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ABSTRACT

When modal testing a structure for model validation, free boundary-conditions are frequently approximated in the 
lab to compare with free boundary-condition analyses.  Free conditions are used because they are normally easy 
to simulate analytically and easier to approximate experimentally than boundary conditions with fixed conditions.  
However, the free conditions can only be approximated in the lab because the structure must be supported in 
some manner.  This paper investigates and quantifies the effects of the support conditions on both the measured 
modal frequencies and damping factors.  The investigation has determined that the measured modal damping is 
significantly more sensitive to the support system (stiffness and damping) than the measured modal frequency.  
Included in the paper are simple formulas which can be used to predict the effect on the measured modal 
parameters given the support stiffness and damping.

INTRODUCTION

Modal testing is frequently used to validate the accuracy of structural dynamic models.  The modal tests are 
performed on a structure to measure the modal frequencies, damping factors, and mode shapes.  However during 
the modal test, a structure must be supported in some manner by the surrounding environment.  Very frequently, 
free boundary conditions are the desired support conditions for comparison with computational results.  Free 
conditions can only be approximated in the lab using soft supports, but the stiffness and damping of these added 
supports will affect the modal parameters of the combined structural system. A required part of pre-test planning 
is to design the support system to minimally affect the modal parameters.  Obviously, one can include a model of 
the support system as part of the overall system model and sometimes that is required due to compromises 
involved in the support system design, but one would like to be able to calculate the effects of the support system 
on the modal parameters to determine whether the effects are negligible or need to be accounted.

One of the primary objectives of this paper is to derive fairly simple formulas and rules of thumb by which one can 
calculate the effect of the support conditions on the measured modal frequencies and damping factors so that 
appropriate support design can be performed before the test. The formulas and the effects of poor support 
conditions are also illustrated with results from two different modal test.  

Historically, there has been concern for support stiffness and its effect on measured modal frequencies.  
Bisplinghoff, Ashley and Halfman [1] discuss the effects of support stiffness and mass on the modal frequencies, 
based on results of Rayleigh [2].  Wolf [3] discusses the effects of support stiffness with regard to modal testing of 
automotive bodies.  He reports that the rule of thumb to simulate free boundary conditions is to design the support 
system so that the rigid-body modes, that is, the modes that would be at zero frequency except for the support 
conditions, are no more than one-tenth the frequency of the lowest elastic mode.  But, it is seldom possible to 
achieve this separation for vehicle tests.  He states that test engineers frequently use a 1:3 to 1:5 separation ratio 

                                               
* Distinguished Member of Technical Staff, tgcarne@sandia.gov
† Limited Term Member of Technical Staff, dgriffi@sandia.gov
‡ Graduate student, mecasias@umich.edu
§ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States 
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2006-7460C



between the rigid-body modes and the lowest elastic mode.  Wolf shows that such stiff supports can lead to 
significant errors in the measured modal frequencies.  One of the current authors discussed support conditions in 
an earlier work [4], and this paper expands on that work with additional theoretical results and illustrates the 
theory with experiments and modeling. Ewins in his second edition of Modal Testing [5] briefly discusses the 
issue of location of suspensions for free boundary conditions in the Test Planning chapter.  More recently, Brillhart 
and Hunt presented an exposition of many of the practical difficulties involved in designing good fixtures for a 
modal test in [6], and Avitabile briefly discussed this issue in a Back to Basics article [7].

In this paper our primary emphasis is to develop some quantitative measures of the effect of the support
conditions on the modal frequencies and the modal damping ratios.  Most finite element models could include the 
support stiffnesses and masses in the model, thus taking into account those effects.  However, structural dynamic 
models often do not initially include damping, but rather use the measured modal damping ratios from a test to 
create a model, including damping.  There is typically no validation of the damping model; it is taken directly from 
the test with the support conditions included.  Consequently, one must be concerned with how the support 
conditions affect the measured damping.  The remainder of this paper is divided into four primary sections.  In the 
first section, simple formulas are derived for a two degree-of-freedom system.  These formulas are simplistic, but
can be used to derive rules-of-thumb and also easily illustrate the severity of the problem.  The next section 
develops approximate formulas for the multi-degree-of-freedom problem which can be used for general 
structures. The last two sections further illustrate both the problem and the theory with some example modal 
tests, first from a very lightly damped uniform beam and second with a wind turbine blade that required a modal 
test for model validation and damping determination.

