
ADVANCES IN THE INTEGRATION OF LARGE DATA SETS FOR SEISMIC MONITORING OF NUCLEAR
EXPLOSIONS

Dorthe B. Carr1, Jennifer E. Lewis1, Sandy Ballard1, Elaine M. Martinez1, Jeff W. Hampton1, B. John Merchant1, Richard J. Stead2, Michelle Crown3, Jorge Roman-Nieves3, and John J. Dwyer3

Sandia National Laboratories1, Los Alamos National Laboratory2, and Air Force Technical Applications Center3

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

REFERENCES

Ballard, S. and J. Lewis. (2004), DBTools: A Suite of Tools for Manipulating Information in a Relational
Database in Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion
Monitoring, LA-UR-04-5802, Vol. 2, pp700-709. (available at http://www.nemre.nn.doe.gov).

Carr, D., (2006). National Nuclear Security Administration Knowledge Base Database Guide, Sandia
National Laboratories, SAND2004-0961P.

Lewis, J. E. and S. Ballard. (2007). GNEMRE DBTools: A Suite of Tools for Access, Maintenance, and
Manipulation of Data in a Relational Database, Sandia National Laboratories, SAND2007-xxxx.

Stead, R., M. Begnaud, and J. Aguilar-Chang (2006), Advances in Data Integration and Quality Control
in Support of the NNSA Knowledge Base, in Proceedings of the 28th Seismic Research Review:
Ground-Based Nuclear Explosion Monitoring Technologies, LA-UR-06-5471, Vol. 2, p.1028-1037.

Stead, R. QCTool User’s Manual, Los Alamos National Laboratory, in preparation.

Introduction

The NNSA Knowledge Base consists of Oracle database tables, flat-file information, and tools. The bulk of the KB is in the
database tables. The core database tables hold seismic event information -- origins, arrivals, associations, and magni-
tudes that come from various global, regional and local bulletins. Other database tables include custom parameter infor-
mation for location, event identification, and coda magnitudes that is generated from research. There are database tables
that contain waveform metadata that point to flat-file waveforms on the system. Finally, there are database tables that con-
tain information about the seismic stations -- locations, channel names, instrument responses, etc.

To efficiently accomplish the integration of database tables from multiple sources such that no incorrect information is
included, no information is duplicated, and proper links are maintained between tables, the GNEM R&E program devel-
oped a specialized metadata schema (the schema schema), and two software packages - QCTool and DBTools. In this
presentation, we will discuss each of these and show how they are used in an overall database integration pipeline.

Schema Schema

Both the QCTool and DBTools depend on knowing the particulars of the database tables. This is accomplished with a database schema that holds
table definition information for the KB schemas, or what has been termed: “schema schema”. The schema schema concept was deliberately
designed by Richard Stead to have a close relationship to the Oracle data dictionary, to make the use and understanding of the schema schema
simple and straightforward. However, it does go well beyond the Oracle data dictionary in various ways -- in particular, because it exists apart from
the tables it describes and it exists at all times regardless of which objects are currently defined or how they are defined. Any schemas can be
described in the schema schema tables.

There are four tables in schema schema

tabdescript: provide descriptions of the tables defined in the schema
coldescript: provide descriptions of the columns defined in the schema
colassoc: links the columns in coldescript to the tables in tabdescript
glossary: defines all abbreviations, acronyms and other odd names used throughout the descriptions and defines the legal entries for columns

with range types of defined and finite set

There are also views in the schema schema that are used by DBTools. The views contain just the information needed by DBTools to run (table and
column names, table keys, column formats, non-applicable values, etc.)

CSS30_TABLE_DEFS_VIEW
GNEM_TABLE_DEFS_VIEW
NNSA_TABLE_DEFS_VIEW
USNDC_TABLE_DEFS_VIEW

QCTool

QCTool (Quality Control Tool) is an automated quality assurance and quality control tool for database tables. The first check makes sure the tables
are in the appropriate schema, i.e. the correct columns in the correct order with the correct format. Then the tool executes three kinds of QC
checks - single-table, multi-table and complex joins - and outputs the results to files.

Single-table checks:
These checks are defined by the schema schema tables. They verify that the table matches the documented table structure described in the
schema schema tables (primary keys, unique keys, ranges, NA values)

Multi-table checks (one-column, two-column, indirect cross-reference):
These checks are defined in the qc parameter file. One-column cross reference checks require that every value from the specified column in the
first table is also found in the specified column of the comparison table. Two-column checks require that each unique pair of values from two spec-
ified columns in the first table are also found in the specified columns of the comparison table. The indirect cross-reference check handles cases
where the reference for a column in the first column is also found in the specified column which is another column in the same table. (example =
wftag table)

Complexjoin checks:
Specified in an auxiliary database table - complexjoin. Provides a mechanism to specify any consistency requirements or expectations across as
many as three generalized tables. There is always a target column for validation, and additional tables can be defined.

