

Updating a User Friendly Combined Lifetime Failure Distribution

Dan Briand^{1,2}
Jim Campbell¹
Aparna Huzurbazar²

¹Sandia National Laboratories
²University of New Mexico

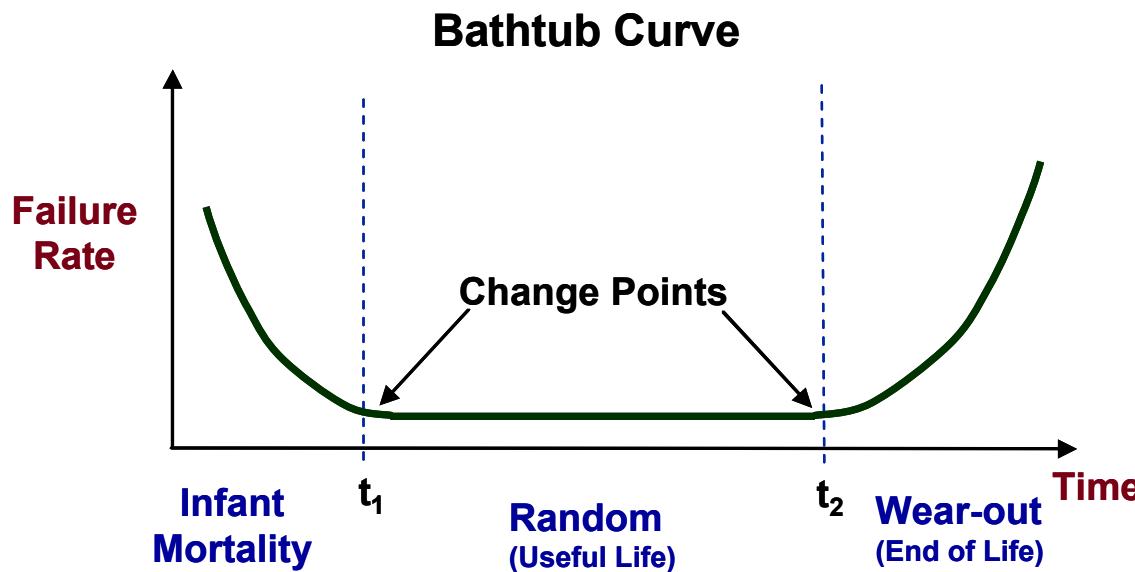
Phone: (505)844-7230 Fax: (505)844-3321
Email: dbriand@sandia.gov
Web Site: reliability.sandia.gov

Outline

- **Objective: Updating time-to-failure distributions**
- **Introduction**
 - Bathtub Curve
- **Combined Lifecycle (CMBL) Distribution**
 - Advantage
 - Description
- **Updating Methods**
 - 4 Possible
- **Results of Method 1**
 - Convergence to Data
 - Additional challenges
- **Summary**
 - Future Direction

Bathtub Curve

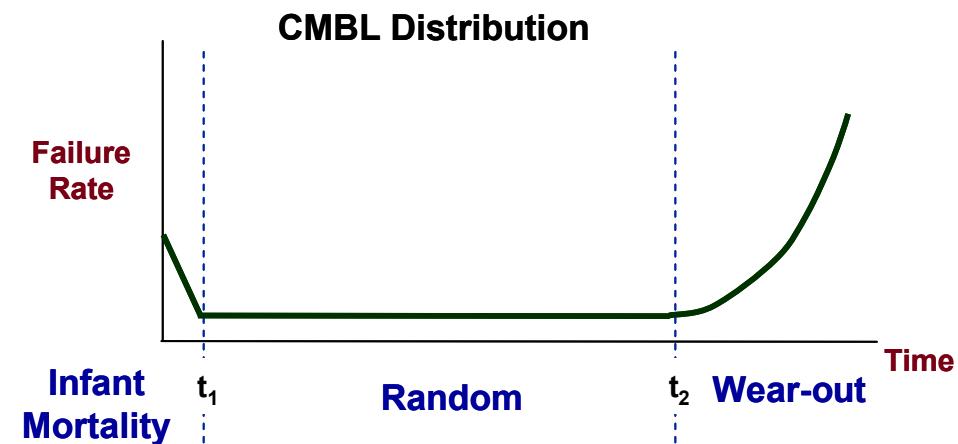
- Probability of failure over lifetime of component
 - Usually modeled as Exponential
- Useful for enterprise level and prognostic focused modeling
 - Optimize supply/repair chain processes
 - Baseline for characterizing component health trends