THE TWO DEGREE-OF-FREEDOM SYSTEM

Perhaps the best way to develop an understanding of the effects of support conditions is to examine a two 
degree-of-freedom (dof) system.  Wolf [3] also analyzed a two dof system, but we examine a somewhat different 
system that also includes damping.  Let us consider a simple model, pictured in Figure 1, of an unconstrained 
structure (free boundary conditions), consisting of two masses connected by a linear spring and a viscous damper 
with motion restricted to a single direction. 
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Figure 1: Freely supported two dof 
system.

Figure 2:  Two dof system with added support stiffness and 
damping.

We could add support conditions in several ways, but let us add them symmetrically as diagrammed above in 
Figure 2.  Here the kt and ct designate the true stiffness and damping of the structure, while the ks and cs
designate the added support stiffness and damping.  One could write down the equations of motions for this 
simple system, but using the symmetry, the modal parameters can be solved by inspection.  There are two modes 
for this system, 1 = [1 1]T, and 2 =  [1 -1]T.  The first mode is referred to as the support mode or the rigid-body 
mode because there is no deformation in the original structure (Fig. 1).  The second mode is the elastic mode 
because it involves elastic deformation of the original structure.  The undamped natural frequencies for the two 
modes are 

mkss / mkk stm /)(  (1)

where s indicates the mode due to the support system while m indicates the mode of the measured system 
including the support.  Similarly, the damping factors can be derived from inspection and are

sss mc  2 mtsm mcc  2)(  (2)



Following Wolf’s example [3], we now define symbols for the true natural frequency and damping factor of the 
structure, if it had no supports, as

mktt / (3a)
s

ttt mc  2 (3b)

Combining equations (1) and (3a), we find a very simple, and easily remembered, expression relating the 

measured frequency, m, to the true frequency, t, and the support frequency, s
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Or, the true frequency can be expressed as
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And if s/m << 1.0, then
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From (6), it is easy to see the effect of added support stiffness on the measured frequency of the test item.  If the 

support stiffness is such that the ratio of the rigid-body frequency, s, to the measured frequency, m, is 1:10;

then the true frequency would be less than one half of one percent different from the measured frequency.  So the 
1:10 ratio is a good rule of thumb for most applications with reasonable accuracy.  However, if the ratio were 1:3 
as discussed by Wolf, then the error would be over five percent which generally would be unacceptable.  Wolf 
shows a case in which the error would be even as large as fifteen percent for a different dynamic system.  Wolf’s 
example illustrates where this simple rule of thumb, equation (5), is just that, a very simplistic approximation.  For 
example, envision supporting a horizontal beam with two vertical, soft bungee cords and desiring to measure the 
first bending mode of the beam.  If the supports are attached at the extreme ends of the beam, then the supports 
would have a much greater effect on that modal frequency.  In fact, the effect would be four times greater than 

that shown in equation (5).  One would need to insert the multiplier of 4.0 in front of the 
s term.  In contrast, if 

the supports are attached at the node points of the bending mode, then the supports would have zero effect on 
that particular modal frequency.  

Let us now turn our attention to the measured damping ratio.  Following the example of the frequency analysis 
above, combining equations (2) and (3b), we find another simple formula relating the damping factors.

ssttmm   (7)

The above expression can now be solved for the true damping ratio in terms of the measured and rigid-body 
damping ratios.
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This expression has similarities to that for the frequencies, equation (5), except that the frequency ratio inside the 
brackets is no longer squared and it is also multiplied by the ratio of the damping ratios.  So if we have a 

frequency ratio of 1:10, as the rule of thumb suggests, and if the support and measured damping ratios, s and 



m, are equal; then there would be a ten percent error if the true damping was assumed equal to the measured 
damping.  