The QCTool checks are defined by the user, and depend on the specific schema defined in the schema schema.

DBTools

DBTools is a suite of applications for manipulating information in a relational database in an intelligent way. This means that DBTools (1) does not duplicate information already in the data-
base, (2) links new information to related information already in the database, and (3) remaps identification numbers already in the database.

DBUtilLib:
The DBTools suite of applications depend on a library of utilities called DBUtilLib. This library is based on the concept of a RowGraph. A RowGraph manages a set of connected rows from a
database. Mathematically, this set of rows forms a directed graph consisting of a set of vertexes (the rows) and edges (one-way connections between pairs of vertexes). Starting from any row,
it is possible to access every other row that is connected to a starting row. The relationships that define how the rows are related are specified by the user. Once a set of database tables has
been identified and the relationships between those tables defined, one may specify some initial row in the database and extract all other rows in all the other tables in the database that are
related to the initial row by one or more defined relationships. DBUtilLib is written in a completely generic manner. No information is hard-coded about any particular set of tables. Instead
DBUtilLib uses the schema schema as the way to determine the objects and their structures at run time. This approach makes the tools that use DBUtilLib immune to most schema changes
such as addition/deletion of columns from a table or changes in the size of a particular data element.

DBTools has seven major applications: EvLoader, WFMerge, DTX, Remap, DBCompare, Unloader and EventTable

EvLoader (Event Loader): merges one or more rows from a source event table into a target event table. All information in the database that is linked to the source event row(s) such as origins,
arrivals, etc. is also merged based on how the user specifies what information is related to the source event in the parameter file. Can merge events based on evid
or on spatial/temporal correlation.

WFMerge (WaveForm Merger): merges binary waveform files and the associated database table information.

DTX (DaTa eXchange): merges data from one data source into another data source in one of three storage formats (database tables, ASCII flat files and XML files).

Remap: generates a remap table that relates identification numbers in one set of tables to identification numbers in another set of tables of the same type.

DBCompare: compares data in one set of tables to the data in another set of tables of the same type to determine if the tables are equal. The user defines the equality.

Unloader: deletes one or more specific rows from the database, plus all the rows connected to the row based on relationships specified in the parameter file or deduced from the schema
schema. Rows are only deleted if doing so will not violate any foreign key relationships.

EventTable: creates an event table using information from the origin and origin_authors_rank tables.

Receive database tables
from Product Integrator

Run QCTool Analyze Output

Send database tables back
to Product Integrator to fix

FAIL

SUCCESS Run DTXRun WFMerge Run script to renumber
orids and evids

Run RemapRun EvLoader

Run QCTool for each dataset

1. Put the database tables into the database.

2. Rename the database tables to add a prefix
based on the release and source, if necessary.

3. Modify parameter file
- username/password
- point to correct schema schema views
- define the acceptable schemas
- define table name prefixes and suffixes
- output file names
- table names

4. Source the integration environment:
- source DBTools.cshrc

5. Run QCTool:
- qctool parameter_file.par

6. Analyze output.

7. Determine cause of any errors
- product integrator should have provided infor-
mation on errors that they could not fix that
can be added as caveats to the KB documen-
tation.

8. If necessary, send tables back to the product
integrator to fix and/or explain and document

KB Database Integration Process

This is the master parameter file that snl uses when it is
integrating delivered data.
To skip the single table checks, uncomment the line below.
#skip_first_pass=1
#
username/password for accessing the database
database=dbtools/dbtools@dbname
#
name of the schema schema tables in the database
glossary_table=gnem_schemas_devl.glossary
colassoc_table=gnem_schemas_devl.colassoc
tabdescript_table=gnem_schemas_devl.tabdescript
coldescript_table=gnem_schemas_devl.coldescript
complexjoin_table=gnem_schemas_devl.complexjoin
#
What schemas tables are expected to belong to (comma separated list,
with the
whole list enclosed in one set of quotes
acceptable_schemas="NNSA KB Core,NNSA KB Custom"
#
Table name prefixes (P) and suffixes (S)
P=labname_
S=
P2=
S2=
#
Where output will be written
outfile=labname_single-table.out
outfile2=labname_reference.out
outfile3=labname_complexjoin.out
#
Tables to check
tables_to_check=$(P)affiliation$(S),$(P)amplitude$(S),
$(P)arrival$(S),$(P)assoc$(S),$(P)darrival$(S),$(P)event$(S),
$(P)instrument$(S),$(P)netmag$(S),$(P)network$(S),
$(P)origerr$(S),$(P)origin$(S),$(P)remark$(S),$(P)sesor$(S),
$(P)site$(S),$(P)sitechan$(S),$(P)stamag$(S),$(P)wfdisc$(S),
$(P)wftag$(S)

