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ABSTRACT

Frequency-domain shot-record migration can produce higher quality images than
Kirchhoff migration but typically at a greater cost. The computational cost of shot-
record migration is the product of the number of shots in the survey and the expense
of each individual migration. Many attempts to reduce this cost have focused on
the speed of the individual migrations, trying to achieve a better trade-off between
accuracy and speed.

Another approach is to reduce the number of migrations. We investigate the
simultaneous migration of shot records using frequency-domain shot-record migration
algorithms. The difficulty with this approach is the production of so-called cross terms
between unrelated shot and receiver wavefields, which generate unwanted artifacts or
noise in the final image. To reduce these artifacts and obtain an image comparable
in quality to the single—shof—per-migration result, we have introduced a process called
phase encoding which shifts or disperses these cross terms. The process of phase
encoding thus allows one to trade signal-to-noise ratio for the speed of migrating the
entire survey.

Several encoding functions and two application strategies have been tested. The

first strategy, combining multiple shots per migration and using each shot only once,

*Qrally presented: Ober, Oldfield, Womble, Romero and Burch, 1997, “Practical aspects
of prestack depth migration with finite differences”, 67t* Ann. Internat. Mtg of the SEG,
Expanded Abstracts, pp. 1758-61. Also: Morton and Ober, 1998, “Faster shot-record
depth migrations using phase encoding”, 68 Ann. Internat. Mtg of the SEG, Expanded

Abstracts, pp. 1131-1134. Patent applied for.
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provides a reduction in computation directly related to the number of shots combined.
The second strategy, performing multiple migrations of all the shots in the survey,
provides a means to reduce the cross-term noise through stacking the resulting images.
The additional noise in both strategies may be tolerated if it is no stronger than the
inherent seismic noise in the migrated image, and if the final image is achieved with

less cost.

INTRODUCTION

Most companies today use Kirchhoff methods to perform their production 3-D
prestack migrations, largely because they are relatively inexpensive and flexible with
respect to image size and data geometry. However they are usually limited in their
ability to account for multiple travel paths and finite-frequency effects, phenomena
which occur in regions of complex geology.

To improve image quality and avoid these difficulties, frequency-domain migration
methods have been developed and are more commonly used than in the past. However
these methods can be substantially more expensive than Kirchhoff migration and the
number of shot-record migrations required for prestack migration of an entire survey
can make frequency-domain methods prohibitively expensive.

We could reduce the computational requirements by summing several shots to-
gether and imaging with a single migration, thus reducing the total computation by
the number of shots combined. Unfortunately this results in unwanted cross terms
between unrelated shot and receiver wavefields during the imaging.

If the spatial separation between the shots is large, these cross terms would be
small. However, in seismic migration, one rarely migrates a single shot over the
whole domain of interest, choosing instead an aperture appropriate for the problem.
So adding together spatially separated shots would require enlarging the imaging

domain, decreasing the number of migrations while increasing their cost, leading to



no significant change in the overall computational work.

For example, if we have two impulse responses which are spatially separated and
are migrated in a constant velocity medium, an image of two hemispheres would
be expected as shown in Figure 1(a). The- computational expense for this run is
approximately twice that required for a single shot because the computational domain
has been doubled to include both shots. Thus little to no éavings can be gained by
using widely spaced shots. Consequently in this paper, we will consider shots which
are spatially close (i.e., within the migration aperture).

If two spatially close shots are combined to reduce the computational domain as
shown in Figure1(b), the resulting image has the expected response, two hemispheres,
but it also has cross terms between the source wavefield of one shot and the receiver
wavefield of another, and visa versa. (For this simple example, the two cross terms
exactly overlay one another.) To reduce the number of migrations and yet produce
a good quality image, the artifacts caused by the cross terms need to be reduced or
removed.

Phase-encoding methods used in radar systems (Nathanson, 1969; Cook, 1967) can
be adapted to prestack frequency-domain migration. In this paper, phase encoding
methods to disperse or shift the cross-term artifacts are described and examples using

synthetic datasets are shown.

PHASE ENCODING

In the standard approach to frequency-domain shot-record migration, the source
wavelet and the trace data must be Fourier transformed in time to give the source
and receiver wavefields at the surface, S,(z,y,2 = 0,w) and R,(z,y,z = 0,w), where
w is the Fourier transform variable and the subscript n indicates the shot index.
These wavefields are then propagated into the earth’s interior using the one-way wave

equation to determine S, (z,w) and R,(z,w) where z = (z, y, 2) is the position vector.



