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1 INTRODUCTION

One of the primary purposes of current enterprise level
modeling efforts is to use component/system reliability
estimates along with inventory levels, maintenance and
inspection schedules, and operational requirements to optimize
supply/repair chain processes. In addition, prognostics and
health management modeling wuses component/system
reliability estimates as a baseline from which the data from
sensors and maintenance events along with data fusion
techniques can determine component health trends. These
component health trends may help predict failure far enough
in advance to be able to modify operations and maintenance
schedules for the purposes of maximizing system availability
or minimizing maintenance and spares costs. In either case,
once a characterization of the component’s lifecycle in terms
of failure probability is established, a methodology for how to
update that characterization based on the availability of new
data is required, a methodology that ensures the resulting
distribution is useful to the modeler.

Reliability models depend on failure distributions to
characterize the probability of failure over the lifetime of a
component. Many types of components typically will have a
bathtub-shaped failure rate life distribution. This distribution
is commonly characterized by a decreasing failure rate during
the early portion of its life, a constant failure rate during the
useful portion of its life, and an increasing failure rate during
the wear out portion of its life, as shown in Figure 1. During
the early portion of its life, failures are typically caused by
manufacturing defects. During the useful portion of its life,
component failures are usually caused by chance, perhaps as a
result of overstress or a shock to the system. The wear out
portion of its life is characterized by wear or accumulated
damage that exceeds allowable limits for normal operation [1].
In many supply/repair models, the failure rate distributions for
components model only the useful life period, typically with a
constant failure rate that does not take into account the aging
process and the wear out problems that will occur [2].
However, when modeling at the unit or enterprise level, being
able to use the failure characteristics across a component’s
lifetime provides greater accuracy and usefulness of the
model.
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Figure 1. The Bathtub Curve[3]

Knowing how the failure rate will change over time is
also important to being able to predict a failure of an
individual component early enough to be able to modify
operations and maintenance scheduled in order to maximize
availability. This capability is commonly termed prognostics
and health management (PHM). The prognostic capability
relies on knowing how an individual component’s failure rate
deviates from the “average” or expected component’s failure
rate distribution. The change can be analyzed to determine or
predict the component’s remaining useful life. This
prognostic capability relies on sensors operating in real-time
and/or inspections to detect changes in a component’s health,
and data fusion algorithms that use that information to predict
the change in time to failure or remaining useful life.
Whether to optimize the supply and repair chain process or to
implement an effective PHM program, the accurate portrayal
of a component’s failure distribution across its entire lifecycle
is critical to maximizing a system’s availability while
minimizing parts and maintenance costs.

The goal of this ongoing research is to better understand
how to correctly update time-to-failure (TTF) distributions,
based initially on sparse data, data from similar components,
and expert opinion, with new observations and sensor data.
The remainder of this paper will discuss updating bathtub
shaped TTF distributions. More specifically, the next section
will briefly describe the Sandia National Laboratories’
developed Combined Lifecycle (CMBL) distribution used for
enterprise  level and PHM  component reliability
representation. The subsequent section will describe three
possible approaches to updating bathtub shaped TTF
distributions, followed by a section that provides greater detail
on initial results of the first of the approaches. Finally, the
results are summarized and possible areas for further
exploration are suggested.
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2 COMBINED LIFECYCLE DISTRIBUTION

Early in a systems life cycle, reliability data may not
abundant, as opposed to later in the systems lifecycle, where
operational failure data becomes available. Where data is not
abundant, expert opinion is solicited. Sometimes data from
similar components can be used but must be updated with
expert opinion. The expert opinion may come from
engineers/technicians who are typically not statisticians or
reliability experts so it helps immensely to be able to elicit the
necessary information using more common terms and
concepts, i.e., how long is the burn-in phase, what percent of
total component failures are a result of burn-in, what is the
mean life expectancy of the component given it makes it past
burn-in, etc. Trying to use common failure distributions, such
as combinations of the Gamma and/or Weibull distributions,
may be quite involved since converting expert opinion to a
parameter value would most likely require several iterative
steps [4]. Despite considerable published works in bathtub
shaped failure distributions, few practical models are available
[5]-

To help simplify the component failure characterization
process early in a system’s life cycle, Sandia National
Laboratories is currently using the CMBL distribution for
enterprise  level and PHM  component reliability
representation. The CMBL distribution assumes a linearly
declining failure rate during infant mortality, a constant failure
rate during normal life, and a normally distributed TTF as the
component nears its end of life (Figure2). This failure
distribution represents the entire component’s lifetime with
parameters that make it relatively easy to elicit the probability
of failure distribution from subject matter experts and limited
data. These parameters are:

