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1  INTRODUCTION

One of the primary purposes of current enterprise level 
modeling efforts is to use component/system reliability 
estimates along with inventory levels, maintenance and 
inspection schedules, and operational requirements to optimize 
supply/repair chain processes.  In addition, prognostics and 
health management modeling uses component/system 
reliability estimates as a baseline from which the data from 
sensors and maintenance events along with data fusion 
techniques can determine component health trends.  These 
component health trends may help predict failure far enough 
in advance to be able to modify operations and maintenance 
schedules for the purposes of maximizing system availability 
or minimizing maintenance and spares costs.  In either case, 
once a characterization of the component’s lifecycle in terms 
of failure probability is established, a methodology for how to 
update that characterization based on the availability of new 
data is required, a methodology that ensures the resulting 
distribution is useful to the modeler.  

Reliability models depend on failure distributions to 
characterize the probability of failure over the lifetime of a 
component.  Many types of components typically will have a 
bathtub-shaped failure rate life distribution.  This distribution 
is commonly characterized by a decreasing failure rate during 
the early portion of its life, a constant failure rate during the 
useful portion of its life, and an increasing failure rate during 
the wear out portion of its life, as shown in Figure 1.  During 
the early portion of its life, failures are typically caused by 
manufacturing defects.  During the useful portion of its life, 
component failures are usually caused by chance, perhaps as a 
result of overstress or a shock to the system.  The wear out 
portion of its life is characterized by wear or accumulated 
damage that exceeds allowable limits for normal operation [1].  
In many supply/repair models, the failure rate distributions for 
components model only the useful life period, typically with a 
constant failure rate that does not take into account the aging 
process and the wear out problems that will occur [2].  
However, when modeling at the unit or enterprise level, being 
able to use the failure characteristics across a component’s 
lifetime provides greater accuracy and usefulness of the 
model.
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Figure 1.  The Bathtub Curve[3]
Knowing how the failure rate will change over time is 

also important to being able to predict a failure of an 
individual component early enough to be able to modify 
operations and maintenance scheduled in order to maximize 
availability.  This capability is commonly termed prognostics 
and health management (PHM).  The prognostic capability 
relies on knowing how an individual component’s failure rate 
deviates from the “average” or expected component’s failure 
rate distribution.  The change can be analyzed to determine or 
predict the component’s remaining useful life.  This 
prognostic capability relies on sensors operating in real-time 
and/or inspections to detect changes in a component’s health, 
and data fusion algorithms that use that information to predict 
the change in time to failure or remaining useful life.   
Whether to optimize the supply and repair chain process or to 
implement an effective PHM program, the accurate portrayal 
of a component’s failure distribution across its entire lifecycle 
is critical to maximizing a system’s availability while 
minimizing parts and maintenance costs. 

The goal of this ongoing research is to better understand 
how to correctly update time-to-failure (TTF) distributions,
based initially on sparse data, data from similar components,
and expert opinion, with new observations and sensor data.  
The remainder of this paper will discuss updating bathtub 
shaped TTF distributions.  More specifically, the next section 
will briefly describe the Sandia National Laboratories’ 
developed Combined Lifecycle (CMBL) distribution used for 
enterprise level and PHM component reliability 
representation.  The subsequent section will describe three 
possible approaches to updating bathtub shaped TTF 
distributions, followed by a section that provides greater detail 
on initial results of the first of the approaches.  Finally, the 
results are summarized and possible areas for further 
exploration are suggested.  
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2  COMBINED LIFECYCLE DISTRIBUTION

Early in a systems life cycle, reliability data may not 
abundant, as opposed to later in the systems lifecycle, where 
operational failure data becomes available.  Where data is not 
abundant, expert opinion is solicited.  Sometimes data from 
similar components can be used but must be updated with 
expert opinion.  The expert opinion may come from 
engineers/technicians who are typically not statisticians or 
reliability experts so it helps immensely to be able to elicit the 
necessary information using more common terms and 
concepts, i.e., how long is the burn-in phase, what percent of 
total component failures are a result of burn-in, what is the 
mean life expectancy of the component given it makes it past 
burn-in, etc.  Trying to use common failure distributions, such 
as combinations of the Gamma and/or Weibull distributions, 
may be quite involved since converting expert opinion to a 
parameter value would most likely require several iterative 
steps [4].  Despite considerable published works in bathtub 
shaped failure distributions, few practical models are available
[5].

