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ABSTRACT

Frequency-domain shot-record migration can produce higher quality images than

Kirchhoff migration buttypically atagreater cost. Thecomputational cost of shot-

record migrations the product of thenumber of shots in the survey and the expense

of each individual migration. Many attempts to reduce this cost have focused on

the speed of the individual migrations, trying to achieve abetter trade-off between

accuracy and speed.

Another approach is to reduce the number of migrations. We investigate the

simultaneous migration of shot records using frequency-domain shot-record migration

algorithms. The difficulty with this approach is the production of so-called cross terms

between unrelated shot and receiver wavefields, which generate unwanted artifacts or

noise in the final image. To reduce these

in quality to the single-shot-per-migration

phase encoding which shifts or disperses

artifacts and obtain an image comparable

result, we have introduced a process called

these cross terms. The process of phase

encoding thus allows one to trade signal-to-noise ratio for the speed of migrating the

entire survey.

Several encoding functions and two application strategies have been tested. The

first strategy, combining multiple shots per migration and using each shot only once,

*Orally presented: Ober, Oldfield, Womble, Romero and Burch, 1997, “Practical aspects

of prestack depth migration with finite differences”, 67th Ann. Internat. Mtg of the SEG,

Expanded Abstracts, pp. 1758–61. Also: Morton and Ober, 1998, “Faster shot-record

depth migrations using phase encoding”, 68‘~ Ann. Internat. Mtg of the SEG, Expanded

Abstracts, pp. 1131-1134. Patent applied for.
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provides a reduction in computation directly related to the number of shots combined.

The second strategy, performing multiple migrations of alltheshots in the survey,

provides a means to reduce the cross-term noise through stacking the resulting images.

The additional noise in both strategies may be tolerated if it is no stronger than the

inherent seismic noise in the migrated image, and if the final image is achieved with

less cost.

Most companies today use

INTRODUCTION

Kirchhoff methods to perform their production 3-D

prestack migrations, largely because they are relatively inexpensive and flexible with

respect to image size and data geometry. However they are usually limited in their

ability to account for multiple travel paths and finite-frequency effects, phenomena

which occur in regions of complex geology.

To improve image quality and avoid these difficulties, frequency-domain migration

methods have been developed and are more commonly used than in the past. However

these methods can be substantially more expensive than Kirchhoff migration and the

number of shot-record migrations required for prestack migration of an entire survey

can make frequency-domain methods prohibitively expensive.

We could reduce the computational requirements by summing several shots to-

gether and imaging with a single migration, thus reducing the total computation by

the number of shots combined. Unfortunately this results in unwanted cross terms

between unrelated shot and receiver wavefields during the imaging.

If the spatial separation between the shots is large, these cross terms would be

small. However, in seismic migration, one rarely migrates a single shot over the

whole domain of interest, choosing instead an aperture appropriate for the problem.

So adding together spatially separated shots would require enlarging the imaging

domain, decreasing the number of migrations while increasing their cost, leading to
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no significant change in the overall computational

For example, if we have two impulse responses

are migrated in a constant velocity medium, an

work.

which are spatially separated and

image of two hemispheres would

be expected as shown in Figure 1(a). The computational expense for this run is

approximately twice that required for a single shot because the computational domain

has been doubled to include both shots. Thus little to no savings can be gained by

using widely spaced shots. Consequently in this paper, we will consider shots which

are spatially close (i. e., within the migration aperture).

If two spatially close shots are combined to reduce the computational domain as

shown in Figure’1 (b), the resulting image has the expected response, two hemispheres,

but it also has cross terms between the source wavefield of one shot and the receiver

wavefield of another, and visa versa. (For this simple example, the two cross terms

exactly overlay one another.) To reduce the number of migrations and yet produce

a good quality image, the artifacts caused by the cross terms need to be reduced or

removed.

Phase-encoding methods used in radar systems (Nathanson, 1969; Cook, 1967) can

be adapted to prestack frequency-domain migration. In this paper, phase encoding

methods to disperse or shift the cross-term artifacts are described and examples using

synthetic datasets are shown.

PHASE ENCODING

In the standard approach to frequency-domain shot-record migration, the source

wavelet and the trace data must be Fourier transformed in time to give the source

and receiver wavefields at the surface, S’n(z, y, z = O,u) and & (z, y, z = O,w), where

w is the Fourier transform variable and the subscript n indicates the shot index.

These wavefields are then propagated into the earth’s interior using the one-way wave

equation to determine S’n(z, w) and &(2, o) where z = (z, y, z) is the position vector.

4
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To produce an image, we use a generalized form of Claerbout’s (1971) correlation-

imaging condition

N.

