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ABSTRACT 

Accurate material models are fundamental to predictive structural finite element models.  Because potting foams 
are routinely used to mitigate shock and vibration of encapsulated components in electro/mechanical systems, 
accurate material models of foams are needed.  A linear-viscoelastic foam constitutive model has been 
developed to represent the foam’s stiffness and damping throughout an application space defined by 
temperature, strain rate or frequency and strain level. Validation of this linear-viscoelastic model, which is 
integrated into the Salinas structural dynamics code, is being achieved by modeling and testing a series of 
structural geometries of increasing complexity that have been designed to ensure sensitivity to material 
parameters.  Both experimental and analytical uncertainties are being quantified to ensure the fair assessment of 
model validity.  Quantitative model validation metrics are being developed to provide a means of comparison for 
analytical model predictions to observations made in the experiments.  This paper is one of several recent papers 
documenting the validation process for simple to complex structures with foam encapsulated components. This 
paper specifically focuses on model validation over a wide temperature range and using a simple dumbbell 
structure for modal testing and simulation. Material variations of density and modulus have been included. A 
double blind validation process is described that brings together test data with model predictions.  

Nomenclature 

aT – shift factor 
c1, c2 – coefficients of the WLF equation 
o
C – temperature in degrees Celsius 
lbs - pounds 
lbs/ft3 – pounds per cubic foot 
b” – b inches 
DMA – Dynamic Mechanical Analysis 
E – Young’s Modulus 
F – cumulative distribution function 
Gg – glassy shear modulus 
Gr – rubbery shear modulus 
G(T) – glassy shear modulus as function of temperature 
G – shear modulus 
ksi – 1000 pounds per square inch 
mj – Prony series coefficient 
N – number of terms in the Prony series 
P – probability 
r – circle radius 
S – scaler function of form density and the elastic modulus 
t – time 
tR  - reference time 
T – test or simulated temperature in degrees Kelvin 
Tg – glass transition temperature 
WLF – Williams, Landel, Ferry equation 
Z – standard normal random variable 
z – normalized variates 

α - regression coefficient for modulus as a function of density 
ζ  - damping ratio 
θ  - angle in radians 
µ  - mean deviation 

ρ – density of the foam 
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σo - standard deviation for elastic modulus as a function of density 

σρ - standard deviation for material density 

τj - Prony series time constant 
ν  - Poisson’s ratio 

χ2 – Chi squared random variable with two degrees of freedom 

Introduction 

Structural foams are attractive for packaging sensitive components because they can support components and 
mitigate shock due to their low modulus and damping characteristics.  Also, they have relatively low densities and 
can be used over a wide temperature band. Because potting foams are routinely used to mitigate shock and 
vibration of encapsulated components in electro/mechanical systems, accurate material models of foams are 
needed.   
 
This paper will describe the calibration and validation of a linear-viscoelastic model for an epoxy foam referred to 
as EF-AR20 over an application space defined by temperature, strain rate or frequency and strain level.  
Both experimental and analytical uncertainties are being quantified to ensure the fair assessment of model 
validity.  Quantitative model validation metrics are being developed to provide a means of comparison for 
analytical model predictions to observations made in the experiments.  This paper is one of several recent papers 
[1-2] documenting the validation process for simple to complex structures with foam encapsulated components. 
The earlier papers described a linear viscoelastic model validation process for room temperature applications. 
This paper will specifically focus on model validation of a linear viscoelastic model for foam encapsulated 
component response over a wide temperature range. As before, material variations of density, modulus, and 
damping have been included. This linear-viscoelastic model is implemented in the Salinas structural dynamics 
code [4]. Also, a double blind validation process is described that brings together test data with model predictions. 
First the validation experiments will be described.  

Validation Experiments 

Epoxy foam referred to as EF-AR20 is a rigid structural foam. Its density is nominally 20 lbs/ft
3
 but it has a 

substantial variation in density that will be discussed later. Blocks of this foam were fabricated and cut into shapes 
suitable for bonding into the test configuration. 
 