To help simplify the component failure characterization 
process early in a system’s life cycle, Sandia National 
Laboratories is currently using the CMBL distribution for 
enterprise level and PHM component reliability 
representation.  The CMBL distribution assumes a linearly 
declining failure rate during infant mortality, a constant failure 
rate during normal life, and a normally distributed TTF as the 
component nears its end of life (Figure2).  This failure 
distribution represents the entire component’s lifetime with 
parameters that make it relatively easy to elicit the probability 
of failure distribution from subject matter experts and limited 
data.  These parameters are:

1. The mean of the normally distributed portion of the 
TTF distribution.

2. The standard deviation of the normally distributed 
portion of the TTF distribution.

3. The probability that the component will fail during 
burn-in.

4. The duration of the burn-in portion of the 
distribution.

5. The probability that failure will occur randomly after 
burn-in.
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Figure 2.  Combined Lifecycle  (CMBL) Distribution

The explicit form of the distribution is:
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where 
 = mean of the normally distributed portion of the TTF 

distribution.
 = standard deviation of the normally distributed portion 

of the TTF distribution.
d= failure rate for the linearly decreasing failure rate 

portion = (mt+b).
c = failure rate for the constant failure rate portion
t1= burn-in duration.
t2 = transition from constant failure rate to the normal 

TTF portion.
F1= fraction of failures occurring in the infant mortality 

portion.
F2= fraction of failures occurring in the random failure 

portion.
While not the focus of this paper, an iteration scheme is 

set up to solve for c and t2 based on the ensuring that the 
transitions from the linearly decreasing failure rate to the  
constant failure rate and from the constant failure rate to the 
normal TTF portion are continuous [6]. 

Once the CMBL distribution is characterized using scarce 
data, data from similar components and expert opinion, the 
next step is to update it as new data from the components 
becomes available.  As the system being modeled undergoes 
extensive testing and is used under normal operations, data on 
the number of failures, mean time to failure (MTTF), mean 
time between failures (MTBF), mean time to repair (MTTR), 
etc., becomes available.  It is appropriate throughout the 
modeling process to update the parameters of the original 
CMBL distribution in some fashion to improve its accuracy.  
Updating the distribution should occur throughout a 
component’s lifecycle since improvements in the component 
and changes in its use may alter its inherent reliability.  

In addition, the resulting updated failure distribution must 
be in a usable format for the supply/repair chain or PHM 
model for which it resides since the resulting distribution will 
be fed back into the supply/repair chain or PHM model.  An 
empirical distribution is possible, but it would be better to 
have the updated distribution be the same as the originating 
distribution.  However, in some models it may not make much 
difference as long as the resulting distribution can be easily 
updated as new data becomes available.  Being able to 
transition the CMBL distribution to a more common form 
such as a single commonly used distribution would most likely 
not work.  Transition from the CMBL distribution to a bathtub 
distribution modeled by two or more distributions such as 3 
Weibulls (one for each section) would present even greater 
challenges.  

3  METHODOLOGY FOR UPDATING



We are investigating three different methods for updating 
piecewise continuous failure distributions. 

3.1 Method 1  

With the piecewise continuous CMBL distribution, treat 
each section, infant mortality, random, and wear-out phases,
separately.  Using the appropriate prior depending upon where 
the new data occurred, i.e., 0 to t1, t1 to t2, and t2 to infinity, 
assume that the new data has the same underlying distribution 
as the section it occurred in and use a Bayesian updating 
methodology to determine the posterior distribution.  This 
posterior distribution, or an estimate of the posterior 
distribution, will be used as the subsequent prior as new data 
occurs in that section.  For example, use a Gamma (,) as the 
prior distribution in the random (constant failure rate) section 
of the CMBL distribution and assume the new data follows an 
exponential distribution with a constant failure rate.  From the 
resulting posterior distribution and a modified iterative scheme 
used to determine the constant failure rate c, determine the 
new parameters of the CMBL distribution. 

This method may have a problem since the new data is 
assumed to have the same distribution as where it falls in the 
current section of the bathtub curve. If the original CMBL 
distribution is quite different than the distribution described by 
the new data,  a major concern would be that by presupposing 
that the new data should be modeled by the distribution of the
section for which it occurs in the original CMBL distribution,
the resulting distribution would never converge to the 
appropriate distribution of the new data over time.  Also, 
reverse engineering of the iteration procedure of the CMBL 
distribution will be necessary to determine the five input 
parameters.  

3.2 Method 2  

Evaluate updating the piecewise continuous CMBL 
distribution as a single distribution with new data represented 
by different types of common distributions.  Next, use a 
Markov chain simulation method to derive the posterior 
distribution.  Use regression on the resulting distribution to 
obtain the three updated input parameters for the infant 
mortality and random sections of the CMBL distribution and a 
curve fitting technique to get the two updated input parameters 
for the normal section.  Finally, evaluate the appropriateness 
of the common distributions used to represent the data and 
how well the regression and curve fitting techniques worked to 
represent the posterior distribution.

