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Presentation Outline

• Wetting/dewetting behavior of polymer films

• Addition of nanoparticles to polymer films, and 
the resulting wetting/dewetting behaviors

• Potential application for this technology –
chemical sensors

http://www.msu.edu/
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Thin Polymer Films

• Thin polymeric films are used in many new and 
emerging technologies:

– Dielectric coatings

– Fuel cells

– Nanolithography resist layers

– Chemical and biological sensors

• Films must be continuous, of uniform thickness and 
remain stable on a variety of substrates

• Often, however, the substrate is lower in energy than 
the polymer causing it to dewet under the appropriate 
conditions.

http://www.msu.edu/
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The Problem of Dewetting

• When a liquid is spread out 
over a solid, the stability of 
the system depends upon 
the surface energy of the 
substrate (S), the surface 
tension of the liquid (L) and 
the interfacial energy 
between the two (LS)

• The spreading parameter (S) 
dictates if a liquid will wet 
the surface or not

LSLSS  

S > 0, wetting

S < 0, dewetting

http://www.msu.edu/
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Dewetting of Polymer Films

• Glass Transition 
Temperature (Tg)
– Above this temperature, 

polymer is mobile

– Induce dewetting
• Heat the sample

• Expose the sample to a 
plasticizing agent

• Types of dewetting
– Spinodal

– Nucleation and hole 
growth

Pure Polystyrene film (33 nm) annealed 
under a saturated toluene atmosphere
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Film Equilibrium

• Bulk experiments were performed to determine the 
equilibrium concentration of solvent absorbed into the 
polymer
– Polystyrene was weighed out and placed in a saturated 

toluene atmosphere
– Sample was reweighed until there was no change to ensure 

equilibrium – one week
– Final concentration of the sample was ~600 mg PS/ml 

solution

• For a thin film, the equilibration time is expected to be 
much shorter:

D ~ 10-6 cm2/s,  = 30 nm  ~ 10 s

1
2




D

•Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena. J. Wiley: New York, 1960. 

•Rauch, J.; Kohler, W., Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene. 
Journal of Chemical Physics 2003, 119, (22), 11977-11988. 

http://www.msu.edu/
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Film Viscosity

• Using the Martin Equation we can estimate the 
viscosity of the film during annealing which will 
relate to the rate of dewetting:

0 = 0.56 cP

c = 600 mg/ml

[] ~ 38 ml/g

k’ ~ 0.33

 
 cksp e

c





'

 = 23 Pa-s

~ pure PS at 250 oC

•Gandhi, K. S.; Williams, M. C., Solvent Effects on Viscosity of Moderately Concentrated Polymer Solutions. Journal of Polymer 
Science Part C-Polymer Symposium 1971, (35), 211.

•McCabe, W.; Smith, J.; Harriott, P., Unit operations of chemical engineering. McGraw-Hill: New York, 1993.

•Brandrup, J.; Immergut, E. H., Polymer Handbook. John Wiley & Sons: New York, 1989. 

http://www.msu.edu/
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Effective Glass Transition Temperature

• The Fox Equation can be used to determine the 
effective Tg of the film during annealing:

S
g

P
gg T

w

T

w

T




11

Mass fraction of polymer, w = 0.60, Tg
P = 379 K, Tg

S = 117 K

Tg = 200 K or -73 oC

• Therefore, rapid dewetting is expected at room 
temperature

•Rauch, J.; Kohler, W., Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene. 
Journal of Chemical Physics 2003, 119, (22), 11977-11988. 

•Wiedersich, J.; Surovtsev, N. V.; Rossler, E., A comprehensive light scattering study of the glass former toluene. Journal of 
Chemical Physics 2000, 113, (3), 1143-1153. 

http://www.msu.edu/
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Ways to Stop Dewetting

CrosslinkingX Surface Treatment X

GraftingX Nanoparticles

http://www.bfc.bioa.eng.osaka-cu.ac.jp/dendrimer.gif
http://www.msu.edu/
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Addition of Fullerenes

• A solution of PS with 3 wt% C60
was spin-coated on a piranha-
cleaned wafer
– Film thickness = 33 nm

• Sample was annealed for 3 
hours under a saturated toluene 
atmosphere
– No dewetting seen!
– The fullerenes appear to 

eliminate dewetting just as they 
do for high temperature 
annealing

• Previous studies suggest that 
the elimination of dewetting is 
due to the location of the 
nanoparticles in the film
– Neutron reflectivity

200 m 

PS + 3 wt% C60 film (33 nm) annealed 
under a saturated toluene atmosphere

0 hours

3 hours

http://www.msu.edu/
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Neutron Reflection

• Neutron reflection is a technique that can 
be used to determine the depth-
composition profile of thin planar samples

– A beam of neutrons strike the sample 
surface at a glancing angle ()