A test configuration was chosen based on the ability to significantly exercise the foam during modal testing and 
be a relatively simple configuration for constructing, testing, and modeling. The dumbbell like structure met these 
criteria. As shown in Figure 1 it has two steel end blocks with the foam sample bonded between them. The size of 
the cross-section was 1.375” x 2.75”, with the length of the foam (white block) and the steel blocks being 1.0” and 
2.75”, respectively. The weight of the steel blocks is 2.95 lbs. The non-square cross section was chosen to avoid 
symmetric modes in bending and shear and thus provide more resonant peaks in the frequency band of interest. 
 

 
Figure 1. Photograph of the dumbbell test article with accelerometers and bungee cord supports. 

 
 



Each sample was instrumented with two Endevco 65-10 triaxial accelerometers.  The accelerometers were 
placed on the upper corners of each steel block. 
 
Modal tests were performed on each of the samples at each of the temperatures shown in Figure 2.  
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Figure 2. Typical temperature profile for modal testing. 

 
These temperature set points were chosen to span the temperature range of interest and to have enough points 
to capture the transition behavior between rubbery to glassy behaviors. Also, ambient tests were performed 
before and after the cold and hot temperature excursions to measure any change in the foam properties.  
 
The sample was suspended from a support structure using bungee cords in order to approximate a free-free 
boundary condition.  The sample and support structure were placed in a climatic chamber as shown in Figure 3.   
 

 
Figure 3.  Sample setup in the climatic chamber.  
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A second sample was suspended next to the sample to be tested as a temperature reference to better quantify 
the uncertainty in the temperature.  Four thermocouples were used.  One thermocouple was imbedded in the 
center of the foam of the reference sample.  The second thermocouple was placed on the top surface of the foam 
portion of the reference sample.  A third thermocouple was placed on the top surface of the foam portion of the 
sample to be tested.  A fourth thermocouple was suspended freely to measure the air temperature in the climatic 
chamber.  The temperature in the center of the foam of the test sample was assumed to be close to the 
measured temperature in the center of the reference sample. It generally took approximately an hour for each 
sample to reach the given test temperatures in the climatic chamber. 

 
Two modal hammers were arranged in a pendulum configuration in order to provide an input that would excite the 
sample’s axial mode well and an input that would excite the torsion mode well. Figure 4 shows the positioning of 
the inputs.  
 
During each modal test the sample was struck with a hammer equipped with a load cell which measured the input 
force.  The accelerometers measured the resulting vibration.  Frequency response data and time histories were 
recorded with averaging from several impacts.    
 
Six dumbbell test articles were used in these tests that had foam densities given in Table 1.   
 

Table 1. Foam densities in the dumbbell test articles. 

Sample 
Density 

lbs/ft3

A 17.94

B 17.7

C 18.92

D 17.95

E 20.33

F 20.28  
 
Viscoelastic Model for EF-AR20  
An earlier paper [1] described the development of a room temperature linear viscoelastic model for EF-AR20 
epoxy foam. It was based on the combination of Dynamic Mechanical Analysis (DMA) test data and modal test 
data. The DMA tests were torsion tests performed at frequencies of 0.1 to 100 radians/sec frequency and at 
temperature increments of 10 degrees from -30 to 130 

o
C. The DMA test curves for each temperature were 

shifted into a single master curve of shear modulus versus frequency at room temperature. A Prony series model 
was then fit to the master curve. The torsional DMA tests could only provide shear modulus data. The modal test 
data provided a means for inferring the value of Young’s modulus, Poisson’s ratio, and damping at the discrete 
modal resonance frequencies and were also used to calibrate the final viscoelastic model. 
 
For the current wide temperature application the master curve was established by shifting the individual DMA test 
curves to the glass transition temperature, Tg, for EF-AR20, which is 90 

o
C and recording the necessary shift (aT) 

in frequency/time for each temperature. The shift factor, aT, is the ratio of current time to reference or reduced 
time as given in Eq 1.  
 

Rt

t
aT =                                                                                   Eq. 1 

 
The DMA test curve from the temperature of 60 

o
C had a shift factor of 1 x 10

7
 to fit the master curve at 90 

o
C. 

Using only DMA temperature curves down to 60 
o
C in the master curve proved out to be more than enough to 

cover the frequency range of interest which is in the 500 to 2000 Hz range.  