To produce an image, we use a generalized form of Claerbout’s (1971) correlation-
imaging condition
N

In(z) = kz_:l W (wi) Sy (2, wi) R (z, wi), (1)
where wy, are the frequencies that we are processing, N, is the number of frequencies,
W is a weighting factor used to improve the imaging condition, and S is the complex
conjugate of S,. It is important to note that the final image is the real part of I,,(z).
We will assume W is identically one for the remainder of paper since this does not
effect the general application of phase encoding. However the images in this paper
were obtained using a weighting which preserves the wavelet of the trace data (Ober
et al., 1997b).

Equation (1) represents a crosscorrelation of two signals in time, similar to a
matched filter pulse compression scheme used in radar systems. In this investigation
we consider phase encoding only for imaging conditions of the above form. Phase
encoding may be greatly complicated or not applicable for other types of imaging
conditions.

The final image of the survey is then obtained by summing the images from all

the shots,
I(z) = Y I(a). (2)

The time to image the entire survey using the standard approach is clearly propor-
tional to the total number of shots migrated. If the number of migrations were reduced
by combining shots, the overall cost to produce the final image would be decreased
by nearly the number of shots per migration. A small increase of the computational
domain is required to include the combined shots within the same migration therefore
causing a slight increase in the cost for each migration.

To combine shots we can note that the differential equation we solve to obtain

Sp(z,w) and R,(z,w) is linear, and therefore we can compute the summed wavefields,
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Sy(z,w) = ; an (W) Sn(z, w) (3)
and
Ry(z,w) =) an(w)Rn(z,w), (4)

in nearly the same amount of time it takes to compute any of the individual terms
Sn(z,w) or Ry(z,w). (Note: a,(w) is a function to be specified shortly). In order to

do this we merely compute the values at the surface

Ss(z,y,z =0,w) = Xn: an(w)Sn(z,y, z = 0,w), (5)
and

Ry(z,y,2=0,w) = > an(w)Rn(z,y, 2z = 0,w), (6)

then the combined wavefields at all depths, S;(z,w) and Rs(z,w), are obtained by
solving the one-way wave equations initialized with the summed values at the surface.

However a complication arises when S;(z,w) and R,(z,w) are processed with
the imaging condition. Cross terms between unrelated shots produce artifacts in
the image. For example, when two shots are summed and the imaging condition is

applied, the image is given by

Ii(z) = |a1|2 Ii(z) + Iagl2 I(z)
+ Z [Sf(£7 wk)RQ (ﬁ, wlg)a;fag
k

+55(2, wi) Ra (2, wi)a301] - (7)

If we choose |a,(w)| = 1, the first two terms on the right-hand side yields the stack
of the individual images; however, the other terms are undesirable cross terms. By
using phase encoding, we can try to eliminate or greatly reduce these unwanted cross

terms. If we introduce the phase function 7, (w) and let a,(w) = e™®), we find




Ii(z) = Li(z) + L(z)
+ Z [Sf(ﬁ, wk)Rz (_.’_13_, wk)ei('ﬁ (W)= (wr))
%

+53 (2, we) Ba (g, we) e ) (x)) ©)

Note that the phase functions -y, only appear in the cross terms, not in the terms
producing I; and I,. We now try to choose the functions 7, (w) so that when we sum
over frequency, the energy from the unwanted terms will be dispersed throughout the
whole image or be shifted out of the region of interest. When we want to add more
than two shots together a similar procedure holds, however the cross terms become

more numerous and therefore more difficult to shift or disperse.

PROPERTIES OF PHASE ENCODING

In order to understand how phase encoding can shift or disperse the cross terms,
it is necessary to appreciate when an imaging condition produces a large response.
It can be shown that when one does prestack migration, the image produced from a

single impulsive shot can be kinematically approximated as
o] .
I(z) = / e~ F(1) duw. 9)

Here F(w) is the frequency spectrum of the migrated wavefield. We are primarily
interested in the fact that a large response in I(z) will occur at a reflector (3 (z) = 0),

and 1(z) is very nearly confined to the interval

~Tmaz < 'Qb(ﬁ) < Tmazs (10)

where T, is the largest recorded travel time on the domain of interest. By this we
mean the largest time to go from the shot location on the surface, to a point z in the
interior, and then back to any point on the surface is 7yyq,. All of these points being
in our computational domain.

In practice we replace our infinite integral by a finite and discrete sum
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P Ty - S — L —r— e W Ay Y5 = At

Mo
Iz)= Y e * 4@ F(kAw)Aw. (11)

k=—N,

In this case we will get a large response at any point such that

Y(z) = gg_?, (12)

where m is an integer. We only want to get large responses from points with m = 0,
the other responses lead to aliased images. Note that if

2m
A_w > Tmaz (13)

then we are guaranteed not to have any aliased images in our domain of interest.