– The beam is either reflected or refracted

– The angle of the refracted beam is 
dependent on the neutron refractive index 
of the material

• The neutron refractive index for a material 
is dependent on its scattering length 
density (z)

• By using materials with sufficient contrast 
in their scattering length densities, it is 
possible to determine their location in the 
sample

Incident 
beam

Reflected 
beam

Refracted 
beam

nj

nj+1

j j

j+1

11 coscos  jjjj nn Snell’s law:

Material z (Å-2) ×106

Silicon 2.07

C60 5.73

PS 1.41

dPS 6.47

Scattering length densities for 
materials used in this work

http://www.msu.edu/
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Reflectivity Data

Air Model

Homogeneous Model
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Reflectivity of 75k PS + 3 wt% C60 Film (31.5 nm)

Sample was annealed 3 hours under a saturated toluene atmosphere

Substrate Model

2 nm

http://www.msu.edu/
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Modeling Reflectivity Data

Model Layer
Thickness

(Å)
SLD 

(106 Å-2)

Substrate

1 295 1.41

2 20 2.66

wafer - 2.07

Air

1 20 2.66

2 295 1.41

wafer - 2.07

Homogeneous
1 315 1.49

wafer - 2.07

• From reflectivity model:

C60,L ~ 0.29

• 3 wt%  C60 = 0.018

• From mass balance:

C60,L = 0.28

Good agreement!

60,60 CLC 


 




PSC

PSL
LC











60

,60

http://www.msu.edu/
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Fullerenes First

• A film was placed onto a 
fullerene layer and then 
solvent annealed

– Dewetting of the film still 
occurred!

• Therefore can not 
attribute inhibition of 
dewetting solely to 
nanoroughness or a 
change in surface 
energy

100 m

PS film (30 nm) floated onto a fullerene 
layer and annealed under a saturated 

toluene atmosphere

1 hour

http://www.msu.edu/
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How Dewetting is Inhibited

• From reflectivity, we know the fullerene-enriched 
layer at the substrate is ~2 nm thick, which is 2-3 
fullerenes high 

– Layer forms during the spin-coating process due to 
phase separation from the poor solubility of 
fullerenes in the solvent

• The fullerenes create a gel-like network 2 nm 
thick that shields the adverse van der Waals 
forces emanating from the substrate 

http://www.msu.edu/
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Concentration Dependence

• The concentration of C60

dictates the ability of the 
film to resist dewetting

• There is an optimum 
concentration needed to 
fully retard dewetting

– Below this concentration, 
holes form but eventually 
stop growing

– Above this concentration, 
dewetting is seen again

0 % 0.1 %

3 % 10 %

100 m 

100 m 200 m 

200 m 
5 hours

1 hour3 hours

1 hour

PS films with varying C60 concentrations (~30 nm) 
annealed under a saturated toluene atmosphere

http://www.msu.edu/
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0.1 wt% C60 in 30 nm PS film

• Partial dewetting occurs when the concentration 
of C60 is too low

– Holes form where there are no or few nanoparticles

– The holes grow until they reach an area where 
there are sufficient nanoparticles to inhibit 
dewetting

Initial Stage Intermediate Stage Final Stage

http://www.msu.edu/


19/25

TEM for Comparison of 10 wt% Samples

• TEM was used to check for 
agglomeration of the fullerenes

– Very few agglomerates were seen in 
the 3 wt% film

• All agglomerates were <100 nm in size

– Large clusters of agglomerates were 
seen throughout the 10 wt% film

• Agglomerates were on the order of 
200-300 nm in size, with micron sized 
clusters

• Particles of this size act as 
nucleating sites as seen in colloidal-
sized particle systems

500 nm

100 nm

3 wt% C60

10 wt% C60

http://www.msu.edu/


20/25

Application:
Sandia’s ChemLab – Detection Stage

• Surface Acoustic Wave (SAW) 
Sensor

– Quartz substrate

– IDTs

– Polymer film

• Analyte absorbed into film

– Small increase in mass results in a 
change in the velocity of the SAW

• Difficulty consistently depositing 
a stable polymer film on sensor 
surface

– Addition of fullerenes gives a more 
stable response to challenges

http://www.msu.edu/
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Live SAW Sensor

• A live SAW sensor was 
sprayed with PECH 
(polyepichlorohydrin) 
and PECH + C60

• The sensor was then 
challenged with various 
solvent vapors to test 
its response

Line 1 
PECH+C60

Line 2 
PECH

Line 0 
Reference

100 m

300m

800m

http://www.msu.edu/
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Sensor Response: PECH

• The sensor response of 
pure PECH upon 
challenging is very 
erratic with an unstable 
baseline

– Possible dewetting

• After one day, the sensor 
was challenged again 
giving no response

– Sensor inoperable
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Sensor Response: PECH + C60