 
 

 



 
Figure 4. Positioning of the hammer impact locations. 

 
Forming the master curve using  60  to 130 

o
C temperature range for the DMA curves resulted in a glassy and 

rubbery shear storage modulus values of Gg=10,860. psi and Gr =105. psi, respectively for a DMA sample that 
had a density of 18.5 lbs/ft

3
.  

 
Below 60 degrees C the glassy modulus was defined as a linear function of temperature as given in Eq. 2. 

 

)/*64.01(**78.2)( TgTGgTG −=    for T<Tg                                                 Eq. 2 

 
These modulus values were scaled to other foam densities based on the modulus for this foam being proportional 
to density squared [1]. 
Figure 5 shows the master curve along with a 20 term Prony series fit to the master curve.  
 

 
Figure 5. Master Curve for EF-AR20 at 90 

o
C based on 

 DMA test data (Test S20r2) and Prony series model fit.  
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The form of the Prony series used is given in Eq. 3. This same series was also used for the foam’s Bulk modulus. 
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The Prony series coefficients, mj, and time constants, jτ , are given in Table 2.  

 
Table 2. Prony series coefficients and time constants. 

Index Coefficients, m Time Constants (sec)

1 7.47E-04 1.42E+08

2 2.48E-03 2.76E+07

3 5.04E-03 6.58E+06

4 1.50E-02 1.47E+06

5 3.30E-02 2.88E+05

6 3.90E-02 8.74E+04

7 5.93E-02 2.91E+04

8 7.90E-02 7.81E+03

9 9.35E-02 1.48E+03

10 1.07E-01 3.07E+02

11 8.93E-02 4.39E+01

12 7.97E-02 5.06E+00

13 8.13E-02 8.18E-01

14 6.48E-02 6.85E-02

15 6.35E-02 7.17E-03

16 4.35E-02 5.00E-04

17 3.55E-02 6.99E-05

18 3.54E-02 8.17E-06

19 3.65E-02 8.91E-07

20 3.64E-02 7.07E-08  
 
The shift factor, aT, enables the time-temperature shifting of the master curve to other temperatures or 
frequencies. The Williams, Landel, Ferry (WLF) [5]  equation, Eq. 4, was fit to the DMA shifting data for 
temperatures greater than Tg  

 

TgTc
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−−
=

2
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)log(       for  T > Tg                                                 Eq. 4 

where c1=31.6, c2=111.5 degrees Celsius,T is the current temperature, Tg is the glass transition temperature. 

For temperatures below Tg the exponential equation, Eq. 5. was used 
 

)(09.0exp(1(5.2)log( TgTaT −−=        for  T < Tg                                     Eq. 5 

 
Figure 6 shows a plot of Eqs 4 and 5 along with the DMA test shift data. Notice how the WLF curve fits the DMA 
shift data well above Tg but diverges from it below. The exponential curve also diverges from the DMA shift data  

 
Figure 6. Time-temperature shifting function for EF-AR20 foam.  



 
below Tg but was chosen to best match the apparent damping and shear modulus values measured in room 
temperature modal tests of dumbbell samples with EF-AR20 foam. The Prony series model has unrealistically low 
damping if the DMA shift data is followed closely below Tg. Combining Eqs 4 and 5 enable the damping to remain 
approximately constant along with the shift factor for temperatures below 60 degrees C.  
 
Figure 7 shows a plot of the Prony series model predictions for shear storage modulus versus temperature 
compared with DMA test data at a 1 Hz excitation frequency. This comparison was used to calibrate the 
temperature dependence of the glassy shear modulus function in Eq. 2.  
 

 
Figure 7. Prony series model with temperature dependent glassy modulus vs DMA test data for Shear 

Storage modulus versus temperature at 1Hz. 
  
Figure 8 shows the model prediction of the Loss Tangent or Loss Factor compared with values from the DMA 
tests. This comparison was used to select the cutoff value of 2.5 for the time-temperature shift factor, aT, in Eq. 5. 
 
 

 
Figure 8. Model versus DMA and Tg test data for loss tangent versus temperature. 