1. The mean of the normally distributed portion of the
TTF distribution.

2. The standard deviation of the normally distributed
portion of the TTF distribution.

3. The probability that the component will fail during
burn-in.

4. The
distribution.

5. The probability that failure will occur randomly after
burn-in.

duration of the burn-in portion of the
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Figure 2. Combined Lifecycle (CMBL) Distribution

The explicit form of the distribution is:

Ae ! 0<r<t,
f(t) = e t,<t<t, (1)
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where

p = mean of the normally distributed portion of the TTF
distribution.

o = standard deviation of the normally distributed portion
of the TTF distribution.

Ag= failure rate for the linearly decreasing failure rate
portion = (mt+b).

A = failure rate for the constant failure rate portion

t;= burn-in duration.

t, = transition from constant failure rate to the normal
TTF portion.

F,= fraction of failures occurring in the infant mortality
portion.

F,= fraction of failures occurring in the random failure
portion.

While not the focus of this paper, an iteration scheme is
set up to solve for A, and # based on the ensuring that the
transitions from the linearly decreasing failure rate to the
constant failure rate and from the constant failure rate to the
normal TTF portion are continuous [6].

Once the CMBL distribution is characterized using scarce
data, data from similar components and expert opinion, the
next step is to update it as new data from the components
becomes available. As the system being modeled undergoes
extensive testing and is used under normal operations, data on
the number of failures, mean time to failure (MTTF), mean
time between failures (MTBF), mean time to repair (MTTR),
etc., becomes available. It is appropriate throughout the
modeling process to update the parameters of the original
CMBL distribution in some fashion to improve its accuracy.
Updating the distribution should occur throughout a
component’s lifecycle since improvements in the component
and changes in its use may alter its inherent reliability.

In addition, the resulting updated failure distribution must
be in a usable format for the supply/repair chain or PHM
model for which it resides since the resulting distribution will
be fed back into the supply/repair chain or PHM model. An
empirical distribution is possible, but it would be better to
have the updated distribution be the same as the originating
distribution. However, in some models it may not make much
difference as long as the resulting distribution can be easily
updated as new data becomes available. Being able to
transition the CMBL distribution to a more common form
such as a single commonly used distribution would most likely
not work. Transition from the CMBL distribution to a bathtub
distribution modeled by two or more distributions such as 3
Weibulls (one for each section) would present even greater
challenges.

3 METHODOLOGY FOR UPDATING



We are investigating three different methods for updating
piecewise continuous failure distributions.

3.1 Method 1

With the piecewise continuous CMBL distribution, treat
each section, infant mortality, random, and wear-out phases,
separately. Using the appropriate prior depending upon where
the new data occurred, i.e., 0 to t;, t; to t,, and t, to infinity,
assume that the new data has the same underlying distribution
as the section it occurred in and use a Bayesian updating
methodology to determine the posterior distribution. This
posterior distribution, or an estimate of the posterior
distribution, will be used as the subsequent prior as new data
occurs in that section. For example, use a Gamma (a.,3) as the
prior distribution in the random (constant failure rate) section
of the CMBL distribution and assume the new data follows an
exponential distribution with a constant failure rate. From the
resulting posterior distribution and a modified iterative scheme
used to determine the constant failure rate A., determine the
new parameters of the CMBL distribution.

This method may have a problem since the new data is
assumed to have the same distribution as where it falls in the
current section of the bathtub curve. If the original CMBL
distribution is quite different than the distribution described by
the new data, a major concern would be that by presupposing
that the new data should be modeled by the distribution of the
section for which it occurs in the original CMBL distribution,
the resulting distribution would never converge to the
appropriate distribution of the new data over time. Also,
reverse engineering of the iteration procedure of the CMBL
distribution will be necessary to determine the five input
parameters.

3.2 Method 2

Evaluate updating the piecewise continuous CMBL
distribution as a single distribution with new data represented
by different types of common distributions. Next, use a
Markov chain simulation method to derive the posterior
distribution. Use regression on the resulting distribution to
obtain the three updated input parameters for the infant
mortality and random sections of the CMBL distribution and a
curve fitting technique to get the two updated input parameters
for the normal section. Finally, evaluate the appropriateness
of the common distributions used to represent the data and
how well the regression and curve fitting techniques worked to
represent the posterior distribution.

