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1. INTRODUCTION

The conc;ept of "internal variables" plays a very important role in the theory of plasticity,
relating a macroscopic inelastic response of a material element to structural rearrangements (e.g.
of dislocations) within it (see, e.g., [1,2]). Traditionally these internal variables are divided into
two classes: "specific structural variables" [1] and “internal variables of the averaging type"
{1,2]. In the first case the general formalism is developed in terms of é finite number of discrete

scalar internal variables &, (j=1,...,n), with each variable characterizing the extent of some local

microstructural rearrangement taking place at one of » different sites within a given sample of
material. When the number of sites increases in proportion to the size of the sample, so also does
the number of structural variables' [1]. The main utility of structural variables is the remarkable
normality structure of constitutive laws of plasticity, which arises in the case when the rate of
structural (e g dislocation) rearrangements depends only on the associated thermodynamic forcé

[1]. This normality structure implies that in the case of rate- independent flow theory the

' Consequently, any function depending on such structural variables, will be homogeneous degree one

(HD1) and will satisfy the following fundamental property [3]: F(Ax) = AF(x)
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increment of plastic strain must be normal to the yield surface, while for rate-dependent case the
existence of the flow potential can be proven.

However, in practice it is more convenient to operate with a few "internal variables of the
averaging type" which are related to specific structural variables in exactly the same way as
extensive and intensive functions in equilibrium thermodynamics and do not depend on the size
of the system under consideration. Thus plastic deformation is considered simultaneously on
microstructural scale (specific structuraf;vaﬁables) and macroscopic scale (averaging variables),
and it is important to understand how the connection between the two is established.

In the present work we demonstrate that the well-known Orowan equation relating the
density of gliding dislocations N, ("internal-variable of the averaging fype"), their Burgers vector
b and their velocity v, to plastic strain rate, under certain assumptions can be related to Rice's
thermodynamic approach with specific internal-variables. The Orowan equation plays a
remarkable role in dislocation density-related constitutive modeling of plasticity, and it can be
Written as follows [4]:

ba=Nyh ©
here v, and b are the lengths of the vectors v, and b, respectively.

The Orowan equation (1) serves as a constitutive law relating the stress-strain response of a

material element to the underlying dislocation dynamics®. For this reason it is important to

? The so-called “machine equation” used to describe deformation of a sample in a testing machine gives an

examplg of such usage. This equation incorporates deformation of both the sample, based on its constitutive model,

and the machine, based on the properties ascribed to it. In the case of homogeneous yielding the machine equation




understand the microscopic assumptions, with specific structural variables, which lead to this

constitutive equation. To clarify this connection was the goal of the present note.

2. SPECIFIC STRUCTURAL VARIABLES AND THE OROWAN EQUATION

The complete discussion of the discrete dislocation slip-model in terms of finite
deformations was given in [1]. Within the framework of this model deformation is viewed as a
sequence of constrained equilibrium states. The change of the internal energy of a crystal

between such neighboring states can be expressed:

V°S: 3K [ qdsdL + 05(V ) = (V%) @)
L

Here g denotes a fqrce per unit length of dislocation line and the integral is understood to be
taken over all dislocation lines in the material sample, Differential dL is a themoelaétically
invariant measure of arc length along dislocations, and ¢is an invariant measure of
perpendicular advance of diélocation lines along their slip planes. A complete description of
conceptual operations which result in the introduction of these measures can be found in Rice's
original work [1J*.

Consider now ¢ as a function of S, @ and various thermoelastically invariant features of the

can be written as follows: & = k{é’,o, ~ &y ] Where & is the stress rate, &,,is the complete (i.c., elastic+plastic)

strain rate and £ is the generalized stiffness of the sample+machine system
? “These measures are defined by the following conceptual operations: For dL, we scribe a line in the slip plane

at a fixed small perpendicular distance £ from the dislocation line, cut out a small surrounding tube about this line

(of radius smaller than £ ) such that the material of the tube is stress-free, reduce the temperature to 00 and take dL

" as the corresponding arc length along the scribe line when & —» 0~ [1]. A similar operation can be performed for
5.




slipped state y . Then the inelastic portion of a general strain increment can be written as:

1 :09(8,6,7)
EY = — | 2220 5dL 3
or in the rate form:
_ oqs,8,7) & dq(S, 6,
(‘E)P_ ojl q( ’/) L dr=— j q( 7) (4)
vee 08 & ye . O0S

where v= % " denotes the invariant lattice velocity. Assuming further that for a given set of

dislocations the invariant lattice velocity v= % y depends on stress only through the associated

force per unit length at that point, one can demonstrate the existence of a flow potential which is

related to the plastic portion of strain rate through the following equation:
=\ 2
(E)" =o0y/es (5)

where the flow potential is:

asor)
| sz(s,e,y)=r_/13_ ‘L[ { ! v(S,e,y)dq}dL 6)

Assume now that the invariant lattice velocity is constant for all glissile dislocations in the

94(8,6,7) 97)

material sample together with (1 e., we assume that the function under the integral in

(4) is independent of arc length). With this assumption the expression (4) can be rewritten in the

as follows:

p=*17f aq(s 67), ;ﬂ 6«1(2807) _N MZSW) )

where N, denotes the density of glissile dislocations.