 
The final form of this viscoelastic model included an adjustment of the glassy storage modulus at room 
temperature [1] to allow the model to match with the modulus values coming out of the probabilistic model 
discussed later in the uncertainty quantification section.  

 
Finite Element Model   
The finite element model was composed of the Salinas structural dynamics code [3], the linear viscoelastic model 
already discussed, an elastic model for the steel blocks, and the finite element mesh as shown in Figure 9. This 
mesh was shown to converge to the first six modal frequencies within 1.3% [1]. The elastic properties for the steel 
were a Young’s modulus of 30 x 10

6
 psi and a Poisson’s ratio of 0.3. The impact points and accelerometer output 

points are labeled.  



 

 
Figure 9.  Finite element mesh for dumbbell test article; foam is the center block. 

 
  

The finite element model was excited with a haversine shaped force time history as shown in Figure 10. The peak 
force, duration, and impulse were chosen to best fit the average hammer force time history from the tests. 
Matching the absolute excitation force characteristics of the test was important for using the validation metrics 
discussed later. 
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Figure 10. Haversine forcing function used in finite element model. 

Uncertainty Quantification of EF-AR20 Foam Parameters 

Experimental data at room temperature are available for the foam, and the approach to be used here is 
probabilistic. We first describe some previously established models [1], results, and list some assumptions. 
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The foam is EF-AR20. The foam model parameters are material density, ρ , modulus of elasticity, E, shear 

modulus, G, and viscous damping ratio, ζ . Extensive material tests indicate that all the material properties are 

somewhat random. The mean values of both modulus of elasticity and shear modulus are approximately square 
functions of the material density. Regression analyses can be used to accurately estimate the mean functions of 
modulus of elasticity and shear modulus, and random deviations from the mean functions can be assumed to 
have standard deviations that vary as square laws in ρ . Analyses of the EF-AR20 foam indicate that the 

deviations of the modulus of elasticity and the shear modulus from their respective mean functions are highly 
correlated with a correlation coefficient of about eighty-five percent, and high correlation between these two 
quantities will be assumed for all the foams. This high correlation indicates that the foam material Poisson’s ratios 
will have small random variation, and this fact is observed from experiments. In view of these things, the modulus 
of elasticity, E, will be treated as a random variable, and the shear modulus will be computed from the formula 

)2(1

E
G

ν+
=

                                                                           Eq. 6 
 

where ν denotes Poisson’s ratio, and its average value will be used to represent it. This implies that the relation 

between shear modulus and modulus of elasticity is approximated as deterministic, and that the correlation 
between these variables is perfect. 
 
The material damping ratio measured at room temperature for EF-AR20 has a relatively small coefficient 
of variation, therefore, it will be represented with its mean value of 0.0145. 
 
Given that the foam material parameters are random variables with fairly well-known models, there are 
numerous methods for establishing bounds associated with a particular probability of occurrence. We 
choose the following approach. Denote the material density random variable for the foam ρ . The random 

variable can be written in terms of a normalized variable via 

              ρρ µσρ += 1Z                                                                           Eq. 7  

where ( ) =ρρ σµ , (18.32,1.75 lbs/ft
3
), are the mean and standard deviation of the material density and 1Z , is a 

standard normal random variable. 
 
Denote the modulus of elasticity for the foam E. The modulus of elasticity can be written in terms of a normalized 
variable via 

  2

2

0

2 ZE ρσαρ +=                                                                             Eq. 8 

  

where =α 0.118 is the regression coefficient for the foam, 00635.00 =σ , is the standard deviation of the 

modulus of elasticity for the foam (both yield E in units of ksi when the density is in lbs/ft
3
), and 2Z  is a standard 

normal random variable, uncorrelated with 1Z . 

 
We assume that the deviation of the modulus of elasticity from its mean is independent of the foam material 

density. Therefore, the random variables 1Z  and 2Z  are independent. In view of this, we can define a chi 

squared-distributed random variable with two degrees of freedom 
 

 
2

2

2

1

2

2 ZZ +=χ                                                                           Eq. 9 

 
The probability that any realization of the chi squared random variable lies outside the circle with radius r is 
 

( ) ( ) 01 2222
2 2

2
≥−=> rrFrP

χ
χ                                              Eq. 10 

where ( )•2
2χ

F  is the cumulative distribution function of a chi squared distribution with two degrees of freedom. 

