

Synchrotron Based Surface Science to Probe Structure and Chemistry of Polymeric Interfacial Regions

Joseph L. Lenhart¹, Daniel A. Fischer²

¹Organic Materials Departments
Sandia National Laboratories
Albuquerque, NM 87185

²Ceramics Division
National Institute of Standards and Technology
Gaithersburg, MD 20899

Introduction

Synchrotron based X-ray absorption spectroscopy was utilized to probe the chemistry and structure of polymers in interfacial regions, including the interfacial composition of filled epoxy composites, and the surface orientation of polymer films. Polymer interfacial properties can be very different than their bulk properties¹. Variations in chemical composition, molecular orientation, mobility, crystallinity, microstructure, etc are potential causes of these interfacial property changes in polymeric systems. The interfacial properties of polymers play a critical role in many generally applicable materials systems uses including adhesives, encapsulants, foams, filled polymers, thin polymer films and coatings, etc. To understand and control reliability and aging issues associated with polymer interfaces it is important to understand on a fundamental level what controls the properties, structure, and composition of polymers near the interface. In order to understand these interfacial phenomena, it is critical to have measurement technology capable of assessing polymer interfacial properties.

Experimental

Sandia National Laboratories and the National Institute of Standards and Technology (NIST) have engaged in collaboration to develop an advanced interface science beam-line at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. Both laboratories have committed capital funding and personnel resources to the beam-line. While this beam-line is currently under construction, research is conducted at an existing low energy Near Edge X-ray Absorption Fine Structure (NEXAFS) beam-line (U7A), which was utilized to study a variety of interfacial issues with polymers including the fracture surfaces of epoxy encapsulants, structure of monolayer anti-stiction materials utilized in MEMS devices, and the orientation and relaxation phenomena in thin polymer films.

The currently available low energy NEXAFS beam-line has an energy range of (180 to 1200) eV. With this energy range, the core level transitions in low Z elements (carbon, nitrogen, oxygen, and fluorine) can be explored. A second beam-line will be improved and rebuilt at the NSLS with higher-energy NEXAFS and X-ray Photoelectron Spectroscopy (XPS) capability and an energy range of (1000 to 8000) eV. The synchrotron light source provides high intensity and variable energy incident radiation, which will enhance signal, peak resolution, and depth-profiling capabilities compared to standard laboratory instruments. For example, the brightness of the synchrotron source is 10^5 to 10^9 times that of a standard X-ray tube, allowing more monochromatic incident radiation and improved peak resolution as well as signal-to-noise. The higher energy of the new beam-line will also expand the accessible elemental range over the current low energy beam-line, providing the possibility for NEXAFS studies on a wider range of materials.

Results and Discussion

Figure 1 shows a schematic depicting the principles of NEXAFS. The sample is exposed to tunable plane polarized, monochromatic X-ray radiation from a synchrotron light source. In these experiments, the incident radiation is scanned over the carbon K-edge region, an energy range from (280 to 330) eV. X-rays are preferentially absorbed by the sample when the incident radiation is at the appropriate energy to allow the excitation of a core shell electron to an unoccupied molecular orbital. During electronic relaxation Auger electrons and characteristic fluorescence photons are released. These electrons can only escape from the top surface of the sample (1 to 10) nm. The photons are detected from approximately 100 nm within the sample. NEXAFS has elemental sensitivity because the characteristic binding energies of the carbon, nitrogen,

oxygen, and fluorine core electrons are well separated in energy. In addition, due to the well-defined energy gap associated with a core shell / unoccupied orbital transition, NEXAFS is also sensitive to the bonding characteristics of the atom².

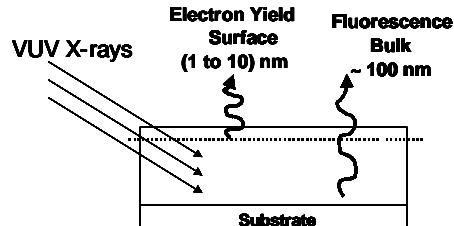


Figure 1. A schematic depicting the principles of NEXAFS.