This follows since in that case

P(z) — ?_gjm >0 for m <0, (14)
and
P(z) — zgwm <0 for m>0. (15)

These inequalities follow from our bounds on %(z) in the domain of interest.
When we produce an image using phase encoding, each cross term will have a

form similar to the images. In particular, they can be kinematically approximated as

I(z) = / = e~ @) ") F(w) duw. (16)

—c0

Here 9.(z) is the phase produced by the cross term, and y(w) is a phase function
that will hopefully shift or disperse the energy so that I.(z) is not large on the domain
of interest. If it were not for the phase y(w), we would get a large response from any
points where 1,(z) = 0, and this would appear as a false reflector. When we introduce
the phase function y(w), the image I.(z) does not necessarily take on its largest value
at points where %.(z) = 0. Ideally we do not want I.(z) to take on a large value
for any value of .(z). This suggests that we analyze our phase function (w) by

examining the function




Clo) = | ” e P () dw, (17)

If the function C() takes on a large value at some point @ = o*, we could get
what looks like a reflecting surface at some point z where 1,(z) = o*. For this reason,
we would like to choose a phase function y(w) that minimizes the maximum value
that the function C(a) can assume for any value of a (i.e., disperses the cross-term
energy). If we actually computed our imaging condition using a continuous integral,
we could choose y(w) so that the maximum value of C(), and hence our cross terms,
were arbitrarily small. In practice, our sampling rate imposes limits to how small
we can make C(a). When we sample at a finite rate, we replace the integral by the
discrete sum

Cauw(e) = Aw Y e thawaghr(kdn) p(pAy). (18)

k=—00
To see the limits imposed by the finite sampling we use the discrete form of

Parseval’s equality (Churchill, 1972). This states that if we expand a periodic function

f(z) with period 2a in a Fourier series,

f(.’l?): i a,\ceik"/“ (19)
k=—00
then,
L re 2 - 2
il de = . 20
5a [N f@Fdo= 3 ol (20)

In our particular case, the function Ca,(c) has a period of 2m/Aw, and Parseval’s

equality implies that
o0

Bu (18 o (@) Pda=(Bw? 3 | Fldw) P (21)

This shows that it is not possible to reduce the function | Ca,(c) | so that it is

everywhere less than a constant, Ha,,, where
x

(Haw)® = (Aw)? Y | F(kAw) [*. (22)

k=—00
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This can be approximated as
(Hao)? ~ Aw /_ | F(w) [? duw. (23)

No matter what phase function (w) we choose, the function | Ca,(e) | must be
greater than or equal to Ha, at some point. We will now apply this formula to the

case where F'(w) = 1 for | w |< wy, and zero elsewhere. In this case, we find
(Hpw)? = 2wplAw. (24)

If we use an optimal form for the function (w), we can reduce the cross terms so
they are all of magnitude Ha,. We need to compare this to the results where we do
"not use any phase encoding then y(w) = 0, and the maximum value of C(a) occurs
when o = 0 and is given by Hy = 2wy (see Eq. (17)). It follows that the ratio of

the optimally dispersed cross term, Ha,,, to the maximum value of the non-dispersed

HAw _ Aw
H - ,/ Sy \ (25)

This result was derived for the case where F'(w) is a square spectrum and the

cross term, Hy, is

phase y(w) was chosen to optimally disperse the cross terms. However, the basic
form of the result is quite general and crucial to understanding phase encoding. In
general for a seismic source, we have w0t =~ 2m, where §t is the width of the seismic
pulse that is sent out. Similarly we have AwTpee & 27 where Tpnqp is the maximum
recorded arrival time. Plugging into Eq. (25), it follows that if the square root of
the pulse width divided by the maximum arrival time, \/m, is small, then we
should expect to be able to do a good job of dispersing the cross terms. Assuming
Jt is several time samples, dt, the ratio of the dispersed cross term to the non-
dispersed cross term scales as \/m ~ 1/+/N,. Since cross terms are comparable
in magnitude to correct events, this result indicates that the effectiveness of phase
encoding in dispersing the cross terms is limited by the inverse of the square root of

the number of frequencies migrated.
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MIGRATION METHOD

Phase encoding, while dependent on the type of imaging condition, is independent
of the particular frequency-domain shot-record migration method used. However, for
completeness we briefly summarize the migration method used in this study (Ober
et al., 1997a). It is based on industry-standard approaches (Claerbout, 1985; Yil-
maz, 1987; Li, 1991) for shot-record migration utilizing frequency-domain, implicit
solutions to the paraxial wave equation. The method of fractional steps (Fletcher,
1988) is used along with Crank-Nicholson differencing and cofnpact finite differences
to produce a fourth-order finite-difference scheme. Absorbing bouhdary conditions
similar to those of Clayton and Engquist (1980) are used. Phase-correction filters
(Graves and Clayton, 1990; Li, 1991) have been implemented to correct for errors

introduced by the square-root-operator and operator-splitting approximations.