 



To establish bounds with a specific probability of being surpassed on the random parameters of the foams, we 
simply infer a value of r from the probability statement of Eq. 10, then use it in Eq. 9 to establish a limiting 

expression for the bounds on the normalized transforms of the parameters 1Z  and 2Z . Because the bounding 

variables denote specific sets of parameters, we replace the 1Z  and 2Z , with 1z  and 2z . Thus, the formula 

 

 
2
2

2
1

2 zzr +=                                                                           Eq. 11 

                                                   

governs combinations of the normalized variates 1z  and 2z  that can be used to establish bounds on the foam 

density and its modulus of elasticity. Eq. 11 is clearly satisfied by an infinite set of combinations of 1z  and 2z , 

that lie on the perimeter of the circle with radius r, so the question is: what combinations of the variables do we 
choose to establish limits on the foam parameters? Given Eqs. 7 and 8 and the constraint of Eq. 11 we cannot 
simultaneously maximize the weight density and the modulus of elasticity, though we can simultaneously 
minimize them. Therefore, we choose to select the density and the modulus of elasticity by maximizing the 
quantity S defined in Eq. 12 
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



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


+








=

E

E
S

ρ

ρ
                                                        Eq. 12 

 

where maxρ  is the absolute maximum value of density computed using Eq. 7 with 1z  values from Eq. 11, and 

maxE  is the absolute maximum value of modulus of elasticity computed using Eq. 8 with 1z  and 2z  from Eq. 

11. 
 
When we choose to establish limits corresponding to a ninety-five percent probability region, i.e., limits associated 

with a five percent probability of being surpassed, the radius of Eq. 11 is 44782.r = . This is the ninety-five 

percentile probability point of a chi squared distribution with two degrees of freedom and can be obtained from 

any table of percentage points of the chi squared distribution. The permissible values of 1z  and 2z  are shown as 

the perimeter of the circle in Figure 11. Clearly, the 1z  and 2z  pairs are constrained to the circle, are related to 

one another, and can be expressed 
 

 θθ sinrzcosrz == 21                                                       Eq. 13 

                       

where θ  is the angle in radians referenced in Figure 11. 
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Figure 11. Values of 1z  and 2z  that satisfy Eq. (7) with 44782.r = . 

 

When the combinations of values of 1z  and 2z  shown in Figure 11 are used in Eqs. 7 and 8 the possible values 

of weight density and modulus of elasticity are established, and these are plotted in Figure 12 as a function of θ .  
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Figure 12. Values of weight density and modulus of elasticity corresponding to the values 

of 1z and 2z shown in Figure 11. 

The values vary as the combinations of 1z  and 2z  proceed around the circle, i.e., as θ  varies over the interval 

[ ]π20,  radians. 

 
The normalized values of weight density and modulus of elasticity were computed and are shown, along with the 

function of Eq. 12, in Figure 13, plotted as a function of θ . 
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Figure 13. Normalized weight density, modulus of elasticity and the function of Eq. 11.   

 
The quantity “S” in Eq. 12 is minimized for the weight density and modulus of elasticity if 
 

 ksiEftlb 2.23/0.14 3 ==ρ                                                                Eq. 14 

 

and these values correspond to the 1z  and 2z  values 0,4478.2 21 =−= zz . The quantity “S” in Eq. 12 is 

maximized for the weight density and modulus of elasticity if 

 ksiEftlb 6.61/4.22 3 ==ρ                                                                Eq. 15 

and these values correspond to the 1z  and 2z  values 7710032322 21 .z,.z == .These are joint realizations of 

weight density and modulus of elasticity that may be used to represent ninety-five percent probable limits, i.e., 
joint limits with a five percent probability of being surpassed. 
 

The mean measured value of Poisson’s ratio for EF-AR20 foam is 280.=ν , therefore, the minimum and 

maximum values of the shear modulus corresponding to the moduli of elasticity in Eqs. 14 and 15 are 
 

 Gmin = 9.06 ksi         Gmax = 24.1 ksi                                                            Eq. 16                                     
 

ρ 

E 

_E_ 

Emax 

_ρ_ 
ρmax 
 

Eq.(12) 



The lower/upper bound parameter values representing the ninety-five percent probable limits for the EF-AR20 
foam are summarized in Table 3. 
 