This method may present the greatest challenges since 
trying to determine an appropriate distribution for the new 
data may be difficult and may be different for different 
sections of the prior CMBL distribution.  Determining the five 
input parameters may require considerable reverse engineering 
of the iteration procedure to ultimately obtain the input 
parameters from the regression and curve fitting results.  

3.3 Method 3

Use either of the Methods 1 or 2 above to determine the 
posterior empirical distribution.  Use this empirical 
distribution “as is” assuming the logistic/PHM model has the 
capability to handle empirical distributions.  Subsequent 
updates using typical Markov chain simulation methods to 
derive the posterior distribution would use the empirical 
distribution as the prior distribution to arrive at a posterior as
new data becomes available.  

This method may be the easiest but using an empirical 
distribution usually increases data storage requirements,
although this is usually not a significant problem in large scale 
supply/repair chain or PHM models.  As an alternative, 
updating of the distributions could occur in a subroutine 
outside the supply/repair chain or PHM models.  Probably the 
biggest downside to this approach is that the user does not get 
a feel for what a component’s failure distribution looks like 
without some additional statistical analyses.

4  IMPLEMENTATION OF METHOD 1

This method determined if the CMBL distribution could 
converge to the distribution of the data through a section by 
section Bayesian updating methodology.  In this approach, 
each new data point was assumed to have the same underlying 
failure distribution as the section of the CMBL distribution 
where it occurred.  Several additional simplifying assumptions 
were also made.  Only the random and wear-out portions of 
the bathtub curve were evaluated specifically, although the 
infant mortality portion was included in the process to 
determine if there would be any unusual behavior in the 
transition region around t1.  It was assumed that with a 
Bayesian updating methodology, the CMBL distribution 
would be updated one data point at a time.  Since the new data 
created from different input parameters can be quite extreme, 
especially with regard to the Exponential distribution, a 
weighting scheme was introduced to “smooth” the 
convergence process.  Finally, the standard deviation for the 
data distribution in the wear-out portion of the distribution was 
assumed to be known and held constant.  The impact of each 
of these assumptions will be investigated in future work.  The 
validation of this approach is broken down into several steps
as outlined in the following paragraphs. 

4.1 Step 1

The first step was to evaluate the process for updating the 
CMBL distribution with data falling within the wear-out 
section of the distribution.  This was a relatively 
straightforward process.  In a Bayesian updating methodology, 
the conjugate prior is a Normal (u, ).  Using a  Normal 
(uCMBL, CMBL) for the prior and a N(u0, ) for the single new 
data point results in a Normal(u1, 1) where
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This posterior Normal (u1, 1) distribution becomes the 
next prior distribution, and this updating process is repeated 
for each new data point.  As expected, this process results in 
the Normal (uCMBL, CMBL) converging to the Normal (ud, ) 
reasonably well.  

4.2 Step 2

The second step was to evaluate the Bayesian updating 
process for the data points that fall within the random failure 
section of the bathtub distribution.  The only user input 
available for this section is F2, the fraction of failures 
occurring in the random failure portion, but the resulting c, 
the failure rate for the constant failure rate portion, is 
determined within the iterative process of the CMBL 
distribution.  Since the data occurring in the random section is 
being modeled by an Exponential (λ) where λ is considered a 
random variable, a typical conjugate prior used in many 
reliability applications is the Gamma (, ).  Since the CMBL 
estimate is being taken as a single instance of failure, the 
Bayesian prior is the Gamma (1, ), which is essentially an 
Exponential () as given by:  
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which becomes:  
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with an expected value of:
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In this case, assuming successive single data point 
Bayesian updating, the result is a Gamma (2, 0/0t1+1).  The 

resulting ),2,|(  tEGamma is the new estimate for c, 

which is used in the CMBL iterative process to calculate a 
new F2.  This change in F2 is then used with the other 
unchanged parameters to the CMBL distribution, which now 
becomes the prior distribution for the next data update.  Using 
this estimate alone was not was not good enough when using 
the successive single data point updating methodology.  This 
result became apparent when the data represented the original 

distribution derived from the input parameters but the 
sequential updating process resulted in a mean that was not 
reasonably close to the expected mean.  When Equation (7) 
was multiplied by a factor of approximately 0.64 and data 
represented the original distribution derived from the input 
parameters, the deviation from the expected mean essentially 
disappeared.  Further evaluation of the 0.64 factor is necessary 
to determine any underlying theoretical implications.

4.3 Step 3

The third step examined updating both the random and 
wear-out portions of the CMBL distribution simultaneously.  
The primary goal was to determine if the resulting Bayesian 
updating scheme for both sections simultaneously resulted in a 
convergence to the distribution of the data.  Particular 
attention was paid to the transition region around t2 since this 
requires an iterative scheme to ensure the failure distribution 
of the two sections remain continuous.