NEXAFS was successfully utilized to provide insight into the fracture behavior of alumina filled epoxy resins. The interaction between the polymer and filler, and the properties of the polymer-filler interfacial region can impact the material properties of the composite. Figure 2 shows the carbon K-edge NEXAFS spectra of the fracture surfaces for a series epoxy composites loaded with 18-micron aluminum oxide filler from Sumitomo. The peaks present in the NEXAFS spectra represent different types of carbon bonding. Interestingly the carbon chemistry of the fracture surface is independent of the filler loading. The carbon edge spectra of the fracture surfaces were also independent of the particle shape and size (data not shown in Figure 2). This indicates one of two scenarios for these composites: a) the fracture occurs in the bulk polymer even at the high filler loadings or b) the composition of the polymer – filler interfacial region is the same as the bulk polymer. NEXAFS data on the oxygen K-edge combined with SEM images of the fracture surfaces were utilized to determine that the fracture occurred at the interface between the epoxy and alumina filler. This means that the interfacial composition of the epoxy resin is the same as the bulk composition.

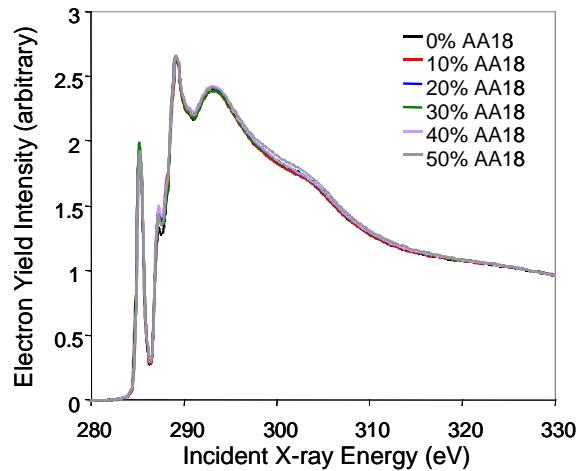


Figure 2. NEXAFS carbon K-edge electron yield spectra for a series of epoxy composites with varied volume percent filler loading.

Because the incident synchrotron radiation is polarized, NEXAFS can also be utilized to probe orientation of bonding transitions. This capability was utilized to probe the surface orientation of thin polymer films. Figure 3 shows a schematic of a polystyrene monomer. The C1s \rightarrow σ^*_{C-C} transition is oriented with the polymer chain backbone. The C1s \rightarrow σ^*_{C-H} transition is oriented perpendicular to the chain backbone. A pendant phenyl ring is normal to the chain backbone and contains a C1s \rightarrow π^*_{C-C} transition that is perpendicular to the phenyl group and parallel to the chain backbone. Since the incident X-ray radiation is polarized with the electric field vector perpendicular to the direction of the light propagation, measuring the NEXAFS spectra at different angles can be utilized to investigate the orientation of these absorption transitions. Figure 4 plots the C1s \rightarrow π^*_{C-C} peak area as a function of the angle of incidence for the

incoming radiation. Before integration the spectra were pre and post-edge jump normalized. When the $\cos^2\theta$ is zero the incident radiation is normal to the film surface. When $\cos^2\theta$ approaches 1 the incident radiation is in glancing mode relative to the film surface. Three polymers were investigated, poly(styrene), poly(4-methylstyrene), and poly(4-tertbutylstyrene). The structures are also shown in Figure 4. For each polymer, at the normal angle, the C1s $\rightarrow \pi^*_{C=C}$ transition is stronger than in the glancing mode, indicating that nominally the phenyl groups are oriented perpendicular to the film surface. However, as the functional group of the ring becomes larger, the orientation is less pronounced (the difference in peak area as a function of incident angle). Poly(styrene) has a stronger angular dependence than poly(4-methylstyrene). The least angular dependence is with poly(4-tertbutylstyrene) which has the bulkiest pendant group on the styrene ring. Steric hinderance from a bulky pendant group on the ring may hinder surface orientation. The electron yield detector bias was set at 250 eV, meaning that primarily electrons with energy near the characteristic carbon Auger electrons are collected. These electrons are escaping from the top monolayer of the polymer surface, since the carbon Auger escape depth is approximately 10 Å. Therefore, the electron yield spectra are extremely surface sensitive.

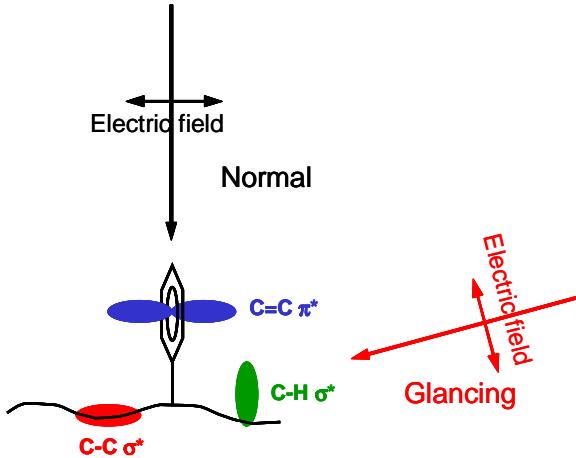


Figure 3. A schematic of a polystyrene molecule and the various orbital transitions that can be probed with NEXAFS.