PHASE-ENCODING FUNCTIONS

In this section, several phase-encoding functions are discussed and illustrated for
two shots in a single migration. Their application to more than two shots per mi-
gration is illustrated in subsequent sections along with strategies for migrating entire

surveys.

Linear Phase Encoding

In the following, we show that provided our sampling rate in the frequency do-
main is high enough (i.e., Aw is small enough), the unwanted cross terms can be
completely eliminated by choosing the phase functions, v;(w), to be linear. Unfortu-
nately, the required sampling rate for two shots is twice as high as that needed to
prevent aliasing, which is the one typically used in seismic imaging (for three shots

the required sampling rate is three times, etc.). In other words, we usually record only
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enough trace data to image the geological structures of interest. However through
zero padding the traces, the cross terms can be shifted into some of the newly-created
frequency domain and therefore out of our imaging domain.

Suppose we choose the phase functions ;(w) so that
Y2 (w) — m(w) = tow. (26)
In this case our unwanted cross terms will be of the form
oo —tw(Ye(z)Et) B\ dw 9
[ e (@)de, (27)

Assuming the function F'(w) is broadband, we will only get significant intensities from
the cross terms at points where ¥.(z) £t = 0.

We have already noted that the absolute value of the phase function ¥(z) can be
bounded by ez, Where Tp,q is the largest travel time in the computational domain.
Assuming that our encoded shots are relatively close together, this bound also applies
to the phase of the cross terms, 1¥.(z). If we choose #y so that it is bigger than Ty,
there will be no contribution from either of the terms 9.(z) & ¢. We see that by
choosing ty large enough we can completely eliminate one cross term, and shift the
other cross term out of the region that we are imaging.

We can accomplish this only if we are sampling our data finely enough in frequency.
A simple extension of our results concerning aliasing, Eq. (13), shows that in order

to prevent an aliased image with negative values of m we must have

2
"AE > Tmaz + tO > 2'rma:z:- (28)

A similar result holds for the positive values of m. We see that in order to prevent
aliasing for the unwanted cross terms, we must sample at twice the rate as if we had
not used a linear phase encoding. This results in twice as many frequencies used for

migration and therefore no overall reduction in computational cost.

12
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Returning to our simple example of Figure 1(b), the effect of various linear phase
encodings are shown in Figure 2. The trace length is 4.096 seconds with 4 ms sam-
pling, and the medium has a constant velocity of 3 km/s. The total travel times from
source to reflectors to receiver is 1.332 seconds.

If we slightly increase %y to 0.064 seconds, the cross terms shift position in the
image; one up and the other down as shown in Figure 2(a). Increasing ty to 0.512
seconds as shown in Figure 2(b), one of the cross terms is shifted completely out of
the imaged domain, and the other has continued its downward shift. In Figure 2(c),
the time shift, ¢y, has been set to 1.792 seconds and only slight visual evidence of
the cross terms can be seen. In Figure 2(d), the time shift is half the trace length,
2.048 seconds, and artifacts from the cross terms can be seen near the surface due to
temporal wrap-around. If we further increase #y, the cross terms return into the image
in the reverse order in which they were shifted out (i.e., Figures 2(d), 2(c), 2(b), and
2(a)). When t; = 4.096 seconds, the resulting image is identical to Figure 1(b).

To illustrate the various encoding functions on a more complex model, two shots
from the Marmousi model have been sele.cted and migrated. Figure 3 shows the
standard imaging and stacking as described by Egs. (1) and (2) (i.e., a separate
migration for each shot and the individual images summed). The two shots selected
are located at 4250m and 4500m; the migration used 256 frequencies between 0-62.5
Hz; and the grid spacing was 12.5m by 4m.

The two shots of the Marmousi model were also combined using linear phase
encoding with ¢y = 1.792 and the resulting image is shown in Figure 4(a) along
with the difference between Figure 3 and Figure 4(a). All images in Figure 4 have
the same scale and no amplitude scaling, such as automatic gain control, has been
applied. The two images are very similar except near the surface where the cross-term
artifacts appear as “noise” in the encoded image.

To extend linear phase encoding to more than two shots per migration, we can

use y;(w) = (T * j * w)/(K — 1) where j is the shot number (0...K — 1), T is the

13
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Fourier transform length in seconds, and K is the number of shots to be encoded.

Random Phase Encoding

While linear phase encoding moves the cross terms (potentially out of the image),
we can use random phases to disperse these unwanted cross terms. We can choose
the phase function, y(w) = 71(w) — Y2(w), from Eq. (17) to be a sequence of random
numbers between 0 and 27. When we sum over w to produce an image, the phases
will not agree, and this should not produce a large response for any value of a.