L(a) = ~ ~(w)s;(a %)%(z, w), (1)

k=l

where ~k are the frequencies that we are processing, NWis the number of frequencies,

W is a weighting factor used to improve the imaging condition, and S; is the complex

conjugate of S’n. It is important to note that the final image is the real part of ~~(~).

We will assume W is identically one for the remainder of paper since this does not

effect the general application of phase encoding. However the images in this paper

were obtained using a weighting which preserves the wavelet of the trace data (Ober

et al., 1997b).

Equation (1) represents a crosscorrelation of two signals in time, similar to a

matched filter pulse compression scheme used in radar systems. In this investigation

we consider phase encoding only for imaging conditions of the above form. Phase

encoding may be greatly complicated or not applicable for other types of imaging

conditions.

The final image of the survey is then obtained by summing the images from all

the shots,

(2)

The time to image the entire survey using the standard approach is clearly propor-

tional to the total number of shots migrated. If the number of migrations were reduced

by combining shots, the overall cost to produce the final image would be decreased

by nearly the number of shots per migration. A small increase of the computational

domain is required to include the combined shots within the same migration therefore

causing a slight increase in the cost for each migration.

To combine shots we can note that the differential equation we solve to obtain

Sn(~j w) and %(2, w) is linear, and therefore we can compute the summed wavefields,
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S.(Z, w) = ~ an(w) Sn(a, w)
n

and

(3)

R.(g, w) = ~ an(w)& (g, cd), (4)
n

in nearly the same amount of time it takes to compute any of the individual terms

Sn(2, w) or R(z, u). (Note: an(w) is a function to be specified shortly). In order to

do this we merely compute the values at the surface

S.(fr, g,,z= O,u) = ~an(w)Sn(z, y, z = O,u),
n

and

(5)

then the combined wavefields at all depths, S8(2, U) and Rs(z,ti), are obtained by

solving the one-way wave equations initialized with the summed values at the surface.

However a complication arises when SS(2, w) and l?s (z, w) are processed with

the imaging condition. Cross terms between unrelated shots produce artifacts in

the image. For example, when two shots are summed and the imaging condition is

applied, the image is given by

If we choose Ian(u) I = 1, the first two terms on the right-hand side yields the stack

of the individual images; however, the other terms are undesirable cross terms. By

using phase encoding, we can try to eliminate or greatly reduce these unwanted cross

terms. If we introduce the phase function ~n (w) and let an(~) = ei~”@’j,we find

6
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+ ~ [s~(&j~~)-&?(Z, rjJJ#72(wk)-71(u k))
it

1
+S~(z, q)RI (2,wk)ei(71(uk)-72(wk)). (8)

Note that the phase functions ~. only appear in the cross terms, not in the terms

producing 11 and 12. We now try to choose the functions ~.(w) so that when we sum

over frequency, the energy from the unwanted terms will be dispersed throughout the

whole image or be shifted out of the region of interest. When we want to add more

than two shots together a similar procedure holds, however the cross terms become

more numerous and therefore more difficult to shift or disperse.

PROPERTIES OF PHASE ENCODING

In order to understand how phase encoding can shift or disperse the cross terms,

it is necessary to appreciate when an imaging condition produces a large response.

It can be shown that when one does prestack migration, the image produced from a

single impulsive shot can be cinematically approximated as

I’(2J =/me-ti4(z)F(w)dw.
—OJ

Here F’(u) is the frequency spectrum of the migrated

(9)

wavefield. We are primarily

interested in the fact that a large response in 1(z) will occur at a reflector (@(z) = O),

and ~(~) is very nearly confined to the interval

‘~~~~ < @(z) < rrna$)

where TmaZis the largest recorded travel time on the

mean the largest time to go from the shot location on

interior, and then back to any point on the surface is

in our computational domain.

(lo)

domain of interest. By this we

the surface, to a point 2 in the

~maZ.All of these points

In practice we replace our infinite integral by a finite and discrete sum

7
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1(2) = ~ e-i~AutiI@F(kAw)Aw.
k=–N.

In this case we will get a large response at any point such that

(11)

‘?)(2J= ~,

where m is an integer. We only want to get large

(12)

responses from points with m = O,

the other responses lead to aliased,images. Note that if

2X
— > Tmaz,
Aw

(13)

then we are guaranteed not to

This follows since in that case

have any aliased images in our domain of interest.

‘w - ~ >Oform <O,

and

(14)

(15)

These inequalities follow from our bounds on”v(~) in the domain of interest.