However, suppose now we are testing a moderately damped structure and the frequency ratio is still 1:10, but the 
support damping is five percent and the measured damping is one percent.  Now the ratio of dampings in the 
bracket is 5.0 and has a large effect. The true damping would only be 0.5 percent, so one would have a hundred 
percent error if one assumed the measured damping was the true damping.  Lastly, let us now consider the case 
in which the frequency ratio is 1:3.  If the true damping ratio is again 0.5 percent and the support damping ratio is 
five percent, then the measured damping ratio would be 2.59 percent, resulting in four hundred percent error if 
one assumed the measured damping was the true damping. 

From these examples and equation (7), one can see that the situation for the measured damping ratios is different 
from that for the measured frequencies.  Assuming the true damping ratio is the same as the measured damping 
ratio can result in huge errors as compared to those for the frequencies.  Unfortunately, most finite element 
models do not include damping, so one cannot validate a damping model with test data, and then remove the 
support damping.  Frequently, test-derived modal damping is used in the model to create the damping model.

Now, there is one saving factor in the measurement of modal damping.  The viscous damping model (one that is 
independent of frequency) is frequently not a good model for many support structures, including bungee cords 
and airbags.  Damping in materials and the estimation of damping models has been the subject of many papers, 
just a few have been referenced here [8, 9, 10, & 11] as examining damping models is beyond the scope of this 
present work.  But many authors would use a structural or solid damping model, at least in part to model damping. 

Using structural damping, then the damping force is modeled by an imaginary structural damping coefficient, , 
times the stiffness times the displacement, rather than the viscous damping coefficient, c, times the velocity.  So 

the damping force is √-1**k times the displacement rather than c times the velocity.  Using the structural damping 

model, then the typically measured viscous damping factor, , at the resonant frequency is approximately equal to 

/2, [12].  And equation (7), which related the viscous damping factors, would be replaced by
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This equation is much more forgiving of the damping that is in the support system than equation (7).  For 
example, suppose as again we are testing a moderately damped structure and the frequency ratio is still 1:10, but 
the structural support damping is five times that of the structural true damping, then the measured damping would 
contain only a five percent error as compared to the true damping.  In the extreme case when the frequency ratio 
is 1:3, and the support damping is five times that of the true structure, then the measured damping is 43 percent 
in error and would be unacceptable, but not nearly as bad as the viscous damping model.  Even for this structural 
damping model, one can still vastly overestimate the modal damping in a structure if the true damping is 
exceptionally small, as we will see later in this paper.  So, for applications with low damping, one must be 
particularly attentive to the added support damping, regardless of the model.

THE MULTI-DEGREE-OF-FREEDOM SYSTEM

In this section, the multi-dof problem will be examined to derive formulas similar to those above.  Typically, we are 
only concerned with the lowest mode of the dynamic system because it will be most affected by the support 
system, so one might think that the single dof model should be sufficient, and that is true frequently.  However 
with a multi-dof system, the placement of the supports relative to the mode shape can be accounted for.  That is a 
very important aspect of the support problem.  We alluded to this aspect somewhat in the previous section by 
mentioning that for a beam the frequency shift depended whether the supports were attached at the beam ends 
or the nodes of the first mode.  If the supports were attached at the beam extremities, the effect of the support 
conditions was four times that which the single dof formulas provided; and if attached at the nodes of the mode, 
then the effects reduced to zero.



Let us first examine the real eigenvalue problem for the multi-dof system which yields the eigen or modal 

frequencies and compute the change in a particular modal frequency, p, due to a small change in the stiffness 
matrix, K.
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The easiest procedure is to take the partial derivative of equation (10) with respect to just one support stiffness, 
say kii.  This would be on the diagonal of the matrix because the support stiffness is to ground.  Using established
formulas for the derivative, (see for example [5], page 152, Equation 2.165), after a few simplifications, we find
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Equation (11) assumes we have mass normalized modes.  Now, we can let the stiffness matrix for this system be 
equal to the true stiffness, Kt, plus the support stiffness, Ks, where the kii parameter only appears in the KS matrix.   
Then the partial derivative of K with respect to kii would just be a matrix with all zeros except at position i on the 
diagonal where it would be unity.  Utilizing this in equation (11), we find
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where the superscript i indicates the ith component of the vector.  With this relationship for the partial derivative, 
we can now approximate the change in modal frequency due to the addition of a support stiffness kii by
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This formula for the change in frequency is quite simple, and it is straightforward to evaluate, using the stiffness of 
the support system.  With more than one support one would simply add the contributions from the elements 
including rotational constraints, as well.  Comparing (13) with (6), one can see that the result for the multi-dof case 
reduces exactly to that of the single dof case, keeping in mind that the mode shape has been mass normalized.  