This method may present the greatest challenges since
trying to determine an appropriate distribution for the new
data may be difficult and may be different for different
sections of the prior CMBL distribution. Determining the five
input parameters may require considerable reverse engineering
of the iteration procedure to ultimately obtain the input
parameters from the regression and curve fitting results.

3.3 Method 3

Use either of the Methods 1 or 2 above to determine the
posterior empirical distribution. Use this empirical
distribution “as is” assuming the logistic/PHM model has the
capability to handle empirical distributions.  Subsequent
updates using typical Markov chain simulation methods to
derive the posterior distribution would use the empirical
distribution as the prior distribution to arrive at a posterior as
new data becomes available.

This method may be the easiest but using an empirical
distribution usually increases data storage requirements,
although this is usually not a significant problem in large scale
supply/repair chain or PHM models. As an alternative,
updating of the distributions could occur in a subroutine
outside the supply/repair chain or PHM models. Probably the
biggest downside to this approach is that the user does not get
a feel for what a component’s failure distribution looks like
without some additional statistical analyses.

4 IMPLEMENTATION OF METHOD 1

This method determined if the CMBL distribution could
converge to the distribution of the data through a section by
section Bayesian updating methodology. In this approach,
each new data point was assumed to have the same underlying
failure distribution as the section of the CMBL distribution
where it occurred. Several additional simplifying assumptions
were also made. Only the random and wear-out portions of
the bathtub curve were evaluated specifically, although the
infant mortality portion was included in the process to
determine if there would be any unusual behavior in the
transition region around #. It was assumed that with a
Bayesian updating methodology, the CMBL distribution
would be updated one data point at a time. Since the new data
created from different input parameters can be quite extreme,
especially with regard to the Exponential distribution, a
weighting scheme was introduced to “smooth” the
convergence process. Finally, the standard deviation for the
data distribution in the wear-out portion of the distribution was
assumed to be known and held constant. The impact of each
of these assumptions will be investigated in future work. The
validation of this approach is broken down into several steps
as outlined in the following paragraphs.

4.1 Step 1

The first step was to evaluate the process for updating the
CMBL distribution with data falling within the wear-out
section of the distribution. This was a relatively
straightforward process. In a Bayesian updating methodology,
the conjugate prior is a Normal (#, o). Using a Normal
(ucmBL, ocmpr) for the prior and a N(uy, o) for the single new
data point results in a Normal(u,, 6,) where

~

u
CMBL 1
2 + 2
o-CMBL o
1 1
ot
(2

u, =

)

o CMBL



This posterior Normal (u;, o) distribution becomes the
next prior distribution, and this updating process is repeated
for each new data point. As expected, this process results in
the Normal (ucmpL, Ocmpr) converging to the Normal (uy, )
reasonably well.

4.2 Step 2

The second step was to evaluate the Bayesian updating
process for the data points that fall within the random failure
section of the bathtub distribution. The only user input
available for this section is F,, the fraction of failures
occurring in the random failure portion, but the resulting A,
the failure rate for the constant failure rate portion, is
determined within the iterative process of the CMBL
distribution. Since the data occurring in the random section is
being modeled by an Exponential (A) where A is considered a
random variable, a typical conjugate prior used in many
reliability applications is the Gamma (a., ). Since the CMBL
estimate is being taken as a single instance of failure, the
Bayesian prior is the Gamma (1, ), which is essentially an
Exponential (B) as given by:

1
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so A ~ Expon(f). This results in a posterior distribution that
is:
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In this case, assuming successive single data point
Bayesian updating, the result is a Gamma (2, So/Bot;+1). The

resulting E;, (A ]t,2,B) is the new estimate for A,

which is used in the CMBL iterative process to calculate a
new F,. This change in F, is then used with the other
unchanged parameters to the CMBL distribution, which now
becomes the prior distribution for the next data update. Using
this estimate alone was not was not good enough when using
the successive single data point updating methodology. This
result became apparent when the data represented the original

distribution derived from the input parameters but the
sequential updating process resulted in a mean that was not
reasonably close to the expected mean. When Equation (7)
was multiplied by a factor of approximately 0.64 and data
represented the original distribution derived from the input
parameters, the deviation from the expected mean essentially
disappeared. Further evaluation of the 0.64 factor is necessary
to determine any underlying theoretical implications.