When we produce an image using phase encoding, each cross term will have a

form similar to the images. In particular, they can be cinematically approximated as

It(a) = /’me-iu+’(z)ei7(w).F(w)cb. (16)
—C9

Here @&) is the phase produced by the cross term, and Y(W) is a phase function

that will hopefully shift or disperse the energy so that l@ is not large on the domain

of interest. If it were not for the phase y(w), we would get a large response from any

points where @C(2)= O,and this would appear as a false reflector. When we introduce

the phase function ~(w), the image I.(z) does not necessarily take on its largest value

at points where ~C(Z) = O. Ideally we do not want lC(Z) to take on a large value

for any value of +.(~). This suggests that we analyze our phase function ~(w) by

examining the function

8
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If the function C(a) takes on a large value at some point a = a’, we could get

what looks like a reflecting surface at some point 3 where +C(2) = a*. For this reason,

we would like to choose a phase function y(w) that minimizes the maximum value

that the function C(a) can assume for any value of Q (i. e., disperses the cross-term

energy). If we actually computed our imaging condition using a continuous integral,

we could choose y(u) so that the maximum value of C(a), and hence our cross terms,

were arbitrarily small. In practice, our sampling rate imposes limits to how small

we can make C(a). When we sample at a finite rate, we replace the integral by the

discrete sum

CA.(CU)= Aw ~ e-i~AWaei7(~AW)F(kAw). (18)
k=–cm

To see the limits imposed by the finite sampling we use the discrete form of

Parseval’s equality (Churchill, 1972). This states that if we expand a periodic function

~(z) with period 2a in a Fourier series,

f(z) = fj akeik’”/a (19)
k=–ca

then,

In our particular case,

equality implies that

+~~lf(z)l’dz=~ ]akl’. (20)
k=–ca

the function CAW(~) has a period of 27r/Aw, and Parseval’s

~~:; lcAw(a) 12~~=@w)2 ii l~(~Aw) 1’ (21)
k=–m

This shows that it is not possible to reduce the function I CAW(Q) [ so that it is

everywhere less than a constant, ~&J, where

(~AW)2= (Aw)2 ~ I ~(kAw) 1’. (22)
k=–m

9
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This can be approximated as ~

= A~/mIf’(~)1’~.(~Aw)2 _~ (23)

Nomatter ~vhatphme function ~(ti)~ve choose, the function ]CAW(a) I must be

greater than orequal tolTAti at some point. Wewillnow apply this formula to the

case where F’(w) = 1 for I w I< Wo,and zero elsewhere. In this case, we find

(~AU)2 = 2WOAW. (24)

If we use an optimal form for the function y(w), we can reduce the cross terms so

they are all of magnitude H~W. We need to compare this to the results where we do

“not use any phase encoding then ~(w) = O, and the maximum value of C(a) occurs

when a = O and is given by Ho = 2W0 (see Eq. (17)). It follows that the ratio of

the optimally dispersed cross term, HAW,to the maximum value of the non-dispersed

cross term, Ho, is

(25)

This result was derived for the case where F(w) is a square spectrum and the

phase y(w) was chosen to optimally disperse the cross terms. However, the basic

form of the result is quite general and crucial to understanding phase encoding. In

general for a seismic source, we have WOMR 27r, where dt is the width of the seismic

pulse that is sent out. Similarly we have AwT~~ZR 27r where T~m is the maximum

recorded arrival time. Plugging into Eq. (25), it follows that if the square root of

the pulse width divided by the maximum arrival time, ~=, is small, then we

should expect to be able to do a good job of dispersing the cross terms. Assuming

c$t is several time samples, d-t, the ratio of the dispersed cross term to the non-

dispersed cross term scales as @ZZ~ VW* since cross terms are comparable

in magnitude to correct events, this result indicates that the effectiveness of phase

encoding in dispersing the cross terms is limited by the inverse of the square root of

the number of frequencies migrated.

10
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MIGRATION METHOD

Phase encoding, while dependent on the type of imaging condition, is independent

of the particular frequency-domain shot-record migration method used. However, for

completeness we briefly summarize the migration method used in this study (Ober

et al., 1997a). It is based on industry-standard approaches (Claerbout, 1985; Yil-

maz, 1987; Li, 1991) for shot-record migration utilizing frequency-domain, implicit

solutions to the paraxial wave equation. The method of fractional steps (Fletcher,

1988) is used along with Crank-Nicholson differencing and compact finite differences

to produce a fourth-order finite-difference scheme. Absorbing boundary conditions

similar to those of Clayton and Engquist (1980) are used. Phase-correction filters

(Graves and Clayton, 1990; Li, 1991) have been implemented to correct for errors

introduced by the square-root-operator and operator-splitting approximations.

PHASE-ENCODING FUNCTIONS

In this section, several phase-encoding functions are discussed and illustrated for

two shots in a single migration. Their application to more than two shots per mi-

gration is illustrated in subsequent sections along with strategies for migrating entire

surveys.