CMBL Distribution

- **Advantages**

- Common terms and approach
- Easy to solicit expert opinion

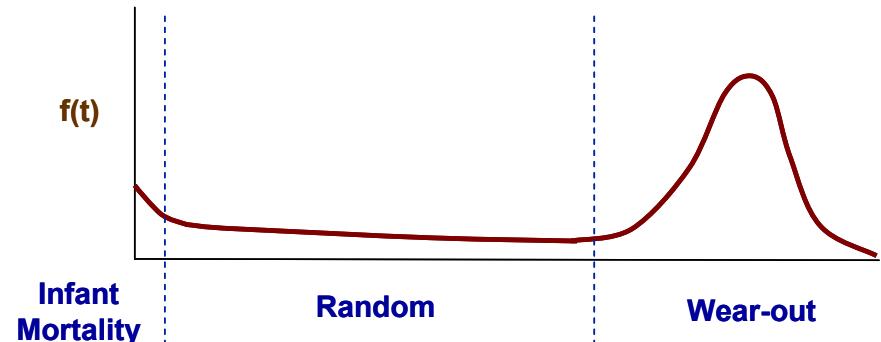


- **Input Parameters**

- Probability that the component will fail during infant mortality
- Duration of infant mortality
- Probability that failure will occur randomly
- Mean of the normally distributed portion
- Standard deviation of normally distributed portion

CMBL Distribution

$$f(t) = \begin{cases} \lambda_d e^{-\lambda_d t} & 0 \leq t \leq t_1 \quad \lambda_d = (mt + b) \\ \lambda_c e^{-\lambda_c t} & t_1 \leq t \leq t_2 \\ \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(t-u)^2} & t_2 \leq t \leq \infty \end{cases}$$



- **Definitions**

μ = mean of the normally distributed portion of the TTF distribution

σ = standard deviation of the normally distributed portion

λ_d = failure rate for the linearly decreasing failure rate portion

λ_c = failure rate for the constant failure rate portion

t_1 = burn-in duration (BID)

t_2 = transition from constant failure rate to the normal TTF portion

F_1 = fraction of failures occurring in the infant mortality portion

F_2 = fraction of failures occurring in the random failure portion

Updating Methods

- **Method 1**
 - Treat each section separately, use appropriate prior based on section
 - Modify the CMBL iteration procedure to get back input parameters
- **Method 2**
 - Model as a single distribution using Markov chain simulation
 - Use regression and curve fitting techniques to get back input parameters
- **Method 3**
 - Use Method 1 or 2 to get empirical distribution
 - Use empirical distribution with Markov chain simulation as next prior
- **Method 4**
 - Investigate possible closed form solution
 - Evaluate possible prior distributions to obtain closed form posterior