To estimate how well the maximum cross terms can be reduced through random
encoding, we again assume a flat spectrum (i.e., that the function F(w) is equal to
unity for |w| < wp, and zero elsewhere). Without phase encoding, we will get the
largest response for the cross terms when a = 0. In this case the maximum of a cross
term C(c) will be equal to N,,. However with y(w) being a uniform random variable,
the theory of 2-D random walk shows us that the root-mean-square value of C(a) is
v/N,,. So on average, random phase encoding will reduce the magnitude of the cross
terms by a factor of 1/v/N,,.

As an example of two shots per migration, the shots used in Figure 3 were ran-
domly encoded and the resulting image is shown in Figure 4(b). Random phase
encoding can be trivially extended to more than two shots per migration. Since the
difference of any two uniform random variables on a periodic domain is also a uniform
random variable, we can choose each v;(w) to be a uniform random variable. This
will reduce each cross term by the factor of 1/1/N,,, even though the number of cross

terms increases as the square of the number of shots.

Chirp Phase Encoding

In order to disperse the cross terms, it is not necessary to choose the phases

randomly. In this section we choose the function y(w) = y2(w) — 11(w) to be the
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linear frequency-modulation chirp
v(w) = fuw?. (29)
In this case our unwanted cross terms have the form

Clo)= [ eee Pu)du. (30)

If 3 is large we can evaluate this integral using the method of stationary phase. This

gives us

C(a) ~ ﬁF(a/(2,3))6—ia2/(4ﬂ)+i7r/4. (31)

In principle, we can make the amplitude of the cross term arbitrarily small as
B — co. However this is only the case if we have continuous sampling in the frequency
domain. If we replace the integral By a discrete sum, we see that the chirp will be
aliased once 8 > 7/(wpAw) where wy is the bandwidth of our signal. This gives us an
estimate of how large we can expect to choose 8 and still have our stationary-phase

arguments hold. It follows that we can expect to reduce the signal to

|C(a)| & ywoAw |F(ef (26))] - (32)

To get a rough estimate of how much we have actually reduced the cross terms,
we again assume a flat spectrum for F/(w). Then without the chirp, the signal would

be 2wy, and the ratio of the reduced signal to the original signal is

20w
Wo

: . ‘ (33)

This gives us a very similar result as the random encociing. In practice it is found
that if we choose § larger than the maximum value allowed to prevent aliasing, our
results do not greatly degenerate, but they do not improve.

The two shots of the Marmousi model were migrated using the chirp encoding,

and the image is shown in Figure 4(c). The artifacts are spread over the entire image,

15
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similar to the case of random encoding, however they are stronger and could easily
be mistaken for a true seismic event.

In order to add more than two shots together, we can use the sequence of phases
1(Ww) = 0, 1(w) = fuw?, 13(w) = 2w?, ... 7x(w) = (K — 1)Bw?. The phases of the
unwanted cross terms will be of the form kBw?, where |k| < K. In order to prevent

aliasing we must choose (X — 1)( small enough (.e., less than 7/(wp Aw)).

Modified-Chirp Phase Encoding

Ideally we would like to make the cross term C(a) in Eq. (30) equal to zero for all
values of . Parseval’s equality, Eq. (21), shows us that this is not possible. However
we shall show how to choose the phase function y(w) in order to make the magnitude
of C(c) uniform over the interval || < Tjqe- This analysis is identical to that used
in Romero and Dickey (1996) to flatten out a laser beam profile.

First we assume that y(w) = fr(w) where £ is a large parameter. Applying the

method of stationary phase to the integral of Eq. (17), we find that

C(0)] ~ var LD (34)

VBr(w(€)’

where £ = a/f, and w(¢) is defined implicitly through the equation
L (gw+r@w) =0 (35)
= = 0.

This last condition arises as a stationarity condition for the rapidly varying phase.
On any interval where we would like |C(c)| to be constant, Eq. (34) shows that we

must have d?r /dw? = [F(w)|* and hence
dr w
— = /0 |F(u)? du. (36)

Assuming that |F'(w)| = |F(—w)]|, we see that for this choice of 7(w) the phase cannot
be stationary if a/8 > [&°|F(w)[® du, and for |a/B| < [&° |F(w)[* du, |C(c)| will be

16




a constant. As with the chirp, we could get C() to be arbitrarily small by choosing
very large values of §, but we are limited by the fact that we are sampling at a finite

rate. In order to prevent aliasing, we must have ﬂAw% < 2w, and hence

< 2
A i PP du

B (37)

Note that this requires knowing the function F(w). However, if we only approxi-
mately know the function, we can still get an improvement over using the chirp. We
see that Eq. (37) puts a limit on how big we can make S in terms of the parameters

Aw and the function F'(w). This expression for 3 is proportional to wp/Aw.