Linear Phase Encoding

In the following, we show that provided our sampling rate in the frequency do-

main is high enough (i. e., AU is small enough), the unwanted cross terms can be

completely eliminated by choosing the phase functions, yi (u), to be linear. Unfortu-

nately, the required sampling rate for two shots is twice as high as that needed to

prevent aliasing, which is the one typically used in seismic imaging (for three shots

the required sampling rate is three times, etc.). In other words, we usually record only

11
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enough trace data to image the geological structures of interest. However through

zero padding the traces, the cross terms can be shifted into some of the newly-created

frequency domain and therefore out of our imaging domain.

Suppose we choose the phase functions Yi(w) so that

?’2(~) – 71(U) = tow. (26)

In this case our unwanted cross

fm

terms will be of the form

J –CO

Assuming the function F(w) is broadband, we will only get significant intensities from

the cross terms at points where +.(z) + to = O.

We have already noted that the absolute value of the phase function O(Z) can be

bounded by T..x, where Tin.. is the largest travel time in the computational domain.

Assuming that our encoded shots are relatively close together, this bound also applies

to the phase of the cross terms, @@. If we choose to so that it is bigger than rmax

there will be no contribution from either of the terms @C(Z)+ to. We see that by

choosing to large enough we can completely eliminate one cross term, and shift the

other cross term out of the region that we are imaging.

We can accomplish this only if we are sampling our data finely enough in frequency.

A simple extension of our results concerning aliasing, Eq. (13), shows

to prevent an aliased image with negative values of m we must have

2X
ma. ~ to > 2TmaZ.

G’r

that in order

(28)

A similar result holds for the positive values of m. We see that in order to prevent

aliasing for the unwanted cross terms, we must sample at twice the rate as if we had

not used a linear phase encoding. This results in twice as many frequencies used for

migration and therefore no overall reduction in computational cost.
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Returning to our simple example of Figure l(b), the effect of various linear phase

encodings are shown in Figure 2. The trace length is 4.096 seconds with 4 ms sam-

pling, and the medium has a constant velocity of 3 km/s. The total travel times from

source to reflectors to receiver is 1.332 seconds.

If we slightly increase to to 0.064 seconds, the cross terms shift position in the

image; one up and the other down as shown in Figure 2(a). Increasing to to 0.512

seconds as shown in Figure 2(b), one of the cross terms is shifted completely out of

the imaged domain, and the other has continued its downward shift. In Figure 2(c),

the time shift, to, has been set to 1.792 seconds and only slight visual evidence of

the cross terms can be seen. In Figure 2(d), the time shift is half the trace length,

2.048 seconds, and artifacts from the cross terms can be seen near the surface due to

temporal wrap-around. If we further increase to, the cross terms return into the image

in the reverse order in which they were shifted out (i. e., Figures 2(d), 2(c), 2(b), and

2(a)). When to = 4.096 seconds, the resulting image is identical to Figure l(b).

To illustrate the various encoding functions on a more complex model, two shots

from the Marmousi model have been selected and migrated. Figure 3 shows the

standard imaging and stacking as described by Eqs. (1) and (2) (i. e., a separate

migration for each shot and the individual images summed). The two shots selected

are located at 4250m and 4500m; the migration used 256 frequencies between O-62.5

Hz; and the grid spacing was 12.5m by 4m.

The two shots of the Marmousi model were also combined using linear phase

encoding with to = 1.792 and the resulting image is shown in Figure 4(a) along

with the difference between Figure 3 and Figure 4(a). All images in Figure 4 have

the same scale and no amplitude scaling, such as automatic gain control, has been

appliecl. The two images are very similar except near the surface where the cross-term

artifacts appear as “noise” in the encoded image.

To extend linear phase encoding to more than two shots per migration, we can

use Vj(w) = (T * j * u)/(K – 1) where j is the shot number (O. . . K – 1), T’ is the

13
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Fourier transform length in

Random Phase Encoding

seconds, and K is the number of shots to be encoded.

While linear phase encoding moves the cross terms (potentially out of the image),

we can use random phases to disperse these unwanted cross terms. We can choose

the phase function, ~(w) = Y1(u) – 79(u), from Eq. (17) to be a sequence of random

numbers between O and 27r. When we sum over w to produce an image, the phases

will not agree, and this should not produce a large response for any value of a

To estimate how well the maximum cross terms can be reduced through random

encoding, we again assume a flat spectrum (i. e., that the function F’(w) is equal to

unity for IwI < Wo,and zero elsewhere). Without phase encoding, we will get the

largest response for the cross terms when Q = O. In this case the maximum of a cross

term C(a) will be equal to NW. However with y(w) being a uniform random variable,

the theory of 2-D random walk shows us that the root-mean-square value of C(a) is

~. Soon average, random phase encoding will reduce the magnitude of the cross

terms by a factor of l/~.