Several evaluation runs that included all three sections of 
the CMBL distribution were made to determine the 
characteristics of convergence to the distribution of the data.  
As an example, the Baseline, Normal, and Random CMBL 
distribution sets of parameters are shown in Table 1.  The 
baseline distribution provides the starting or initial prior 
distribution.  Using data from the Normal set of parameters,
which changes  only, focuses the convergence on updating 
the normal portion of the CMBL distribution although the 
random portion has to adjust as well. Using data generated 
from the Random set of parameters, which again changes 
only, focuses the convergence on updating the random portion 
of the CMBL distribution although the normal portion has to 
adjust appropriately.

Baseli
ne

Normal Random

 200 250 150

 20 20 20

F

1

.1 .1 .1

F

2

.2 .2 .2

t

1

10 10 10

Table 1.  Baseline, Normal, & Random Input Parameters

Starting with the baseline input parameters for the CMBL 
distribution, successive CMBL distributions with their updated 
parameters were created using the new data (failure times)
from a CMBL distribution with the normal input parameters.  
A weighting scheme that essentially provided a user defined 
fraction of the change between the old mean and the new data 
point tended to minimize extreme new data values but tended 
to increase the number of iterations to convergence.  
Convergence to the distribution of the data generated from the 
normal input parameters was relatively consistent and quick as 
shown in Figure 1.  
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Figure 1.  Convergence to Normal CMBL Data

In converging from a mean of 200 to a mean of 250, the t2

also converged to 212, approximately the anticipated value of 
211 from the starting value of 164.  Convergence appears to 
occur within about 200 iterations.  A moving average of the 
data, averaged over six data points, shows the variability in the 
data where the data spans all portions of the bathtub 
distribution; infant mortality, random, and wear-out.

Convergence to the distribution of the data generated 
from the random input parameters was relatively consistent 
but not as quick as shown in Figure 2.  It took about 250
iterations to reach near the new mean of 150.  The t2 

converged to the anticipated value of 117. Again, a moving 
average of the data, averaged over six data points, shows the 
variability in the data where the data spans all portions of the 
bathtub distribution.
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Figure 2. Convergence to Random CMBL Data

A comparison of the results of the baseline, normal, and 
random parameters is shown in Figure 3.  The comparison 
shows an appropriate shift in the mean of the distribution 
while an appropriate shift in λc occurs to accommodate the 
shift.   For example, when the mean of the distribution of the 
data causes a shift from 200 to 150, the failure rate λc of the 

random section of the CMBL distribution increases to ensure 
F2 remains at constant at 0.4.  This increase in λc results in the 
shift in the line in the random portion of the CMBL 
distribution.  The opposite occurs when the mean of the 
distribution of the data shifts from 200 to 250, as expected.
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Figure 3.  Baseline, Random, and Normal Comparisons

The next step in the evaluation of Method 1 will be to 
hold the mean constant and vary F2, the fraction of failures 
occurring in the random failure portion.  This step may require 
an iteration scheme that finds t2 while holding λc constant 
whereas normally, λc and t2 varies in the CMBL iteration 
scheme. Once this is successfully accomplished, updating 
the baseline distribution to the data distribution by 
varying several different combinations of the input 
parameters will follow.  Finally, an evaluation of all 
three sections, infant mortality, random, and wear out, 
should follow.  

SUMMARY & CONCLUSIONS

The results obtained in evaluating Method 1 show initial 
promise in finding an acceptable method for updating the 
CMBL distribution one data point at a time. In addition to 
completing the research outlined in the previous paragraph, 
additional research must be accomplished to determine if 
updating the CMBL distribution with sets of new data (instead 
of one data point at a time) will provide the same or perhaps 
better/quicker results.  Evaluation of Methods 2 and 3 should 
also proved greater flexibility in the use of the CMBL and 
with some generalizing modifications, this should allow 
application across other sectional TTF failure models.  

The method developed in this effort for updating the 
CMBL distribution and other TTF distributions, may be 
extremely valuable in enhancing maintenance planning and 
real-time situational awareness processes.  This method, used 
in enterprise level and PHM modeling, should more accurately 
help provide instant feedback on the current status of 
equipment; provide tactical assessment of the readiness of 
equipment for the next campaign; identify parts, services, etc. 
that are likely to be required during the next campaign; 
provide a realistic basis for scheduling and optimizing 
equipment maintenance schedules; and help ensure that the 
useful life of expensive components is taken full advantage of 
while reducing the incidence of unplanned maintenance.
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