For the special case of the first derivative of a Gaussian, F(w) = wie™V/2* e
have r(w) = ¢(vAw), where
_52
T e
€)= Yg ert(e) + - (38)

In order to disperse the signal as much as possible, we must choose 8 = 8/7/(AwV/)).

Using the above formulation, the two shots of the Marmousi model were migrated
using the modified-chirp encoding. The resulting image is shown in Figure 4(d). Like
the random and chirp encoding, the artifacts are spread across the image and have
relatively large amplitudes near the surface and are small elsewhere in the image.
These artifacts are periodic throughout the domain. This is due to the fact that

while |C'(a)]| is constant over the domain, the image is just the real part of C(c).

FULL MARMOUSI RESULTS

We now apply these phase-encoding functions to all 240 shots of the Marmousi
dataset using two different strategies. In the first strategy we examine two or more
shots in each migration, using each shot exactly once. In the second strategy, we
use all the shots in the survey in each migration, repeating this process with differ-

ent phase encodings and stacking the resulting images. For comparison, the entire
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Marmousi dataset was migrated using standard imaging and stacking as described by
Egs. (1) and (2), or in other words with one shot per migration. This image is shown

in Figure 5.

Multiple Shots per Migration

We first compare the “correct” image in Figure 5 to phase-encoded images where
two or more adjacent shots are included in each migration and each shot is used in
exactly one migration. For the following phase-encoded images, the same number of
frequencies was used for all phase-encoding methods, including linear phase encoding,
and no amplitude scaling has been applied.

In Figure 6, the results for encoding two shots per migration are shown (i.e., the
240 shots were migrated in sets of two adjacent shots for a total of 120 migrations).
On the left is shown the resulting encoded images, and on the right is the difference
(amplified by a factor of 10) between the encoded images and the image generated
through standard imaging and stacking shown in Figure 5. Figure 6(a) shows the
migrated image for linear phase encoding. The artifacts near the surface appear to
be random in nature. However, the deeper artifacts appear to be coherent structures
in the image, which could be mistaken for a true event.

The random-encoded image shown in Figure 6(b) is very good. The artifacts for
this image are “randomly” dispersed throughout the image. This apparent noise in
the image has short wavelengths near the surface and longer wavelengths at deeper
locations. This is due to stretching caused by the velocity of the medium.

The chirp-encoded image is shown in Figure 6(c). The cross terms in this image
have larger amplitudes than in comparison with the previous two methods shown in
Figure 6. Additionally the cross terms have coherent structures which appear to be
periodic. This behavior is highly undesirable.

The modified-chirp-encoded image is shown in Figure 6(d), and is very similar to
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the chirp-encoded image. As with the chirp-encoded image, the artifacts are periodic
and could be mistaken for true events.

Overall these encodings of two shots per migration perform very well and introduce
only slight artifacts to the final image (remember the differences shown in Figure 6
have been amplified by 10). These runs took half as long as those for the standard
imaging and stacking, thus substantial savings in runtime is possible.

Further savings in runtime can be obtained if more than two shots are phase
encoded. To measure the amount of noise generated by these encodings, we use a

relative Ly norm of the difference between the images,

”Iw/ encoding — Lw/fo encoding"

(39)

Iw /o encoding

Although this L, norm is a quantitative measure of the effectiveness of phase encoding,
it can not point out qualitative features such as the packing of artifacts near the
surface or the periodic nature of artifacts. In Figure 7, the relative Lo-norm differences
are shown for the phase-encoding functions tested. The trivial encoding, where the
combined shots are simply separated by large distances, is the best performer for less
than 20 shots per migration. However this approach will not save us any computation
because of the increased computational domain. ’

The linear phase encoding does very well for 2 and 4 shots per migration but
is relatively worse at more shots per migration. This is primarily due to the trace
length which limits the usefulness of linear phase encoding. The random encoding
performs relatively poorly at two shots per migration, but improves relative to the
other encoding methods with more shots per migration. This is encouraging because
the cross-term energy for this method is randomly dispersed throughout the image
and therefore will not likely introduce events which could be misinterpreted.

The chirp encoding does very poorly at two shots per migration, but performs
relatively better with more shots per migration. The modified-chirp encoding does

slightly better than the chirp encoding for two shots per migration, however it does

19

Remaaiia TP T 7 T — A o e e e e T T e e e e e o



much worse with more shots per migration. After further investigation, we found that
the periodic character of the chirp and modified-chirp encoding made it very difficult
to interpret the final image.