As an example of two shots per migration, the shots used in Figure 3 were ran-

domly encoded and the resulting image is shown in Figure 4(b). Random phase

encoding can be trivially extended to more than two shots per migration. Since the

difference of any two uniform random variables on a periodic domain is also a uniform

random variable, we can choose each yj (w) h be a uniform random variable. This

will reduce each cross term by the factor of l/@, even though the number of cross

terms increases as the square of the number of shots.

Chirp Phase Encoding

In order to disperse the cross terms, it is not necessary to choose the phases

randomly. In this section we choose the function y(w) = 72(w) – VI(w) to be the

14
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‘-y(u)= f?w? (29)

linear frequency-modulation chirp

In this case our unwanted cross terms have the form

C(a) =/me-iwaeiBu2F(w)d4d.
—OJ

(30)

If@islarge wecanevaluate this integral using themethod ofstationa~ phase. This

gives us

c(a) =
[

~F(a/(2fl))e-ia2/(4B)+iT/4. (31)

In principle, we can make the amplitude of the cross term arbitrarily small as

@+ oo. However this is only the case if we have continuous sampling in the frequency

domain. Ifwereplace theintegral bya discrete sum, weseethat thechirp willbe

aliased once ~ > ~/ (WOAU)where W. is the bandwidth of our signal. This gives us an

estimate of how large we can expect to choose ~ and still have our stationary-phase

arguments hold. It follows that we can expect to reduce the signal to

Ic(a)l = Ja]F(a/(2/3))1 . (32)

To get a rough estimate of how much we have actually reduced the cross terms,

we again assume a flat spectrum for -F(w). Then without the chirp, the signal would

be 2W0,and the ratio of the reduced signal to the original signal is

F2Aw
(33)

Wl) “ .

This gives us a very similar result as the random encoding. In practice it is found

that if we choose /3 larger than the maximum value allowed to prevent aliasing, our

results do not greatly degenerate, but they do not improve.

The two shots of the Marmousi model were migrated using the chirp encoding,

and the image is shown in Figure 4(c). The artifacts are spread over the entire image,

15
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similar to the case of random encoding, however they are stronger and could easily

be mistaken for a true seismic event.

In order to add more than two shots together, we can use the sequence of phases

‘Yl(~) = 0) ‘Y2(~)= @J2, 73(U) = 29W2, ... ‘YK(W)= (~ – l)@J2. The phases of the

unwanted cross terms will be of the form k/3u2, where IkI < K. In order to prevent

aliasing we must choose (-K – 1)/3 small enough (i. e., less than T/(uo Au)).

Modified-Chirp Phase Encoding

Ideally we would like to make the cross term C(a) in Eq. (30) equal to zero for all

values of a. Parseval’s equality, Eq. (21), shows us that this is not possible. However

we shall show how to choose the phase function ~(u) in order to make the magnitude

of C(a) uniform over the interval [al < T~~Z. This analysis is identical to that used

in Romero and Dickey (1996) to flatten out a laser beam profile.

First we assume that y(u) = /3r(w) where /3 is a large parameter. Applying the

method of stationary phase to the integral of Eq. (17), we find that

where < = a/~, and u(c) is defined implicitly through

(34)

the equation

(35)

This last condition arises as a stationarity condition for the rapidly varying phase.

On any interval where we would like ]C(a) I to be constant, Eq. (34) shows that we

must have d2r/&J2 = I.F(u) 12and hence

(36)

Assuming that IF(w) I = IF(–u) 1,we see that for this choice of r(u) the phase cannot

be stationary if a//? > fo~ IF(u) 12du, and for la//3l < fo~ [F(u) 12du, lC(a) I will be
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a constant. As with the chirp, we could get C(a) to be arbitrarily small by choosing

very large values of ~, but we are limited by the fact that we are sampling at a finite

rate. In order to prevent aliasing, we must have ~Aw~ < 27r, and hence

(37)

Note that this requires knowing the function F’(w). However, if we only approxi-

mately know the function, we can still get an improvement over using the chirp. We

see that Eq. (37) puts a limit on how big we can make ~ in terms of the parameters

Aw and the function F(w). This expression for@ is proportional to wo/Aw.

For the special case of the first derivative of a Gaussian, F(w) = wAe-112xW2,we

have r(w) = q(fiu), where

(38)

In order to disperse the signal as much as possible, we must choose/3= 8fi/(Awfi).

Using the above formulation, the two shots of the Marmousi model were migrated

using the modified-chirp encoding. The resulting image is shown in Figure 4(d). Like

the random and chirp encoding, the artifacts are spread across the image and have

relatively large amplitudes near the surface and are small elsewhere in the image.