Method 1 Setup

- **Assumptions**

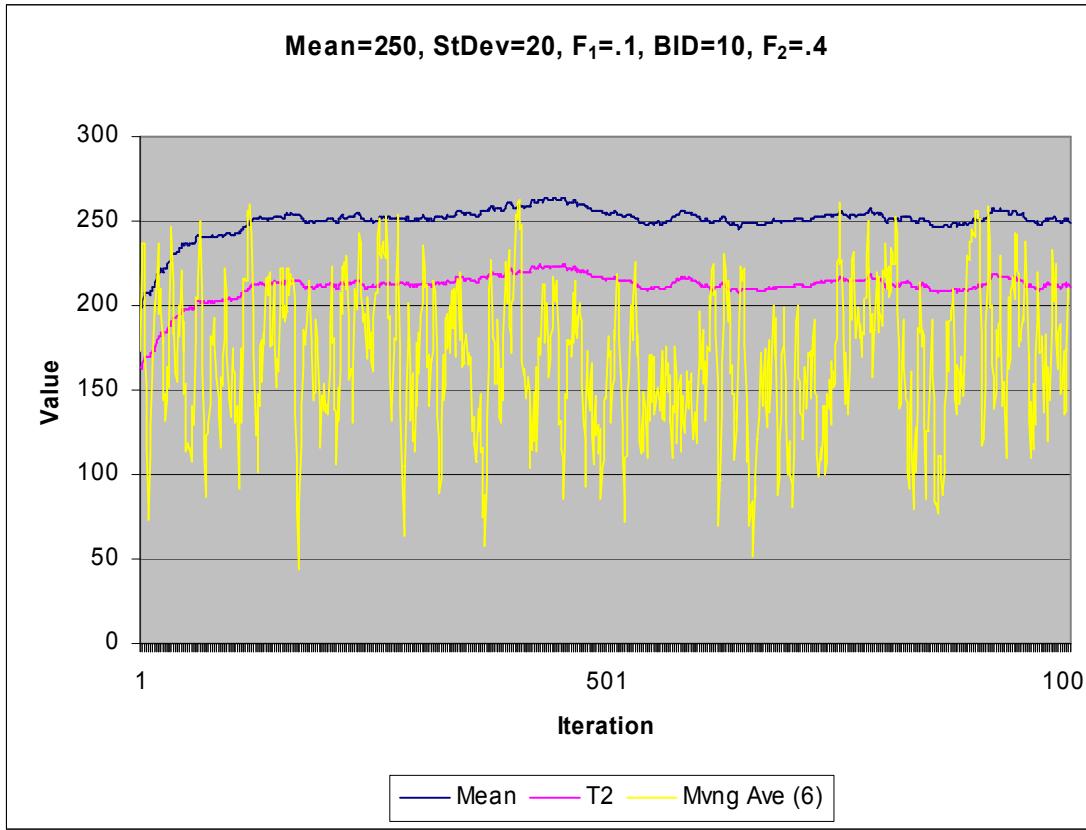
- Treat each section separately, use appropriate prior based on section
- Only random and wear out portions of distribution were evaluated
- Used a Bayesian updating methodology, one data point at a time
- Introduced a “weighting scheme” to reduce extreme values in data
- The standard deviation was assumed known and held constant

- **Example Input Parameters**

	Baseline	Normal	Random
μ	200	250	150
σ	20	20	20
F_1	.1	.1	.1
F_2	.4	.4	.4
t_1	10	10	10

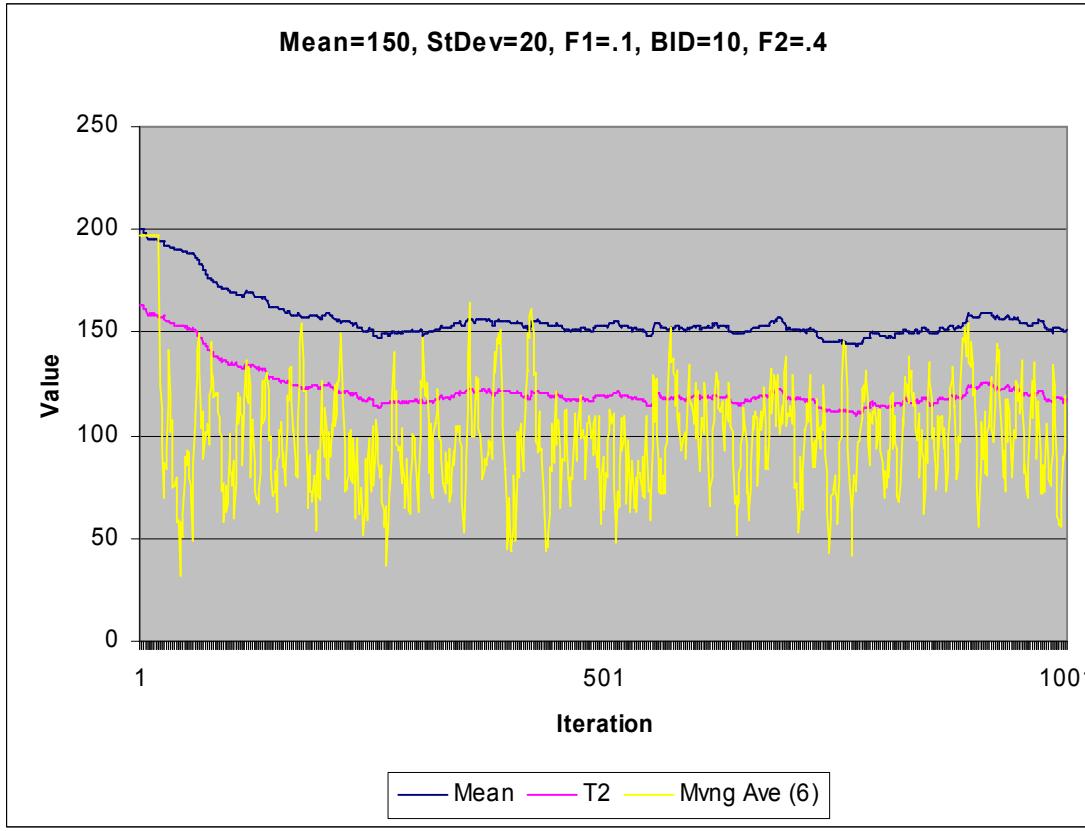
Method 1 Results

- Mean increased to 250
 - Mean converged in about 200 iterations
 - t_2 converged to 212.3 vs calculated 210.9