Uncomment this if you wish to be able to use synonyms
#strict_tables_only=0

I: Simple 1-column reference checks
a: bulletin data
arrival
every arid in arrival should be in assoc
ref1chk10=$(P)arrival$(S),arid,$(P)assoc$(S),arid
every chan in arrival must appear in sitechan
ref1chk11=$(P)arrival$(S),chan,$(P)sitechan$(S),chan
.........
#
II: Coupled 2-column reference checks
a: bulletin data
arrival
arid/sta in arrival should appear in assoc
ref2chk10=$(P)arrival$(S),arid,sta,$(P)assoc$(S),arid,sta
how many arid/phase in arrival not in assoc?
ref2chk11=$(P)arrival$(S),arid,iphase,$(P)assoc$(S),arid,phase
.......
#
COMPLEXJOIN CHECKS
These checks are found in the table complexjoin. In order to "turn off" or
"skip" joins in the complexjoin table, change the column active to be "n"
instead of "y"

TABLE KEY & GLOBAL CHECKS

==

TABLE WFDISC (179872 rows):
* ’WFDISC’ found as ’wfdisc’ in ’NNSA KB Core’

==

ERROR:
 3582 (1597 distinct) values violate UK (chan sta time), top 2:
 VALUE NUMBER
 ------------------------------ ----------
 LHE/COL/433228200.14 6
 LHE/GDH/433228083 6

 Violations are rows with values returned by the following query:

select count(*), decode(chan, null, ’<null>’, chan),decode(sta, null, ’<null>’,
sta),decode(time, null, ’<null>’, time) from WFDISC
 group by decode(chan, null, ’<null>’, chan),decode(sta, null, ’<null>’,
sta),decode(time, null, ’<null>’, time) having count(*) > 1 order by 1 desc

 COLUMN STA:
 NA value is ’-’, and allowed is n

 NA values (’-’) = not allowed
 Min = AAE
 Max = ZRNKZ

 Most common repeated values, top 2:
 VALUE NUMBER
 ------------------------------ ----------
 ATD 4255
 FURI 3480
.........

 COLUMN & REFERENCE CHECKS
......
 ref1chk 35 skipped - table assoc does not exist
 ref1chk 38 skipped - table assoc does not exist
 ref1chk 50 skipped - table origin_authors_rank does not exist
ref1chk 110 skipped - table origin_authors_rank does not exist

ERROR:
 19 (19 distinct) entries of 81976 in origin.orid
 not in origerr.orid [ref1chk 120: 2 s]
 Most common failed references, top 2:
 ORID NUMBER
 ------------------------------ ----------
 9334907 1
 9334946 1

 Violations are rows returned by the following query:

 select decode(t.orid, null, ’<null>’, t.orid), count(*)
 from origin t, origerr r
 where t.orid = r.orid (+) and r.orid is null
 group by t.orid order by 2 desc
.......

 COMPLEX JOIN CHECKS
.......
Join 24: ’origerr.smajax >= origerr.sminax’
 Enforce: hard

Join 25: ’origerr.sminax <= origerr.smajax’
 Enforce: hard

ERROR:
 1 (1 distinct) values violate join, top 2:
 VALUE NUMBER
 ------------------------------ ----------
 9874.4 1

 Violations are rows returned by the following query:
 select a.sminax, count(*) from ORIGERR a where a.sminax > a.smajax and a.sminax != -1
group by a.sminax order by 2 desc

Join 26: ’origin.jdate must correspond to origin.time’
 Enforce: hard
.......

Run EvLoader for each bulletin/parameter
data set

1. Edit EvLoader parameter file
- select source events
- set correlation times and distances
- set source username, password
- set source tables and relationships
- set target username, password
- set target tables and relationships
- set sequences

2. Add sequences for the IDs in the database

3. Create empty target tables with primary and
unique keys and specific indexes

4. Create primary and unique keys and other
indexes on the source tables

5. Define the origin_authors_rank table

6. Source the integration environment:
- source DBTools.cshrc

7. Run EvLoader in parallelyze mode:
- parallelyzeevloader parameter_file.par 5

8. When EvLoader finishes
a) look at the end of the run logs to see if

any events were not merged
b) look at how many rows are in the target

tables
c) run DBCompare and/or Remap to verify

the changes and/or updates to the target
tables

9. Determine reason why events may not have
been merged, and run EvLoader again with
just those source evids.

10. Once the bulletin/parameter data set has
been successfully merged, merge the next
bulletin/parameter data set. Once all data
has been merged, move to merging the
waveforms.