These artifacts are periodic throughout the domain. This is due to the fact that

while lC(a) I is constant over the domain, the image is just

FULL MARMOUSI RESULTS

the real part of C(cr).

We now apply these phase-encoding functions to all 240 shots of the Marmousi

dataset using two different strategies. In the first strategy we examine two or more

shots in each migration, using each shot exactly once. In the second strategy, we

use all the shots in the survey in each migration, repeating this process with differ-

ent phase encodings and stacking the resulting images. For comparison, the entire
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Marmousi dataset was migrated using standard imaging and stacking as described by

Eqs. (l)and(2), orinother words ~vithone shot per migration. This image is shown

in Figure 5.

Multiple Shots per Migration

We first compare the “correct” image in Figure 5tophase-encoded images where

two or more adjacent shots are included in each migration and each shot is used in

exactly one migration. For the following phase-encoded images, the same number of

frequencies was used for all phase-encoding methods, including linear phase encoding,

and no amplitude scaling has been applied.

In Figure 6, the results for encoding two shots per migration are shown (i.e., the

240 shots were migrated in sets of two adjacent shots for a total of 120 migrations).

On the left is shown the resulting encoded images, and on the right is the difference

(amplified by a factor of 10) between the encoded images and the image generated

through standard imaging and stacking shown in Figure 5. Figure 6(a) shows the

migrated image for linear phase encoding. The artifacts near the surface appear to

be random in nature. However, the deeper artifacts appear to be coherent structures

in the image, which could be mistaken for a true event.

The random-encoded image shown in Figure 6(b) is very good. The artifacts for

this image are “randomly” dispersed throughout the image. This apparent noise in

the image has short wavelengths near the surface and longer wavelengths at deeper

locations. This is due to stretching caused by the velocity of the medium.

The chirp-encoded image is shown in Figure 6(c). The cross terms in this image

have larger amplitudes than in comparison with the previous two methods shown in

Figure 6. Additionally the cross terms have coherent structures which appear to be

periodic. This behavior is highly undesirable.

The modified-chirp-encoded image is shown in Figure 6(d), and is very similar to

18
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the chirp-encoded image. As with the chirp-encoded image, the artifacts are periodic

and could be mistaken for true events.

Overall these encodings of two shots per migration perform very well and introduce

only slight artifacts to the final image (remember the differences shown in Figure 6

have been amplified by 10). These runs took half as long as those for the standard

imaging and stacking, thus substantial savings in runtime is possible.

Further savings in

encoded. To measure

runtime can be obtained if more than two shots are phase

the amount of noise generated by these encodings, we use a

relative L2 norm of the difference between the images,

lWle~co&~9– Iw/o encoding
.

Iw/o encoding

(39)

Although this L2 norm is a quantitative measure of the effectiveness of phase encoding,

it can not point out qualitative features such as the packing of artifacts near the

surface or the periodic nature of artifacts. In Figure 7, the relative Lz-norm differences

are shown for the phase-encoding functions tested. The trivial encoding, where the

combined shots are simply separated by large distances, is the best performer for less

than 20 shots per migration. However this approach will not save us any computation

because of the increased computational domain.

The linear phase encoding does very well for 2 and 4 shots per migration but

is relatively worse at more shots per migration. This is primarily due to the trace

length which limits the usefulness of linear phase encoding. The random encoding

performs relatively poorly at two shots per migration, but improves relative to the

other encoding methods with more shots per migration. This is encouraging because

the cross-term energy for this method is randomly dispersed throughout the image

and therefore will not likely introduce events which could be misinterpreted.

The chirp encoding does very poorly at two shots per migration, but performs

relatively better with more shots per migration. The modified-chirp encoding does

slightly better than the chirp encoding for two shots per migration, however it does
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much worse with more shots per migration. After further investigation, we found that

the periodic character of the chirp and modified-chirp encoding made it very difficult

to interpret the final image.

The random encoding appears to be a good choice for higher number of shots per

migration because of its relatively uniform distribution and lack of coherent struc-

tures, as seen in Figure 8. All images are shown at the same scale and no amplitude

scaling has been

tion is increased,

applied to any of these images. As the number of shots per migra-

the number of migrations performed (and hence, the computational

effort) decreases while the cross-term energy grows in strength. However even with

all 240 shots of the Marmousi model randomly encoded in a single migration, some

major features can still “be seen. Yet the image in Figure 8(d) took about 1/240 of

the time to generate the image in Figure 5.

Clearly we have a trade-off between adequate signal-to-noise ratio and compu-

tational speedup, and we can choose the desired trade-off by simply specifying the

number of shots per migration.