Also note that p is in the denominator on the right hand side of (13), so at higher modal frequencies p/p

varies proportionally as (1/p)2.

We can now turn to the issue of damping in a supported structure.  For the support damping, the situation is more 
complicated than for the modal frequency because one will typically not have an analytical model of the damping 
in the structure.  But the issue is the same as for the stiffness, given a measurement of the damping for a 
particular mode, how can we determine the change in that modal damping due to the support system.  We will 
show in the following analysis that we can compute an approximation to the change in modal damping, if the 
support system makes a negligible change to the mode shape of the structure; and we have the mode shape 
components at the support connections and a damping model for the support system.  Let us now look at the 
complex eigenvalue equation for a particular mode of the system.

   0
2

  MCCiK mstm
T

(14)

where we have pre-multiplied by the transpose of that mode shape   K is the total stiffness matrix, m is the

measured eigenvalue, i is √-1, Ct is the damping matrix for the true structure, and Cs is that for the support 

structure. Now let us assume that the mode shape from the real eigenvalue problem can be used in equation (14)
in order to evaluate the damping in a mode.  This basically assumes that the diagonal elements of ’C



adequately reflects the damping in system and that the off-diagonal terms can be ignored.  Also, implied in this 
assumption is that the mode shape changes negligibly with the addition of the support damping. The damping 
ratio is now defined conventionally, as if the real modes did indeed diagonalize the damped system, as
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Now, we can define the true modal damping, as before, as
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Expand equation (15) and combine with (16), taking the mode shape to be mass normalize, we have
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which is very similar to equation (7) derived for the single dof system.  Here the contribution due to the support 

damping has just been generalized to include the mode shapes.  Solving for t, we find
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This formula for the true damping ratio, as the frequency formula, Equation (13), is a fairly simple expression.  
Given the measured modal damping, the measured modal frequency, the mode shape components at the support 
dof's, and the damping model, the true damping ratio of the unsupported structure can be calculated.  Equation 
(18) can also be compared to (8) for the single dof case.  Again, these equations are very similar, and (18) 
reduces to (8) for the single dof case.  

Equation (18) reveals some important features, just as (8) did.  Because the quantity in the brackets is the 
difference between one and a positive number, the difference between the true damping ratio and the measured
damping ratio can be significant if the last term in the brackets is not close to zero.

EXPERIMENTAL APPLICATION – UNIFORM BEAM

In this section an experimental demonstration of these issues involving the support system will be described.  An 
extremely lightly damped system was chosen for the experiment in order to highlight the effects of the support 
system on the measured damping as well as the measured frequency.  To achieve the light damping, a 72 inch 
aluminum beam with a 1.0 by 1.5 inch cross-section was selected. The supports were place at the ends of beam, 
the optimal locations for creating a change.  Seven light-weight accelerometers were mounted at equal spacing 
on the beam to measure the mode shapes, although we were only interested in the first bending mode and the 
rigid-body bounce mode.  The supports were very thin, long elastic cords attached at the ends; and the lengths of 
the cords were varied.  Figure 3 shows a photo of the beam with its elastic supports.