The random encoding appears to be a good choice for higher number of shots per
migration because of its relatively uniform distribution and lack of coherent struc-
tures, as seen in Figure 8. All images are shown at the same scale and no amplitude
scaling has been applied to any of these images. As the number of shots per migra-
tion is increased, the number of migrations performed (and hence, the computational
effort) decreases while the cross-term energy grows in strength. However even with
all 240 shots of the Marmousi model randomly encoded in a single migration, some
major features can still be seen. Yet the image in Figure 8(d) took about 1/240 of
the time to generate the image in Figure 5.

Clearly we have a trade-off between adequate signal-to-noise ratio and compu-
tational speedup, and we can choose the desired trade-off by simply specifying the

number of shots per migration.

Multiple Migrations of All Shots

One difficulty of the above approach is that the number of shots per migration
(and hence, the total number of migrations) needs to be specified before beginning
the migration. But since we do not know the relationship between the signal-to-noise
ratio and the number of shots per migration, the adequacy of the final signal-to-
noise ratio cannot be determined until the migrations are completed. Therefore this
makes it difficult know a priori the number of shots per migration which produces an
acceptable image with the fewest migrations.

Morton and Ober (1998) presented an alternative strategy for phase encoding
which allows the number of migrations and the desired signal-to-noise ratio to be

determined dynamically. This approach includes all shots from a survey in each mi-
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gration, using different instantiations of the phase-encoding function in each migra-
tion, and stacking the resulting images. Consequently the correct image for the entire
survey is present in every image, though its events are (at least) partially masked by
the cross-term energy (as shown in Figure 8(d)). The addition of each subsequent
migration simply improves the signal-to-noise ratio. This strategy has the advantage
that the number of migrations (and hence the computational effort) is determined
when the desired signal-to-noise ratio is reached.

One complication with this strategy is the data management of encoding all the
shots for each migration. Though the additional computational effort of phase encod-
ing the entire survey is small compared to each frequency-domain migration, the data
must be carefully managed to ensure the additional processing time is kept small.

Though this strategy can use any phase-encoding function, the solid curve in
Figure 9 demonstrates it using random phase encoding. All 240 shots were encoded,
migrated and stacked, up to 240 times. The continuous reduction in the noise-to-
signal ratio is apparent as more images are stacked, with the reduction following the
expected inverse square-root relationship.

The squares on the dashed curve in Figure 9 show the noise-to-signal ratio for
experiments using the strategy discussed in the previous section. Each square is the
result of a complete migration of all 240 shots using multiple shots per migration with
each shot being used only once.

To compare images for fixed computational effort, examine the encoding of 16
adjacent shots per migration (requiring 15 migrations to include the entire dataset)
as shown in Figure 8(b) and 15 migrations of all 240 shots randomly encoded and
then stacked as shown in Figure 10. We find that the noise in the former has an L,
norm of 0.586 while the latter has an Lo error norm of 0.427.

Not only does the strategy of migrating all shots in each migration have a com-
parable or smaller noise-to-signal ratio (for all but the trivial case of performing all

240 migrations), but it has the advantage of making frequency-domain shot-record
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migration a continuous process.

SUMMARY AND CONCLUSIONS

Phase encoding is a technique applicable to any frequency-domain shot-record
migration method, where a number of shot records may be migrated together, re-
ducing the computational cost of migrating an entire seismic survey. Normally when
several shot records are combined in a migration, cross terms are generated between
unrelated source and receiver wavefields which cause unwanted artifacts in the image.
By introducing phase functions designed for a correlation imaging condition, we can
disperse (by random, chirp and modified-chirp phase encoding) or shift (by linear
phase encoding) these artifacts, thereby reducing their effect on the final image.

As we increase the number of shots per migration, the computational cost de-
creases while the number of cross terms (and hence, the noise in the image) increases.
Thus the application of phase encoding is a trade-off between computational costs
and cross-term noise.

While in this paper we oniy considered the application of phase encoding to
shot-record migration, phase encoding can also be applied to the migration of some
other prestack data subsets, specifically receiver-record and plane-wave migrations.
In fact, phase encoding will work with any prestack frequency-domain migration
method which downward continues all of the prestack data subsets with the same
operator. The current implementation of phase encoding requires a correlation imag-
ing condition; the extension to other (e.g., deconvolution) imaging conditions is not
straightforward and will require further advancement. An additional limitation of
phase encoding is that by combining the prestack data volumes, the redundancy typ-
ically used to perform velocity analysis is lost. We currently envision using phase
encoding only to construct full-volume stacked images.

In this paper we presented two strategies for applying phase-encoding functions.
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The first strategy involves migrating several shots per migration, but only using
each shot once. For the Marmousi model, a synthetic dataset without seismic noise,
phase encoding with two and four shots per migration produces images which have
very slight artifacts, and reduces the computational costs by two and four times
respectively.