Multiple Migrations of All Shots

One difficulty of the above approach is that the number of shots per migration

(and hence, the total number of migrations) needs to be specified before beginning

the migration. But since we do not know the relationship between the signal-to-noise

ratio and the number of shots per migration, the adequacy of the final signal-to-

noise ratio cannot be determined until the migrations are completed. Therefore this

makes it difficult know a priori the number of shots per migration which produces an

acceptable image with the fewest migrations.

Morton and Ober (1998) presented an alternative strategy for phase encoding

which allows the number of migrations and the desired signal-to-noise ratio to be

determined dynamically. This approach includes all shots from a survey in each mi-
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gration, using different instantiations of the phase-encoding function in each migra-

tion, and stacking the resulting images. Consequently the correct image for the entire

survey is present in every image, though its events are (at least) partially masked by

the cross-term energy (as shown in Figure 8(d)). The addition of each subsequent

migration simply improves the signal-to-noise ratio. This strategy has the advantage

that the number of migrations (and hence the computational effort) is determined

when the desired signal-to-noise ratio is reached.

One complication with this strategy is the data management of encoding all the

shots for each migration. Though the additional computational effort of phase encod-

ing the entire survey is small compared to each frequency-domain migration, the data

must be carefully managed to ensure the additional processing time is kept small.

Though this strategy can use any phase-encoding function, the solid curve in

Figure 9 demonstrates it using random phase encoding. All 240 shots were encoded,

migrated and stacked, up to 240 times. The continuous reduction in the noise-to-

signal ratio is apparent as more images are stacked, with the reduction following the

expected inverse square-root relationship.

The squares on the dashed curve in Figure 9 show the noise-to-signal ratio for

experiments using the strategy discussed in the previous section. Each square is the

result of a complete migration of all 240 shots using multiple shots per migration with

each shot being used only once.

To compare images for fixed computational effort, examine the encoding of 16

adjacent shots per migration (requiring 15 migrations to include the entire dataset)

as shown in Figure 8(b) and 15 migrations of all 240 shots randomly encoded and

then stacked as shown in Figure 10. We find that the noise in the former has an L2

norm of 0.586 while the latter has an Lz error norm of 0.427.

Not only does the strategy of migrating all shots in each migration have a com-

parable or smaller noise-to-signal ratio (for all but the trivial case of performing all

240 migrations), but it has the advantage of making frequency-domain shot-record
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migration a continuous process.

SUMMARY AND CONCLUSIONS

Phase encodings a technique applicableto any frequency-domain shot-record

migration method, where a number of shot records may be migrated together, re-

ducingthe computational costof migrating an entire seismic survey. Normally when

several shot records are combined in emigration, cross terms are generated between

unrelated source and receiver wavefields which cause unwanted artifacts inthe image.

By introducing phase functions designed for a correlation imaging condition, we can

disperse (by random, chirp and modified-chirp phase encoding) or shift (by linear

phase encoding) these artifacts, thereby reducing their effect on the final image.

As we increase the number of shots per migration, the computational cost de-

creases while the number of cross terms (and hence, the noise in the image) increases.

Thus the application of

and cross-term noise.

While in this paper

phase encoding is a

we only considered

trade-off between computational costs

the application of phase encoding to

shot-record migration, phase encoding can also be applied to the migration of some

other prestack data subsets, specifically receiver-record and plane-wave migrations.

In fact, phase encoding will work with any prestack frequency-domain migration

method which downward continues all of the prestack data subsets with the same

operator. The current implementation of phase encoding requires a correlation imag-

ing condition; the extension to other (e.g., deconvolution) imaging conditions is not

straightforward and will require further advancement. An additional limitation of

phase encoding is that by combining the prestack data volumes, the redundancy typ-

ically used to perform velocity analysis is lost. We currently envision using phase

encoding only to construct full-volume stacked images.

In this paper we presented two strategies for applying phase-encoding functions.

w -— - - --.--z---r ---—--7 --T% Y .T.., -..n m-z----- -m -
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The first strategy involves migrating several shots per migration, but only using

each shot once. For the Marmousi model, a synthetic dataset without seismic noise,

phase encoding with two and four shots per migration produces images which have

very slight artifacts, and reduces the computational costs by two and four times

respectively.

In the second strategy all shots are phase encoded in each migration, producing

an image

repeating

containing the “correct” image partially masked by the cross terms. By

this process with different phase encodings and stacking the resulting im-

ages, the stack beats down the cross terms improving the signal-to-noise ratio with

each additional migration. This strategy enables prestack shot-record migration of

an entire survey to be a continuous process, where the number of migrations and the

computational cost are determined when the desired signal-to-noise ratio is achieved.