In order to evaluate expression (7) it is necessary to consider a force exerted by an external

stress on a dislocation loop®. As the loop is created, the stress does the work’:

W = [~b-(S-dA) (8)

where b denotes the Burger's vector of the loop, 4 is the area covered by the loop and dA = ndA4 |
with n being the positive normal of dA. Then, if every line element dl = md/ (where m is a unit
tangential vector in the counter-clockwise direction) is displaced by some distance Jr, the stress

S does additional work which can be evaluated as follows:

W =~ {5-(oxa)] ©)

or, using the definition d1 = md/ and rewriting;

W = _§b (6 xm)}dl (10)

" Defining & x m = kd with k being some unit vector, we get:

W = ~§b-S- ksl an
(o4

The only difference between equation (11) and the integral (—-JqudL) appearing in (2) is that
) L

the latter integral is understood to be taken over all dislocation lines in the material sample, while
(11) is written for a particular dislocation loop. This means, that in our case g must be defined as
follows:

g=b-S-k (12)

4 Hmh and Lothe. Theory of Dislocations, second edition, Krieger Publishing Company, Malabar,
Florida, 1992, Chapter 4, The Theory of Curved Dislocations,pp.96-111 [3].

% Hirth and Lothe, formula (4-42), p. 109. [3].




Assuming now that stress S is homogeneous everywhere in the sample, that all the loops
have the same Burger's vector b and that dislocation loops are deformed in such a way that for
all of them both the direction k and the distance & are the same®, i.e. the conditions for (7) are

satisfied, we can substitute (12) into (7) which gives the following result:

(E)’ =N, ?-q(—%’g’—ﬁn N, /(bk +kb) (13)

Due to the symmetry of both strain and stress tensors only the symmetric part of the dyadic
product of the Burger's vector b and k is retained. This is the final expression that seems to be
quite general, although we have had to make several plausiEIe approximations and assumptions.
It should be considered a generalization of the Orowan equation described in the beginning of
the paper, equation (1). In the most general case the relation between the vectors b and

orxm

= Porxm]

can be rather complex. For example, if b and k are perpendicular, the dislocation

can move conservatively, by pure slip on the cylindrical surface containing the dislocation
contour C and its Burger's vector b [4]. Note that this conservative motion is in an agreement
with the volume conservation assumption used in continuum plasticity. In this simple case

expression (13) is reduced to a simple component form

(E); = Nvb (149

where (E);D denotes the shear component of the deformation rate corresponding to the dyad

bk/b. Some other assumptions about b and k can reduce (13) to the scalar Orowan equation (1)

® The simplest assumption, for instance, would be that Jr is perpendicular tom .




in some more complicated forms involving different components and/or invariants of the plastic

strain rate.

3. CONCLUSIONS

Within the framework of thermodynamic theory of plasticity and specific structural-
variables (associated with individual dislocations) [1] a transition has been made to an
expression containing one internal variable of the averaging type - the density of glissile

dislocations, N, . This expression should be considered a tensorial generalization of the well-

known Orowan's equation and relates it directly to the simplest possible case of normal flow in
metallic materials. Since most metals display deviations from normalify in the flow rule’ [4] it
also clearly indicates that more rigorous assessment of the relation between plastic strain rate and
dislocation populations is required, especially for materials displaying plastic instabilities in the
form of dislocation patterning, strain-softening and strain-rate softening phenomena. The
obtained result could be a useful starting point in establishing such rigorous macroscopic
relations from microscopic considerations associated with individual dislocations and to find

useful applications in dislocation density-related constitutive modeling of plastic deformation

[7].

7 Such deviations seem to be quite universal, although might be caused by different reasons. For example, in
the case of bee-crystals nonplanar spreading of the dislocation cores on the primary slip system results in tension-
compression asymmetry of the flow stress and also on its pressure dependence, while for fcc aluminum the

underlying reason might be related to thee interaction of transient dilatation of the lattice associated with mobile

dislocations, with external pressure [6].
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