Figure 3:  Photo of Lightly Damped Aluminum Beam with Variable Length Elastic Supports

The length of the elastic cords was varied with modal tests performed for eight different length configurations.  
Along with the first bending mode, the frequency and damping of the bounce mode were also measured for each 
configuration in order to ascertain the support stiffness and damping.  Preliminary to these eight horizontally 
supported tests, one test was conducted with the beam suspended vertically from a very long pendulum support
at just one end.  The pendulum frequency (lateral mode) was exceptionally low compared to the first bending 
mode so to truly simulate a free support.  This test condition was assumed to be the ideal condition from which all 
other test data would be compared. In this vertical suspension, the beam frequency was 58.6 Hz with 0.066 
percent of critical damping.  As mentioned earlier, the beam was very lightly damped; and the seven 
accelerometer cables actually did contribute to the nominal damping.  Special care was taken so that the 
instrumentation cables and their lengths remained constant for all the testing.  The measured data from these 
nine tests are shown in Table 1 below, with the frequencies and dampings for the bounce mode and the first 
bending mode.  The modal parameters were estimated using a frequency-domain, narrow-band algorithm.  
Included in the chart are the changes in the frequencies and dampings for each configuration as compared to the 
nominal data.

Table 1:  Measured frequency and damping data for the beam with the variable support conditions.

Bounce Mode First Bending Mode Increase in 
Bending 

Frequency (Hz)

Increase in Bending
Damping Factor

(% of critical)
Frequency 

(Hz)
Damping Factor

(% of critical)
Frequency 

(Hz)
Damping Factor

(% of critical)

0.32 (pendulum) ~ 0 58.6 0.066
2.31 3.7 58.7 0.13 0.1 0.06
3.09 4.3 58.8 0.18 0.2 0.11
3.43 4.5 58.9 0.21 0.3 0.14
3.81 4.3 59.0 0.21 0.4 0.14
4.41 6.7 59.2 0.26 0.6 0.19
5.31 8.6 59.6 0.33 1.0 0.26
6.96 11.7 60.5 0.53 1.9 0.46
8.65 13.2 61.5 1.00 2.9 0.93

Examining the chart, one can see that the bounce frequency (support frequency) increased from 2.31 Hz to 8.65 
Hz, so the frequency ratio decreased from 25 to 7.  And we see an increase of 2.9 Hz (5 percent) in the frequency 
of the bending mode for the stiffest support condition.  We can calculate the support stiffness because we have 
measured the bounce frequency, and along with the bending mode shape; we can apply equation (13) to 
compute the predicted changes in measured frequency due to the support stiffnesses.  Figure 4 plots the 
computed results versus the observed results as recorded in Table 1. The frequency changes are plotted as a 



function of the ratio of the elastic mode to the rigid-body bounce mode of the beam.  As predicted from the theory, 
the change in the measured frequency diminishes as the ratio increases.  Although here, one needs a ratio of 
approximately 15 before the frequency change drops below one percent.  The predicted changes using equation 
(13) follow the observed changes quite well.  Recall that equation (13) shows only the first order effects, so there 
would be some differences, and equation (13) also assumes the support stiffness is not a function of frequency.
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Figure 4:  Comparison of the Observed Changes in Modal Frequency versus Predicted Changes Using 
Equation (13)

Figure 5 below plots the change in the measured damping as a percent of the nominal damping versus the 
frequency ratio.  Even for the highest frequency ratio of 26, there is a 100 percent change in the measured 
damping.  In contrast to the changes in measured frequency, the measured damping for the bending mode has 
increased dramatically as the support has increased its stiffness and damping.  For the worst case, the measured 
damping is 15 times that of the true damping (1400 percent increase). Of course, the changes in damping have 
been intentionally amplified in this test because the beam structure was chosen to be very lightly damped.
Nevertheless, these results do show how sensitive the measured damping can be to the support conditions.  
Even with supports designed using the rule-of-thumb (frequency ratio = 10), the error in the measured damping 
can be huge.  
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Figure 5:  Observed Changes in Modal Damping as a Function of the Frequency Ratio

One would like to contrast these observed changes in the measured modal damping to predicted changes using 
either equations (7), (9), or (18).  However upon application of (18), using damping determined from the rigid-body 
modes, the predicted changes in damping vastly over–predicted the observed changes by factors of five to ten, 
convincing one that the viscous damping model was inappropriate for the supports.  But upon application of (9), 
the predicted changes were much smaller than those observed.  Consequently, it is believed that the damping 
model for the supports contains a combination of both the viscous and the structural damping characteristics; 
unfortunately measurement of the damping at the rigid-body modal frequency does not provide sufficient data to 
characterize the support damping, so a comparison with predictions is not possible.

