thermoelastically invariant features of the

can be written% follows:& 1= k[sto, – &pl . Where & is the stress rate, &t@is the complete(i.e., elastid-jhstic)

strainniteand k is the generalizedstiffnessof the sampk+machinesystem

3‘These measuresare definedby the followingconceptualoperations:For dL,we scribea line in the slip plane

at a fixed small perpendiculardistance S ti-omthe dislocationline, cut out a small surroundingtube about this line

(of radius smallerthan s) such that the materialof the tube is stress-fke, reducethe tempmture to 80 and take dL

as the correspondingarc length along the scribe line when &-+ O” [1]. A aimik opxation em be performedfor

t%.



slipped state y. Then the inelastic portion of a general strain increment can be written as:

or in the rate form:

(3)

(4)

where v=
/’31 denotes the invariant lattice velocity. Assuming fiirther that for a given set of

dislocations the invariant lattice velocity v z ~/8t depends on stress only through the associated

force per unit length at that point, one can demonstrate the existence of a flow potential which is

related to the plastic portion of strain rate through the following equation:

(E)p =m/6S (5)

where the flow potential is:

‘sy8yy)=+[rris7ey’)4F

(6)

Assume now that the invariant lattice velocity is constant for ail glissile dislocations in the

t?q(s,e,)f)
material sample together with

8
(i.e., we assume that the fimction under the integral in

(4) is independent of am length). With this assumption the expression (4) can be rewritten in the

as follows:

(7)

where N* denotes the density of glissile dislocations.
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In order to evaluate expression (7) it is necessary to consider a force exerted by an external

stress on a dislocation loop4. As the loop is created, the stress does the works:

W=j-b@dA) (8)
A

where b denotes the Burger’s vector of the loop, A is the area covered by the loop and dA = naki,

with n being the positive normal of dA. l%e~ if every line element dI = mdl (where m is a unit

tangential vector in the counter-clockwke direction) is displaced by some distance &, the stress

S does additional work which can be evaiuated as follows:

W=-fb$@kxdI)]
c

or, using the definition dl = mdl and rewriting:

(9)

(lo)

Defining & x m = ktir with k being some unit vector, we get:

The only difference between equation (11) and the integral ( –~qcML ) appearing in (2) is that
L

the latter integral is understood to be taken over all dislocation lines in the material sample, while

(11) k written for a particular dislocation loop. This means, that in our case q must be defined as

follows:

q= b.S”k (12)

4 Hirth and Lothe. 77zeoryof Dislocations, second editioq Kiieger Publishing Company, Malabar,

Flori@1992, Chspter4, Thel%eoryof Curved Disloc&”ons,pp.96-111 [3].

5Hirth and Lothe,formula(4-42),p. 109.[3].



.. . ,

Assuming now that stress S is homogeneous everywhere in the sample, that all the loops

have the same Burger’s vector b and that dislocation loops are deformed in such a way that for

all of them both the direction k and the distance c%are the sameG,i.e. the condhions for (7) are

satisfied, we tag substitute (12) into (7) which gives the following result:

(13)

Due to the symmetry of both strain and stress tensors only the symmetric part of the dyadic

product of the Burger’s vector b and k is retained. This is the final expression that seems to be

quite general, although we have had to make several plausible approximations and assumptions.

It should be considered a generalization of the Orowan equation described in the beginning of

the paper, equation (l). In the most general case the relation between the vectors b and

k = drxm

Ilikx mll
can be rather complex. For example, if b and k are perpendicular, the dislocation

can move conservatively, by pure slip on the cylindrical surface

contour C and its Burger’s vector b [4], Note that this conservative

containing the dislocation

motion is in an agreement

with the volume conservation assumption used in continuum plasticity. In this simple case

expression (13) is reduced to a simple component form

(E)p = N# (14)
J

where (E); denotes the shear component of the deformation rate comesponding to the dyad

bk/b. Some other assumptions about b and k can reduce (13) to the scalar Orowan equation (1)

6The simpkst assmnptio~ for hstance, wouldbe that & is pmpendicularto m.
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in some more complicated forms involving different components and/or invariants of the plastic

strain rate.

3. COIUCLUSJONS

Whhin the fhunework

variables (associated with

of thermodynamic theory of plasticity and specific structural-

individual dislocations) [1] a transition has been made to an

expression containing one internal v~iable of the averaging type - the density of glissile

dislocations, Ng. This expression should be considered a tensorial generalization of the well-

known Orowan’s equation and relates it directly to the simplest possible case of normal flow in

metallic materials. Since most metais display deviations from normality in the flow rule’ [4] it

also clearly indicates that more rigorous assessment of the relation between plastic strain rate and

dislocation populations is required especially for materials displaying plastic instabilities in the

form of

obtained

relations

usefil applications in dislocation density-related constitutive modeling of plastic deformation

dislocation patterning, strain-softening and strain-rate softening phenomena. The

result could be a usefbl starting point in establishing such rigorous macroscopic

fiorn microscopic considerations associated with individual dislocations and to find

[7],

‘ Such deviationsseemto be quite univers& althoughmight be eansedby differentreasons.For example, in

the ease of bec-crystalsnonplanar spreadingof the dislocationcores on the primmy slip system results in tension-

compression asymmetry of the flow stress and also on its pressure dependenix, while for fcc aluminum the

underlying reason might be related to thee interactionof transient dilatationof the lattkx associatedwith mobile

disloeatio~ with externalpressure [6].
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