Table 3. Ninety-five percent probable limits for EF-AR20 foam parameters. 

 ρ lbs/ft3 E ksi G ksi ζ  damping 
Lower bound 14.0 23.2  9.06  0.0145 

Upper bound 22.4 61.6  24.1  0.0145 

 
 

Validation   
 
The lower/upper bound values for the density and modulus values will now be used for the model 
validation process. Two types of Salinas runs were performed using the model shown in Figure 9 for 
comparing model predicted results with test data. The first type of runs were eigenvalue solutions and the 
second type were transient solutions which used the upper/lower bound values to calibrate the 
viscoelastic model to existing room temperature data. This validation process was done in a double blind 
fashion. Neither the test engineer nor the analyst saw each other’s data before the model predictions 
were made.  
 
The eigenvalue solutions involved using a linear elastic model for the foam in the dumbbell and iterating 
on the shear modulus and Young’s modulus to match the torsion and axial modes (both frequency and 
model shape) from the tests. These runs were effectively post processing runs on the test data and 
provided estimates for the effective linear elastic moduli of the foam versus temperature and were treated 
as test results. This enabled the use of the modulus versus temperature metric to be applied for model 
validation. Figure 14 shows the comparison of shear modulus values inferred from the modal tests with 
values coming directly out of the viscoelastic model. Three curves represent the model predictions in 
terms of the upper-bound, lower-bound, and nominal values. The lower/upper bound values are based on 
adjusting the viscoelastic model using Table 3 results, whereas the nominal results are based on Eq. 8 
for the modulus values to adjust the glassy modulus as discussed earlier [1]. The upper- and lower-bound 
curves very nicely envelope the test data as desired. Moreover, the nominal model or deterministic 
prediction agrees very well with the Test B results. 
 

Model vs Test inferred Shear Modulus for Test Article B
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Figure 14.  Model predictions compared to test data for shear modulus versus 

temperature. 
              
Figure 15 shows a comparison of the damping for axial and torsional modes measured in the modal tests 
compared with values from the viscoelastic model at the same temperatures and frequencies. Here the damping 
is calculated as one half of the loss tangent coming out of the viscoelastic model since the foam is the primary 
flexible material in the dumbbell configuration. The model agrees very well with test values at elevated 
temperatures down to room temperature. However, the damping in the model does not increase going below 



room temperature as the test data implies. Consequently, the model is expected to over predict motion at -20 
degrees C which would make it a conservative model.  
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Figure 15. Model predicted damping compared to modal test measurements. 

 
The second set of Salinas runs were simulations of the actual modal tests on the dumbbell test articles. 
They were transient solutions using the haversine function shown in Figure 10 to excite the dumbbell 
model in the axial and lateral directions . The model validation metrics that are most closely connected to 
the application of the foam are peak acceleration and shock response spectra in the time domain and a 
windowed frequency response function approach in the frequency domain. These metrics will be applied 
to the transient test data. In order to compensate for variation in the input forcing function, the peak 
acceleration and shock response spectra will be divided by the input impulse value which is similar to the 
way a frequency response function or transfer function is calculated. Validation of the model using the 
transient results is currently in progress. 
 
Conclusions                                                                                             
A linear viscoelastic model was calibrated for EF-AR20 foam over a temperature range of -20 to 110 degrees C 
and implemented in the Salinas finite element code. The calibration process used Dynamic Mechanical Analysis 
constitutive test data over the full temperature band and modal test data from room temperature tests. Also, 
validation modal tests have been conducted over the full temperature band. Foam density and Young’s modulus 
were treated as random variables in the viscoelastic model. Predictions were made for the validation experiments 
in preparation for model validation. Two validation metrics were applied and three more validation metrics were 
mentioned that are planned to be used. Results from the shear modulus versus temperature metric look very 
good for the model’s validity. The damping metric shows the model to be valid over the full temperature band with 
a caveat that the model is expected to over predict accelerations for temperatures below room temperature.  
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