Application = EvLoader

SelectSourceEvents = where evid > 0

AllowDataBaseModification = true

MaxCorrelationDist = 100 // km
MaxCorrelationTime = 30 // sec
MaxCorrelationDistRegional = 90 // km
MaxCorrelationTimeRegional = 20 // sec

RegionalEventAuthors =
ABCE,Engdahl_Bergman,KZ_DOB

RemapSource = LABNAME

///
// SOURCE SCHEMA
///

SourceUserName = dbtools
SourcePassWord = dbtools

SourceTableDefinitionTable = gnem_schemas.nnsa_table_defs_view

SourceTables =
labname_event event
labname_origin origin
labname_origerr origerr

SourceRelationships =
//Catalog relationships
source_event->origin event origin evid = #evid# N
source_origin->origerr origin origerr orid = #orid# 0/N

///
// TARGET SCHEMA
///
//
TargetUserName = dbtools
TargetPassWord = dbtools

TargetTableDefinitionTable = gnem_schemas.nnsa_table_defs_view

TargetTables =
event event
origin origin
origerr origerr
evloader_test_undosql undosql

TargetRelationships =
//Catalog relationships
target_event->origin event origin evid = #evid# N
target_origin->origerr origin origerr orid = #orid# 0/N

TargetRemapTable = REMAP_EVLOADER

TargetNextIDSequences =
ORID MERGE_ORID_SEQ
EVID MERGE_EVID_SEQ

RankingTable = ORIGIN_AUTHORS_RANK

EvLoader Parameter File

Run WFMerge for each waveform data set

1. Edit WFMerge parameter file
- set source username, password
- set target username, password
- set source tables and target tables
- set source remap table
- set target ID gaps table
- set source and target remap sources
- set backup wfdisc table
- set waveform directory
- set waveform filename format

2. Add ID gaps table

3. Create empty target tables with primary and
unique keys and specific indexes

4. Create primary and unique keys and other
indexes on the source tables

5. Source the integration environment:
- source DBTools.cshrc

6. Run WFMerge:
- wfmerge parameter_file.par

7. When WFMerge finishes
a) look at the end of the run logs to see if

any waveforms were not merged
b) look at how many rows are in the target

tables
c) run DBCompare and/or Remap to verify

the changes and/or updates to the target
tables

8. Determine reason why waveforms may not
have been merged, and run WFMerge again
with just those source waveforms.

9. Once the waveform data set has been suc-
cessfully merged, merge the next waveform
data set. Once all waveforms have been
merged, move to merging station information.

Application = WFMerge

SourceUserName = dbtools
SourcePassword = dtools

TargetUserName = dbtools
TargetPassword = dbtools

// Source tables
SourceTables =
labname_wfdisc wfdisc
labname_wftag wftag

TargetTables =
wfdisc wfdisc
wftag wftag
wfmerge_undo undosql

SourceRemapTable = EvidRemapTable

TargetIdGapsTable = wfmerge_idgaps

TargetRemapTable = REMAP_WFMERGE

SourceRemapSource = LABNAME_WFMERGE
TargetRemapSource = DATE_WFMERGE

BackupWfdiscTableName = labname_wfdisc_premerge

SourceBaseDirectory = /index.proj/gnem/waveforms
TargetBaseDirectory = /data_1/waveforms
WaveformDirectory = /data_1/waveforms/YEAR/DAY-OF-YEAR/
WaveformFilename = #STA#.#CHAN#.#TIME#.w

WFMerge Parameter File

Run DTX for each station information data set

1. Edit DTX parameter file
- set source username, password
- set source tables and relationships
- set source top level table and DBquery
- set target username, password
- set target tables and relationships
- set ID gaps table

2. Create empty target tables with primary and
unique keys and specific indexes; tables are
the custom station parameter tables with IDs

3. Run create_idowner_station_tables.sql to
move the source data into the custom station
parameter tables with IDs

4. Source the integration environment:
- source DBTools.cshrc

5. Run DTX:
- dtx parameter_file.par

6. When DTX finishes
a) look at the end of the run logs to see if

any station information was not merged
b) look at how many rows are in the target

tables
c) run DBCompare and/or Remap to verify

the changes and/or updates to the target
tables

7. Determine reason why station information
may not have been merged, and run DTX
again with just that information.

8. Run core_station_tables.sql to move the tar-
get tables back to the NNSA Core schema

9. Once the station information data set has
been successfully merged, merge the next
station information data set. Once all station
information has been merged, move to
remapping.