This test of a lightly damped uniform beam provides some interesting insights into support issue.  It clearly shows 
the effect of the support stiffness on the measured modal frequency and the error that could result if one assumed 
the measured frequency was the true frequency.  The formulas derived in the theory section adequately predict 
the observed changes in the measured frequency.  For the measured damping, this example illustrates very how 
much the supports can affect the damping.  Unfortunately, the damping changes could not be predicted because 
of an uncertain damping model.  In the next section, we will examine modal test results from a production modal 
test of a wind turbine blade.  Modal parameters were desired in order to validate the model both for stiffness and 
fatigue concerns, so the modal damping in the blade was required.



EXPERIMENTAL APPLICATION– WIND TURBINE BLADE

The tested wind turbine blade was the first blade of a series of new designs coming from the Blade System 
Design Studies (BSDS) program, and this BSDS blade was 27 feet long, weighing 290 pounds.  A photo of the 
blade is shown in Figure 6.  Additionally we note that the root end of the blade is 20 inches in diameter and the 
blade CG location is nominally 84 inches from the root end. The blade was instrumented with 48 biaxial 
accelerometers plus 10 strain gauges in the flatback trailing edge region for a total of 106 measurement channels.  
The total mass of the instrumentation including the accelerometers, mounting blocks, and adhesive was 1.9 
pounds. The blade was supported softly at two locations.  Nylon straps were used to hold the blade using a 
choker style loop.  The suspension was designed to be soft using bungee cords as can be seen in Figure 6.  A 
variety of bungee cord configurations were used for these tests, including a set of bungee cords deemed to be 
optimal

Figure 6:  Photo of BSDS Wind Turbine Blade in the Test Lab

.
  
The blade has two sets of bending modes, flatwise and edgewise.  The flatwise modes involve bending about the 
x-axis, as shown in Figure 6, and bends the blade in its flat or soft direction.  The edgewise modes involve 
bending about the y-axis or in the stiff direction of the blade.  The flatwise bending modes are the lowest elastic 
modes of the blade, and consequently the support system was designed to utilize the pendulum stiffness in the 
flatwise direction.  The rigid-body pendulum modes are very low, and consequently have little effect on the 
measured frequencies.  In contrast, the edgewise direction is directly restrained by the stiffness of the bungee 
cords, and their stiffness is sufficient to effect the measured modal parameters.  Consequently we were mostly 
concerned with the effect of the support on the modal frequency and damping of the first edge-wise bending 
mode, which is a bending mode in the direction of the bungees.  Although for this particular blade structure, it was 
fairly easy to design a soft support system because the blade had a high stiffness-to-weight ratio.
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As part of the pre-test planning phase, bungee cords were tested for their stiffness and damping by suspending 
rigid masses from the bungee cords and measuring the resulting frequencies and damping factors.  Their 
frequencies and damping factors were measured for various deformation amplitudes, frequencies of the vibration,
and preloads on the bungee; unfortunately, the stiffness and damping varied significantly with preload, amplitude, 
and frequency, making it difficult to fully characterize the bungee cords, and creating some uncertainty in the 
bungee model.  Consequently after the pre-test design, the bungee cords characteristic were deduced from the 
rigid-body modal parameters measured during the actual test of the blade. 

Four preliminary modal tests with very sparse instrumentation were conducted to experimentally assess the 
effects of various configurations of the support conditions.  Table 2 describes these four configurations, 
designated 1, 2, 3, and 4. 

Table 2:  Four Different Bungee Configurations for Supporting the Blade

Configuration 
Number

Support Characteristics

Description
Number of 

Loops
Motivation of Configuration

1 Bungees spaced  
30 inches, either 

side, from CG

8,8
Low preload on each bungee loop of 20 

pounds. Safe support design.

2 6,6
Slightly higher preload (25 pounds) 
reduces stiffness of bungee loops.