4.3 Step 3

The third step examined updating both the random and
wear-out portions of the CMBL distribution simultaneously.
The primary goal was to determine if the resulting Bayesian
updating scheme for both sections simultaneously resulted in a
convergence to the distribution of the data. Particular
attention was paid to the transition region around #, since this
requires an iterative scheme to ensure the failure distribution
of the two sections remain continuous.

Several evaluation runs that included all three sections of
the CMBL distribution were made to determine the
characteristics of convergence to the distribution of the data.
As an example, the Baseline, Normal, and Random CMBL
distribution sets of parameters are shown in Table 1. The
baseline distribution provides the starting or initial prior
distribution. Using data from the Normal set of parameters,
which changes p only, focuses the convergence on updating
the normal portion of the CMBL distribution although the
random portion has to adjust as well. Using data generated
from the Random set of parameters, which again changes p
only, focuses the convergence on updating the random portion
of the CMBL distribution although the normal portion has to
adjust appropriately.

Baseli Normal Random
ne
200 250 150
20 20 20
F 1 1 .1
1
F 2 2 2
2
t 10 10 10
1

Table 1. Baseline, Normal, & Random Input Parameters

Starting with the baseline input parameters for the CMBL
distribution, successive CMBL distributions with their updated
parameters were created using the new data (failure times)
from a CMBL distribution with the normal input parameters.
A weighting scheme that essentially provided a user defined
fraction of the change between the old mean and the new data
point tended to minimize extreme new data values but tended
to increase the number of iterations to convergence.
Convergence to the distribution of the data generated from the
normal input parameters was relatively consistent and quick as
shown in Figure 1.
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Figure 1. Convergence to Normal CMBL Data

In converging from a mean of 200 to a mean of 250, the ¢,
also converged to 212, approximately the anticipated value of
211 from the starting value of 164. Convergence appears to
occur within about 200 iterations. A moving average of the
data, averaged over six data points, shows the variability in the
data where the data spans all portions of the bathtub
distribution; infant mortality, random, and wear-out.

Convergence to the distribution of the data generated
from the random input parameters was relatively consistent
but not as quick as shown in Figure 2. It took about 250
iterations to reach near the new mean of 150. The t,
converged to the anticipated value of 117. Again, a moving
average of the data, averaged over six data points, shows the
variability in the data where the data spans all portions of the
bathtub distribution.
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Figure 2. Convergence to Random CMBL Data

A comparison of the results of the baseline, normal, and
random parameters is shown in Figure 3. The comparison
shows an appropriate shift in the mean of the distribution
while an appropriate shift in A, occurs to accommodate the
shift. For example, when the mean of the distribution of the
data causes a shift from 200 to 150, the failure rate A. of the

random section of the CMBL distribution increases to ensure
F, remains at constant at 0.4. This increase in A, results in the
shift in the line in the random portion of the CMBL
distribution. The opposite occurs when the mean of the
distribution of the data shifts from 200 to 250, as expected.
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Figure 3. Baseline, Random, and Normal Comparisons

The next step in the evaluation of Method 1 will be to
hold the mean constant and vary F,, the fraction of failures
occurring in the random failure portion. This step may require
an iteration scheme that finds t, while holding A, constant
whereas normally, A, and t, varies in the CMBL iteration
scheme. Once this is successfully accomplished, updating
the baseline distribution to the data distribution by
varying several different combinations of the input
parameters will follow. Finally, an evaluation of all
three sections, infant mortality, random, and wear out,
should follow.

SUMMARY & CONCLUSIONS

The results obtained in evaluating Method 1 show initial
promise in finding an acceptable method for updating the
CMBL distribution one data point at a time. In addition to
completing the research outlined in the previous paragraph,
additional research must be accomplished to determine if
updating the CMBL distribution with sets of new data (instead
of one data point at a time) will provide the same or perhaps
better/quicker results. Evaluation of Methods 2 and 3 should
also proved greater flexibility in the use of the CMBL and
with some generalizing modifications, this should allow
application across other sectional TTF failure models.

The method developed in this effort for updating the
CMBL distribution and other TTF distributions, may be
extremely valuable in enhancing maintenance planning and
real-time situational awareness processes. This method, used
in enterprise level and PHM modeling, should more accurately
help provide instant feedback on the current status of
equipment; provide tactical assessment of the readiness of
equipment for the next campaign; identify parts, services, etc.
that are likely to be required during the next campaign;
provide a realistic basis for scheduling and optimizing
equipment maintenance schedules; and help ensure that the
useful life of expensive components is taken full advantage of
while reducing the incidence of unplanned maintenance.
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