• Upon addition of 
fullerenes, the sensor 
gives a stable response 
with a stable baseline 
when challenged after 
spray-coating

• After several days and 
even the addition of more 
polymer, the sensor 
response remains stable
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Conclusion

• Thin polystyrene films will dewet from a silicon 
substrate upon exposure to a saturated toluene 
atmosphere

• The addition of fullerenes to the polymer solution 
before spin-coating can inhibit dewetting of the film

• The inhibition of dewetting is caused by the fullerenes 
forming a gel-like layer at the substrate

• This technique is very appealing due to the fact that it 
does not alter the properties of the polymer or the 
substrate

• This technique can be used in sensor applications to 
manufacture more robust and reliable sensors.

http://www.msu.edu/
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Thank you!

Questions?

http://www.msu.edu/
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Why Fullerenes?

• Cheap and readily available!
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Neutron Reflection

• By using materials with 
sufficient contrast in their 
scattering length densities, 
it is possible to determine 
their location in the sample

 
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• The specular reflection (R) 
is measured as a function 
of the neutron wave vector 
transfer (Q)

http://www.msu.edu/
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Reflectivity
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•The reflectivity data can then be 
modeled using layers of different 
scattering length densities to 
determine the depth-composition 
profile

http://www.msu.edu/
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POSY2

• The primary pulsed beam contains all
wavelengths in the spectrum moderated
to 20 K by a solid methane moderator.
The intensity reflected at one angle q is
measured as a function of the
wavelength. The reflectivity is
calculated by normalizing the intensities
reflected to those of the direct beam.
This measurements covers a range of q's
defined by the largest and the shortest
wavelengths available. To extend the
range of q measurements are taken at
different angles. Reflectivity curves
taken at different angles are spliced
together by fitting the data in the
partially overlapping q ranges. The data
are put on an absolute basis by
assuming that at the lowest q part of the
q range covers the region of total
reflection (R=1). The procedure assumes
that the resolution function q/q is
constant.

Beam Size Neutrons/pulse q/q  range  range

5×0.3 cm 100 3-5% 0-3o 1-16 Å

http://www.msu.edu/
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Reflectivity of “Flipped” Films

• A polystyrene with 3 wt% 
fullerenes was spin-
coated onto freshly 
cleaved mica and 
“flipped” onto a 
Sigmacote silanized 
wafer

– Expect fullerene 
enriched layer to initially 
be at air interface

• Was not able to perform 
reflectivity on  annealed 
film because dewetting 
occurred!
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Piranha Cleaning

• Wafers are placed in a Teflon 
holder and placed in a beaker 
with 70% H2SO4 and 30% H2O2

by volume

• The solution is stirred 
continuously and kept at 80oC 
for 1 hour

• The piranha oxidizes the 
organic contaminants making 
them soluble in the solution 
so they may be washed away

• The wafers are then rinsed in 
filtered DI water and used 
immediately

OHSOHOHSOH 2522242 
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
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Solvent Annealing

• Sample is suspended 
above the solvent in a 
tightly sealed container

• Solvent and its vapor reach 
equilibrium and also the 
solvent is absorbed into 
the film reaching 
equilibrium

Solvent Sample

http://www.msu.edu/
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Challenging the Sensor

• Nitrogen is fed to a bubbler 
which is filled with the solvent

• It bubbles through and creates 
a saturated vapor stream which 
is fed through a nozzle and 
waved across the top of the 
sensor

• The frequency of the SAW is 
then converted to a voltage 
which is recorded by a 
computer

 N2

Solvent

http://www.msu.edu/
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TEM Diffraction

• Diffraction was done on a 
fullerene agglomeration

• Diffraction pattern shows 
crystalline structure of the 
fullerenes

• More experiments would 
need to be done tilting the 
sample in different 
orientations to determine 
the exact structure

1 Å

http://www.msu.edu/
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Fingering Instability

• Similar to patterns seen in Hele-Shaw flow where a lower 
viscosity fluid is forced into a region of higher viscosity 
fluid

• Fingers form and eventually break off into droplets through 
Rayleigh instabilities

• Other explanation is from dewetting of water on mica

– due to viscosity the water collects in the rim at a thickness 
higher than the equilibrium thickness which is sensitive to 
longitudinal periodic fluctuations leading to finger creation

10 minutes

50 m

15 minutes 20 minutes

50 m 50 m

http://www.msu.edu/
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Interfacial Potential
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Surface Energy: Fullerenes vs. PSNPs

• Stronger forces due to 
the lower surface energy 
of the substrate

– 2 nm fullerene layer not 
thick enough to retard 
forces

– PSNPs are larger in 
diameter and it is 
possible to have more 
than a monolayer at the 
substrate

http://www.msu.edu/