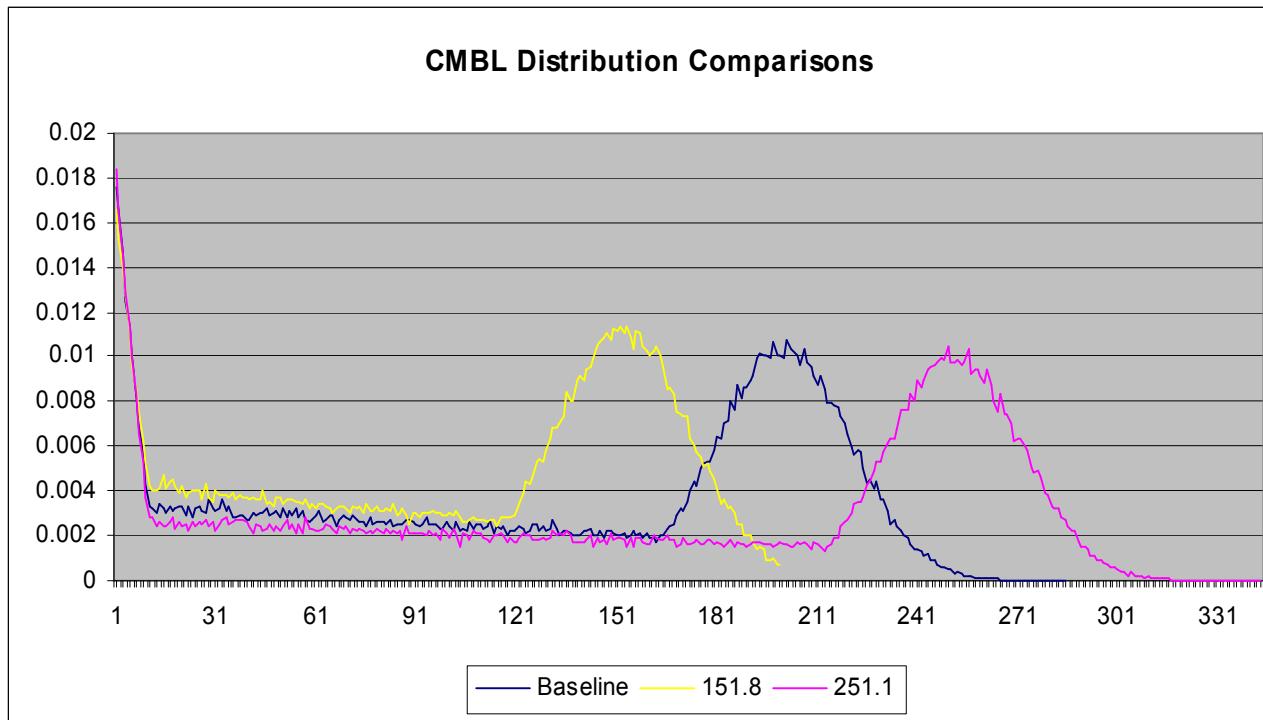
Method 1 Results

- Mean decreased to 150
 - Mean converged in about 250 iterations
 - t_2 converged to 117.9 vs calculated 117.5)



Method 1 Results

- Results Comparison
 - Expected shift in distribution



Summary

- **CMBL distribution useful for logistic support and PHM modeling**
 - Uses expert opinion, data from similar systems, scarce data
 - Updating methods will allow use throughout a components lifecycle
- **Method 1 looks promising**
 - Changes in the mean resulted in convergence to the distribution of the data
 - May apply to other sectional models
- **Future work**
 - Evaluate changes in F_2 and σ for Method 1
 - Include infant mortality in the updating process for Method 1
 - Evaluate Methods 2, 3, and 4
 - Investigate application to other types of lifetime failure models