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• Key issues and targets for this presentation: 
• We need to better understand  the science of accelerated aging
• Arrhenius extrapolation versus non-linear behavior with T
• Accelerated aging, how to extrapolate ?
• Are there anomalies in accelerated aging due to temperature?

Polymer Performance – Optimization of Materials
Accelerated Aging  - Predicting Polymer Lifetimes

Our broader interests are:
• Understanding the performance of industrial materials
• Developing methods and techniques for accelerated aging of materials
• Develop strategies for lifetime prediction methods
• Using specific materials to better understand polymer degradation
• Combine physical and chemical analyses with modeling



High performance polymer materialsHigh performance polymer materials

• Know chemical and mechanical properties, processing variables
• Select compromise material with optimized desirable properties

PROPERTY

PROCESSINGSTRUCTURE

OPTIMIZATION

PERFORMANCE

Aging, degradation Environmental 
influence
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Failure processes - time dependency
• Infant mortality controlled by material robustness
• Random failure  
• Wear out, autocatalytic failure increase, final life 

time

Fa
ilu

re

X accelerated test

X real world

?

time
Fa

ilu
re

Robustness

Random failure

Wear out

Extrapolations
Arrhenius
Inverse power law
Eyring
WLF

Failure modes to be established
Determine acceleration factors
Variability in acceleration of aging mechanism
Variability in sample to sample
Static versus dynamic aging exposure
(just oven exposure or cyclic stresses, annealing)
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Reactions may change with temperature

• Two fundamental issues: The classic chicken or the egg problem
Plus, temperature conditions for perfect aging, do they exist?

Accelerated aging
100oC,
5 minutes

Shelf-life aging
25oC, 30 days

Henhouse aging
30 days

Rotten eggs at 25oC
(ambient temperature)

Hard boiled 
eggs at 100oC

Baby chicks at 40oC

Evolution and accelerated aging
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Accelerated aging  - 2 to 3 times faster per 10°C ?

• Rule of thumb, widely used in chemistry (reaction kinetics)
• Increase T by 10°C, results in 2 to 3 times faster reaction
• Approach implies that Ea. will depend on T 
• Will result in curvature for Arrhenius plot 

Eact. depends on temperature
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Accelerated aging of materials Accelerated aging of materials -- constant constant EactEact.?.?
• Arrhenius approach to accelerated aging
• Aging kinetics described by liner Arrhenius plot with constant Eact.
• Considerable acceleration even for moderate Eact. And T range
• Relative acceleration will depend on temperature range
• Shift factor of 106 equal to 1d vs. 2740 years

Shift factors for different Eact.
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Example 1: Accelerated aging anomaly with T

• DLO: Diffusion Limited Oxidation
• Oxidation in material is faster than oxygen can diffuse into it
• Will lead to oxidation profile formation, heterogeneous degradation
• Oxidation rate Φ (consumption) versus permeability P (supply)
• Accelerated aging tests can completely misrepresent real aging

O2
UV
y-radiation
heat

O2O2

No DLO present DLO conditions

substrate substratesubstrate

coating layers
primer

Unaged coating or polymer Oxidation only partially
within top layer
Accelerated aging test

Uniform oxidation
throughout all layers
Ambient slow aging

Measure or estimate Φ and P prior to conducting any accelerated aging tests!
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Example 2: Mechanistic anomaly with T

• Anomalous aging effect in temperature-radiation environments
• Observed for various crosslinked polyolefin materials (cable insulation) 
• Reflects mechanistic variations in degradation mechanism
• Elevated temp aging could not predict low temp degradation
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• Radiation thermal aging
• Relevant to photo-oxidation?

M. Celina, K. Gillen, J. Wise, R. Clough, Radiat. Phys. Chem., 48 (1996) 613
M. Celina, K. Gillen, R. Clough, Poly. Deg. Stab., 61 (1998) 231
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Example 2: Mechanistic anomaly with T

• Anomalous aging effect in temperature-radiation environments
• Observed for various crosslinked polyolefin materials (cable insulation)
• Reflects mechanistic variations in degradation mechanism
• Elevated temp aging could not predict low temp degradation
• Competition between scission and crosslinking (only active at high T’s)
• Faster aging at lower temperature (only scission)

annealing
24h at 140°C
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Polymer Performance – Optimization of Materials
Accelerated Aging  - Predicting Polymer Lifetimes 

Some examples of our approaches:
• Oxygen consumption, oxidation rate measurements over 
large temperature range
• Analysis of AO consumption with aging 
• Chemiluminescence for condition monitoring

Required for meaningful aging study:
• Need to have large set of samples 
• Need long-term aging experiments over large T range  
• Time = $$$ = aging !
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Oxygen consumption-Predicting aging at low T’s

• Manifold, ampoules, GC-analysis, P transducer  
• Fill ampoules to PO2 required
• Determines consumed O2 and produced CO2/CO
• High dynamic sensitivity, polymer/free gas volume
• Measures oxidation rates ranging from 10-8 to 10-13 mol/g-s
• Experiments require days to months at RT
• Many polymers consume ~20cc/g STP of O2 to mechanical failure
• 10-13 mols/g-s equivalent to life-times of ~ 280 years at RT

Note: Rates are corrected for increase of P with T, dissolved gas and volatiles
J. Wise, K. Gillen, R. Clough, Poly. Deg. Stab., 4 (1995) 403
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Oxygen consumption-Predicting aging at low T’s