In the second strategy all shots are phase encoded in each migration, producing
an image containing the “correct” image partially masked by the cross terms. By
repeating this process with different phase encodings and stacking the resulting im-
ages, the stack beats down the cross terms improving the signal-to-noise ratio with
each additional migration. This strategy enables prestack shot-record migration of
an entire survey to be a continuous process, where the number of migrations and the
computational cost are determined when the desired signal-to-noise ratio is achieved.

The presented results indicate that phase encoding may enable significant reduc-
tions in the computational cost of frequency-domain shot-record migration, perhaps
making it cost competitive with Kirchhoff algorithms while preserving its advantages.
However further work needs to be done to make phase encoding production ready. A
more optimal strategy may involve a mixture of the two strategies examined here. For
real data sets, we expect (and have seen on limited runs) the inherent seismic noise
to be significant, allowing more phase-encoding noise and hence a greater reduction
in the computational cost. Further application to real data sets will help determine

the amount of phase-encoding noise that can be tolerated.
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FIGURES
FIG. 1. The response of two impulses which are spatially separated (a), and are

spatially close (b).

FIG. 2. Linear phase encoding of image FIG. 1(b) with ¢, = (a) 0.064 (b) 0.512
(c) 1.792 and (d) 2.048 seconds.

FIG. 3. Two shots of the Marmousi Model using standard imaging and stacking

(i.e., one shot per migration).

FIG. 4. Two shots of the Marmousi Model using (a) linear t, = 1.792, (b) ran-
dom, (c) chirp, (d) modified-chirp phase encoding. On the left is the encoded image,
and on the right is the difference between the standard image in FIG. 3 and the

encoded image.

FIG. 5. The Marmousi model migrated with 240 shots using standard imaging and

stacking (i.e., one shot per migration).

FIG. 6. The Marmousi Model combining 2 shots per migration using (a) linear,
(b) random, (c) chirp, and (d) modified-chirp phase encoding. On the left is the en-
coded image, and on the right is the difference (amplified by a factor of 10) between

the image in FIG. 5 and the encoded image.

FIG. 7. Lo-norm difference between the standard image in FIG. 5 and the vari-

ous encoding functions for the Marmousi dataset.

FIG. 8. The Marmousi Model using random encoding and combining (a) 4, (b)
16, (c) 60, and (d) 240 shots per migration. On the left is the encoded image, and on
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the right is the difference between the image in FIG. 5 and the encoded image.

FIG. 9. The solid curve is the Ly norm of the difference between the standard image
in FIG. 5 and the stack of multiple migrations of all randomly encoded shot records.
Each data point on the dashed curve is the result of a complete migration of all 240

shots using multiple shots per migration with each shot being used only once.

FIG. 10. The Marmousi Model using random encoding 15 times on all 240 shots
and stacking the resulting images. On the left is the stacked image, and on the right

is the difference between the image in FIG. 5 and the stacked image. Compare this

image with FIG. 8(b).
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FIG. 1. The response of two impulses which are spatially separated (a), and are spatially

close (b).
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(d)
FIG. 2. Linear phase encoding of image FIG. 1(b) with ¢y = (a) 0.064 (b) 0.512 (c)

1.792 and (d) 2.048 seconds.
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FIG. 3. Two shots of the Marmousi Model using standard imaging and stacking (i.e.,

one shot per migration).
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(d)
FIG. 4. Two shots of the Marmousi Model using (a) linear tp = 1.792, (b) random, (c)
chirp, (d) modified-chirp phase encoding. On the left is the encoded image, and on the

right is the difference between the standard image in FIG. 3 and the encoded image.
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FIG. 5. The Marmousi model migrated with 240 shots using standard imaging and

stacking (i.e., one shot per migration).
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FIG. 6. The Marmousi Model combining 2 shots per migration using (a) linear, (b)
random, (c) chirp, and (d) modified-chirp phase encoding. On the left is the encoded
image, and on the right is the difference (amplified by a factor of 10) between the image in

FIG. 5 and the encoded image.
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FIG. 7. Lo-norm difference between the standard image in FIG. 5 and the various

encoding functions for the Marmousi dataset.
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FIG. 8. The Marmousi Model using random encoding and combining (a) 4, (b) 16, (c)
60, and (d) 240 shots per migration. On the left is the encoded image, and on the right is

the difference between the image in FIG. 5 and the encoded image.
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FIG. 9. The solid curve is the Ls norm of the difference between the standard image

in FIG. 5 and the stack of multiple migrations of all randomly encoded shot records. Each

data point on the dashed curve is the result of a complete migration of all 240 shots using

multiple shots per migration with each shot being used only once.
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FIG. 10. The Marmousi Model using random encoding 15 times on all 240 shot"s-a,nd
stacking the resulting images. On the left is the stacked image, and on the right:, is the
difference between the image in FIG. 5 and the stacked image. Compare this image with

FIG. 8(b). g
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