DTX Parameter File (Station Merging)

Application = DTX

SourceUserName = dbtools
SourcePassWord = dbtools
SourceTableDefinitionTable = gnem_schemas.nnsa_table_defs_view

SourceTables =
custom_network custom_network
custom_affiliation custom_affiliation
custom_site custom_site
custom_sitechan custom_sitechan
custom_sensor custom_sensor
custom_instrument custom_instrument

SourceRelationships =
source_network->affiliation custom_networ custom_affiliation netid=#netid#0/N
source_affiliation->site custom_affiliation custom_site siteid=#siteid#1
source_site->sitechan custom_site custom_sitechan siteid=#siteid#N
source_sitechan->sensor custom_sitechan custom_sensor chanid=#chanid#1
source_sensor->instrument custom_sensor custom_instrument inid=#inid#1

RemapSource = labname
SourceTopLevelTable = custom_network
SourceDBQuery = 1=1

TargetUserName = dbtools
TargetPassWord = dbtools
TargetTableDefinitionTable = gnem_schemas.nnsa_table_defs_view

TargetTables =
network custom_network on
affiliation custom_affiliation on

site custom_site on
sitechan custom_sitechan on
sensor custom_sensor on
instrument custom_instrument on

TargetRelationships =
target_network->affiliation custom_networ custom_affiliation netid=#netid#0/N
target_affiliation->site custom_affiliation custom_site siteid=#siteid#1
target_site->sitechan custom_site custom_sitechan siteid=#siteid#N
target_sitechan->sensor custom_sitechan custom_sensor chanid=#chanid#1
target_sensor->instrument custom_sensor custom_instrument inid=#inid#1

TargetIdGapsTable = station_idgaps
TargetRemapTable = remap_dtx

Run Remap

1. Perform steps 2-4 only for the origin table.

2. Edit Remap parameter file
- set source username, password
- set source table
- set target username, password
- set target table
- set equality relationship
- set target remap table

3. Source the integration environment:
- source DBTools.cshrc

4. Run DTX:
- remap parameter_file.par

5. When Remap finishes
a) look at the generated remap table to

determine how many origins the source
and target have in common

b) create a script to remap the orids in the
target table to have the IDs from the
source table

Application = Remap

SourceUserName = dbtools
SourcePassWord = dbtools

SourceTables =
origin1 origin

TargetUserName = dbtools
TargetPassWord = dbtools

TargetTables =
origin2 origin

EqualityRelationships =
origin origin WHERE lat = #lat# AND lon = #lon# AND depth = #depth# AND time = #time# AND
auth = #auth#

TargetRemapTableName = origin1_origin2_orid_remap

RemapSource = origin1_to_origin2

Remap Parameter File

1. Use SQL scripts to update the orids and
evids in the database table origin2 to be the
same as the orids and evids in the database
table origin1

REM Name
REM update_orids_evids.sql
REM
REM Description
REM This script will use a remap table created when
REM comparing one origin table to another to change
REM the orids and evids in the second origin table
REM to be the same as the orids and evids for the
REM same origins in the first origin table
REM
REM Note
REM The user will need to update this script to
REM have the correct table names
REM
REM Usage
REM Log into the correct ORACLE account
REM @update_orids_evids.sql
REM

update origin2 o2
set o2.orid = (select r.original_id from remap_evloader r
 where r.source = ’origin1_to_origin2’
 and r.id_name = ’ORID’
 and r.current_id = o2.orid);

commit;

update origin2 o2
set o2.evid = (select o1.evid from origin1 o1
 where o1.orid = o2.orid);

commit;

2. Use EventTable application from DBTools to
generate an event table that has the new
orids and evids.

3. Edit EventTable parameter file
- set origin table used to create event table
- set event table name
- set origin_authors_rank table

4. Source the integration environment:
- source DBTools.cshrc

5. Run EventTable:
- eventtable parameter_file.par

Once all bulletin/parameter data
sets have been successfully

merged with EvLoader

Once all waveform data sets
have been successfully
merged with WFMerge

Once all station information
data sets have been success-

fully merged with DTX

Application = EventTable

OriginTable = origin2

EventTable = event2

AuthorRankingTableName = origin_authors_rank

EventTable Parameter File

SAND2007-6091C

	ADVANCES IN THE INTEGRATION OF LARGE DATA SETS FOR SEISMIC MONITORING OF NUCLEAR EXPLOSIONS