3 On the nodes of 
edgewise mode,  

46 and 148 inches 
from CG

6,6
Moved to nodes of mode to reduced 
effect of bungee; preload changed

4 4,2
Reduced number of bungees to reduce 

support stiffness & balance preload

For Configuration 1, the support is a stiff configuration with low load on each of the bungee loops.  However, we 
found the rigid-body bounce mode at 4.7 Hz compared to the first edgewise bending at 16.38 Hz to be much too 
high with a frequency ratio of only 3.4.  For configuration 2, we reduced the number of bungee loops from 8 to 6, 
and the bounce mode dropped from 4.7 to 3.2 Hz, producing a still high frequency ratio of 5.1; but the bending 
frequency decreased by 1.2 percent and the damping factor went for 1.0 to 0.8 percent.  Moving to Configuration 
3 with the supports placed at the nodes of the mode, produced a total 1.8% reduction in frequency and a 27% 
reduction in damping, even though the bounce mode increased in frequency.  Configuration 3 clearly showed the 
advantage of placing the supports at the nodes of the affected mode, as equation (13) displays.  Configuration 4 
is considered our optimal configuration in which the number of bungee loops is further reduced to decrease the 
stiffness and placed on the nodes.  The bounce frequency has now dropped to 1.28 Hz for a frequency ratio of 
13.  However, the frequency of the bending mode only decreased by 0.1 percent between Configurations 3 and 4, 
but its damping factor dropped from 0.73 to 0.63.  These four support configurations demonstrate the effect that 
the support conditions can have on the measured modal parameters of the elastic modes, increasing the 
frequency by 2 percent and the damping by 59 percent.  Even though this blade structure is quite stiff compared 
to its mass, it still requires careful consideration of the support design if one does not want to introduce significant 
errors to the measured modal parameters, particularly the measured modal damping. The measured frequencies 
and damping factors for these four configurations for both the rigid-body bounce mode and the first edgewise 
bending mode are listed in Table 3 below

Table 3: Measured Modal Parameters for 4 Support Configurations for the Bending and Rigid-Body Modes

Config.
No.

Rigid-Body Bounce Mode First Edgewise Bending Mode Ratio of 
Edgewise to 

Bounce Freqs.
Freq. 
(Hz)

Damping 
Factor (%)

Freq. 
(Hz)

Increase from 
Conf. 4 (%)

Damping 
Factor (%)

Increase from 
Conf. 4 (%)

1 4.72 4.2 16.38 2. 1.00 52 3.5

2 3.19 4.9 16.18 1. 0.80 21 5.1

3 5.59 5.2 16.09 0.1 0.73 10 3.1

4 1.28 3.2 16.07 - 0.63 - 12.5



.

We can now compare the predictions using the developed formulas from the theory section with that which we 
have observed from this test data.  Examining Configuration 1, we observed a frequency shift of 0.31 Hz and a 
damping factor increase of 0.37 percent.  Using the rigid-body modal frequency and damping factor to compute 
the stiffness and damping of the bungee cords supporting the blade, we can predict the frequency change with 
equation (13). Utilizing the mass normalized mode shapes from the analysis, we computed a predicted increase 
in frequency of 0.27 Hz which is very comparable to that observed of 0.31 Hz.  This is particularly pleasing in view 
of the earlier investigation of the bungees which showed their stiffness was sensitive to deformation frequency.  
Regarding the change in damping, we can also apply equation (18), and here we compute that the true damping 
would be 0.32 percent.  This clearly over-estimates the effect of the support damping, which we would suspect is 
due to the fact that the damping model must include some structural damping as well as the viscous damping 
assumed in equation (18).  Using a structural damping model, we compute the true damping to be 0.80 percent 
which underestimated the effects.  So we are seeing the same results here as with the uniform beam; the viscous 
model overestimates, and the structural damping model underestimates the change in the measured damping.  
Nevertheless, this example from a production modal test on a wind turbine blade clearly illustrates the primary 
points of this paper:  support system stiffness can increase the measured frequencies above the true frequencies, 
and the measured damping is much more sensitive to the support system than the modal frequencies.  Care must 
be exercised when designing support system for “free” modal tests.