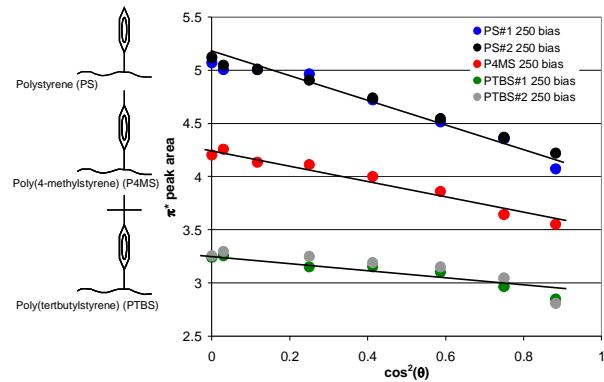


Figure 4. NEXAFS spectra as a function of angle for poly(styrene), poly(4-methylstyrene), and poly(4-tertbutylstyrene). Error can be estimated from the scatter in the data on multiple PS and PTBS samples.

The variable low to high-energy beam-line that is currently under reconstruction will have a high energy XPS detector on the end-station. One important advantage of high-energy synchrotron based XPS is the tunability of the incident X-ray radiation. If the incident X-ray energy is varied, then the kinetic energy of the ejected electron also changes. This allows improved depth profiling capability over typical laboratory based XPS. Figure 5 shows the “universal curve” describing the effective attenuation depth of an electron as a function of the kinetic energy of the electron³. Laboratory based XPS often operates near the minimum of the curve (red circle) where the attenuation length

of the electron is only a few monolayers. Operating near this minimum makes XPS extremely surface sensitive, where contamination layers can interfere with analysis, especially with higher energy surface which are extremely sensitive to surface contamination. With synchrotron based XPS, the energy can be tuned up the universal curve (blue circle) to escape depths near 10 monolayers. A larger portion of the signal will originate from below the contamination layer allowing studies of the desired underlying interfacial region and buried interfaces. In addition, the energy can be tuned up and down the universal curve allowing nondestructive depth profiling.

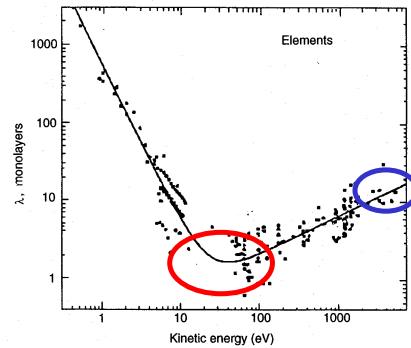


Figure 5. The “universal curve” plotting the attenuation length of an electron as a function of the kinetic energy of the ejected electron³.

The data in this report was collected on an existing low energy NEXAFS beam-line at the NSLS. In addition, significant progress has been realized on refurbishing the new high-energy NEXAFS and XPS beam-line at NSLS. Funding was secured from both Sandia and NIST to start the high-energy beam-line. In 2005 the beam-line was completely upgraded from the synchrotron source to the end station. In 2006 the high energy XPS analyzer was purchased and will be installed on the endstation.

Conclusions

Sandia National Laboratories and NIST have engaged in collaboration to refurbish an existing beam-line at the National Synchrotron Light Source at Brookhaven National Laboratory to conduct NEXAFS and XPS with an incident energy range of approximately (1000 to 8000) eV. Both laboratories have committed capital funding and personnel resources to the new beam-line. Research is ongoing with an existing lower energy NEXAFS beam-line (U7A), which has been utilized to study a variety of interfacial issues with polymers including the fracture surfaces of filled composites and the surface orientation of thin polymer films.

References

- (1) Jones R. A. L., Richards R. W.; *Polymers at Surfaces and Interfaces*, (Cambridge University Press, Cambridge, UK, 1999).
- (2) J. Stöhr, *NEXAFS Spectroscopy*, Springer Series in Surface Science (Springer, Heidelberg, 1992), Vol. 25.
- (3) M.P. Shea, W. A. Dench, *Surface and Interface Analysis*, **1**, 2 (1979).

Acknowledgements: Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Safety Administration under contract DE-AC04-94AL85000. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment are necessarily the best available for the purpose.