The presented results indicate that phase encoding may enable significant reduc-

tions in the computational cost of frequency-domain shot-record migration, perhaps

making it cost competitive with Kirchhoff algorithms while preserving its advantages.

However further work needs to be done to make phase encoding production ready. A

more optimal strategy may involve a mixture of the two strategies examined here. For

real data sets, we expect (and have seen on limited runs) the inherent seismic noise

to be significant, allowing more phase-encoding noise and hence a greater reduction

in the computational cost. Further application to real data sets will help determine

the amount of phase-encoding noise that can be tolerated.
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FIGURES

FIG. 1. The response of two impulses which are

spatially close (b).

spatially separated (a), and are

FIG. 2. Linear phase encoding of image FIG. l(b) with tO = (a) 0.064 (b) 0.512

(c) 1.792 and (d) 2.048 seconds.

FIG. 3. TWO

(i.e., one shot

FIG. 4. Two

shots of the Marmousi Model using standard imaging and stacking

per migration).

shots of the Marmousi Model using (a) linear to = 1.792, (b) ran-

dom, (c) chirp, (d) modified-chirp phase encoding. On the left is the encoded image,

and on the right is the difference between the standard image in FIG. 3 and the

encoded image.

FIG. 5. The Marmousi model migrated with 240 shots using standard imaging and

stacking (i. e.,

FIG. 6. The

one shot per migration).

Marmousi Model combining 2 shots per migration using (a) linear,

(b) random, (c) chirp, and (d) modified-chirp phase encoding. On the left is the en-

coded image, and on the right is the difference (amplified by a factor of 10) between

the image in FIG. 5 and the encoded image.

FIG. 7. L2-norm difference between the standard image in FIG. 5 and the vari-

ous encoding functions for the Marmousi dataset.

FIG. 8. The Marmousi Model using random encoding and combining (a) 4, (b)

16, (c) 60, and (d) 240 shots per migration. On the left is the encoded image, and on
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the right is the difference between the image in FIG. 5 and the encoded image.

FIG. 9. The solid curve is the Lz norm of the difference between the standard image

in FIC4. 5 and the stack of multiple migrations of all randomly encoded shot records.

Each data point on the dashed curve is the result of a complete migration of all 240

shots using multiple shots per migration with each shot being used only once.

FIG. 10. The Marmousi Model using random encoding 15 times on all 240 shots

and stacking the resulting images. On the left is the stacked image, and on the right

is the difference between the image in FIG. 5 and the stacked image. Compare this

image with FIG. 8(b).
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FIG. 1. The response of two impulses which are spatially separated (a), and are spatially

close (b).
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(a)

(b)

(c)

(d)

FIG. 2. Linear phase encoding of image FIG. l(b) with to = (a) 0.064 (b) 0.512 (c)

1.792 and (d) 2.048 seconds.
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Distance (km)
3.5 4.0 4.5 5.0 5.5

FIG. 3. Two shots of the Marmousi Model using standard imaging and stacking (i.e.,

one shot per migration).
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(a)

(b)

(c)

(d)

FIG. 4. Two shots of the Marmousi Model using (a) linear to = 1.792, (b) random, (c)

chirp, (d) modified-chirp phase encoding. On the left is the encoded image, and on the

right is the difference between the standard image in FIG. 3 and the encoded image.
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(b)

(c)
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FIG. 6. The Marmousi Model combining 2 shots per migration using (a) linear, (b)

random, (c) chirp, and (d) modified-chirp phase encoding. On the left is the encoded

image, and on the right is the difference (amplified b a factor Of@ bet~veenthe image in

FIG. 5 and the encoded image.
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Number of shots per migration
FIG. 7. L2-norm difference between the standard image in FIG. 5 and the various

encoding functions for the Marmousi dataset.
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(a)

(b)

(c)

(d)

FIG. 8. The Marmousi Model using random encoding and combining (a) 4, (b) 16, (c)

60, and (d) 240 shots per migration. On the left is the encoded image, and on the right is

the difference between the image in FIG. 5 and the encoded image.
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—m — Multiple Shots
per Migration

Multiple Migrations
of All Shots

Number of Migrations

FIG. 9. The solid curve is the L2 norm of the difference between the standard image

in FIG. 5 and the stack of multiple migrations of all randomly encoded shot records. Each

data point on the dashed curve is the result of a complete migration of all 240 shots using

multiple shots per migration with each shot being used only once.
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FIG. 10. The Marmousi Modelusing random encoding 15times onaU24Oshots"ad

stacking the resulting images. On the left is the stacked image, and on the righ~ is the

difference between the image in FIG. 5 and the stacked image. Compare this image with,.

FIG. 8(b). *
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