CONCLUSIONS

In this paper we have examined the effects of support stiffness and damping on measured modal frequencies and 
damping ratios.  The analysis of the single dof system provided very revealing results which produced insight for 
the general system.  The analysis of the multi-dof systems produced results very similar to that of the single dof 
system except now the mode shape of the elastic mode was included in the formulas.  The increase in the 
measured frequency of the elastic mode was related to the square of the ratio of the frequencies of the rigid-body 
mode and the elastic mode.   The damping was much more sensitive as the damping increase involved both the 
ratio of frequencies, rather than the square of their ratio, and the ratio the dampings.  Consequently, even for 
softly a supported structure, the measured damping could be far from the true damping.  These formulas can be 
used to aid in the design of a support system for modal testing of free or constrained structures.  

The effects of the support system on both modal frequencies and modal damping were illustrated with two test 
structures.  The first structure was an extremely lightly damped beam which revealed changes in the measured 
modal frequency and damping.  The changes in the measured damping for the elastic mode were huge, indicating 
the care one must take in order to measure accurate damping for a freely suspended structure.  The second 
structure was a blade for wind turbine in which modal data were required to validate the analytical model of the 
blade.  Several support configurations were used for this blade, again revealing significant changes in the 
measured frequencies and dampings. These changes in the measured modal parameters were sufficiently large 
that they needed to be accounted in order to validate the blade model.

ACKNOWLEDGMENTS

The authors wish to acknowledge Dave Kelton for the tremendous support and creative ideas he contributed.
This work was conducted at Sandia National Laboratories.  Sandia is a multi-program laboratory operated under 
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-
AC04-94-AL85000.

REFERENCES

1.  Bisplinghoff, R. L., Ashley, H., & Halfman, R.L., Aeroelasticity, Addison-Wesley Publishing Company, Inc., 
Cambridge, MA, pp. 771-779, 1955

2.  Strutt, J.W. (Lord Rayleigh), The Theory of Sound, vol.1, 2nd ed., Dover Publications, Inc., New York, 1945.

3.  Wolf Jr., J.A., "The Influence of Mounting Stiffness on Frequencies Measured in a Vibration Test", SAE Paper 
840480, Society of Automotive Engineers, Inc., 1984.



4.  Carne, T.G., “Support Conditions, Their effect of Measure Modal Parameters”, Proceedings of the 16
th

International Modal Analysis Conference, SEM, pp 477-483.

5.  Ewins, D.J., Modal Testing: Theory, Practice and Application, 2
nd

ed. Research Studies Press, Ltd, 2000.

6.  Brillhard, R. and Hunt, D., “Part 1: The Pitfalls, Pratfalls, and Downfalls of Fixturing”, Experimental Techniques, 
SEM, Vol. 29, No. 6, Nov/Dec, 2005, pp 58-61.

7.  Avitabile, P., “Modal Space, Back to Basics”, Experimental Techniques, SEM, Vol. 30, No. 3, May/June, 2006, 
pp 19-20.

8.  Lazan, B.J., Damping of Materials and Members in Structural Mechanics, Pergamon Press, Elmsford, NY, 
1968.

9.  Slater, J.C., Belvin, W.K., and Inman, D.J., “A Survey of Modern Methods for Modeling Frequency Dependent 
Damping in Finite Element Models”, Proceedings of the 11

th
International Modal Analysis Conference, SEM, pp 

1508-1512.

10.  Pilkey, D.F. and Inman, D.J., “A Survey of Damping Matrix Identification”, Proceedings of the 16th

International Modal Analysis Conference, SEM, pp 104-110.

11.  Tsuei, Y.G. and Huang, B.K., “Effect of Modeling for Damping on Parameter Identification”, Proceedings of 
the 16th International Modal Analysis Conference, SEM, pp 1427-1432.

12.  Maia, N.M.M. and Silva, J.M.M., Theoretical and Experimental Modal Analysis, Research Studies Press, Ltd, 
1997, p 32.