• Comparison of oxidation rate and 
CO2 formation, mechanism feedback
• Correlation of oxidation level and 
mechanical properties, property 
predictions

Superposed tensile elongation data at 80°C
average oxidation rate 4*10-11 mols/g-s
50% elongation corresponds to ~ 1.8% oxidation
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Oxygen consumption-Predicting aging at low T’s

• Time/temperature superposition of oxidation levels in PU elastomer
• Curvature in Arrhenius plot (similar for O2 and CO2)
• Time/temperature superposition for shift factor determination
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Oxygen consumption correlates with mechanical 
property changes
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• Oxygen consumption yields data over large T range  
• Non linear extrapolation, change to lower Eact. with T
• Oxuptake predicts mechanical properties down to ambient

~ 6 years at 50°C

M. Celina, A. Graham, K. Gillen, R. Assink, and L. Minier, Rub. Chem. Tech. 73 (2000) 680
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Oxygen consumption- Pure antioxidant powder

• First time: Analysis of pure phenolic antioxidant (2246)
• Strong dependence of oxidation rates on temperature
• Similar Arrhenius curvature as in the stabilized elastomer
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Is there a chemical reason for Arrhenius curvature?

• Explored mechanistic variations between high and low T aging
• Curvature in Arrhenius plots observed for many materials
• Evidence for mechanistic changes, i.e. more CO2 production at high T’s   
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K. Gillen,  M. Celina, R. Clough, J. Wise, Trends in Polymer Science, 5 (1997) 250
M. Celina, A. Graham, K. Gillen, R. Assink, and L. Minier, Rub. Chem. Tech. 73 (2000) 680
K. Gillen,  R. Bernstein, D. Derzon, Poly. Deg. Stab., 87 (2005) 57

Ken Gillen, Dept. 1811
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AO consumption and Wear-out behavior

• Material failure at the end of the induction time (low AO level)
• How does AO consumption depend on T?
• Wear out concept: Prior aging leaves signature in material
• Accelerated aging of aged samples, determine fractional changes

Aging time

[A
nt

io
xi

da
nt

]

unaged
material

material
failure

)(][ tfAO =

tkAOAO t ∗−= 0][][

Consumption of antioxidant during aging

Aging time

D
eg

ra
da

tio
n 

va
ria

bl
e 

(i.
e.

 ra
te

)
Heavily aged

Some aging

Unaged

Prior aging levels affect follow-up aging 

))/1(]/([][ 0 it ttAHRHkk −∗∗=

M. Celina, J. Skutnik Elliott, S. Winters, R. Assink, and L. Minier, Poly. Deg. Stab., 91 (2006) 1870
M. Celina, A. B. Trujillo, K. T. Gillen, L. Minier, Poly. Deg. Stab., 91 (2006) 2365
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Predictive aging study of elastomer
• Aim: Establish features of AO depletion
• Developed GC method
• Aim: Correlation of AO level with mechanical state 
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Predictive aging study of elastomer
• Rapid decrease in AO at elevated T
• Continued presence of AO at lower T 

AO depletion features depends on T
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• No universal correlation between AO level and mechanical properties
• Aging and failure will occur at low T’s despite high levels of active AO

M. Celina, J. Skutnik Elliott, S. Winters, R. Assink, and L. Minier, Poly. Deg. Stab., 91 (2006) 1870
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AO consumption and Wear-out behavior

• Material failure at the end of the induction time (low AO level)
• How does AO consumption depend on T?
• Wear out concept: Prior aging leaves signature in material
• Accelerated aging of aged samples, determine fractional changes
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Chemiluminescence (CL) in Polymer Degradation

• CL accompanies oxidative aging processes
• Weak photon emission in the visible
• Provides feedback on degradation processes 
• Photon counting apparatus required
• Sensitive technique for fundamental studies
• In-situ studies and analysis of aged materials

aging
T, O2

aged polymer,
chain defects with
reactive species, i.e. hydroperoxides

+ CL photon

+ CL photon

chemical condition probing

sensitive photomultiplier
detection

Aims:
• Use CL as a condition 
monitoring technique

• Isothermal ‘Wear-out’
aging via in-situ CL
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CL condition monitoring of aged HTPB material

Decrease in Et with aging time
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• Use pre-aged samples and apply
‘Wear-out’ aging at elevated T

• Detect isothermal CL with time
• under O2 (i.e. at 120°C)

• Observe shorter times to maximum CL with previous aging
• Sensitive increase in initial rate with previous aging 

M. Celina, A. B. Trujillo, K. T. Gillen, L. Minier, Poly. Deg. Stab., 91 (2006) 2365
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CL condition monitoring of aged HTPB material

Iini at 130°C [s-1mg-1]
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• Observe shorter times to CL maximum with previous aging
• Sensitive increase in initial rate with previous aging 
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M. Celina, A. B. Trujillo, K. T. Gillen, L. Minier, Poly. Deg. Stab., 91 (2006) 2365
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Example: Combined hydrolytic and thermal aging

• Polyurethane elastomer, lifetime estimation needed for re-qualification
• Property changes monitored via mechanical and T2 NMR changes 
• Unexpected rapid degradation at low temperatures
• Significant curvature, overestimation based on high T data 

Material A aging time prediction
at 20% humidity
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Material B aging time prediction
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Oxidation spreading – heterogeneity – metal catalysis

• Tinned copper wire, copper is a well-
known catalyst
• Example of localized degradation

Tin covered copper wire
Surface cracks

BPAN 95ºC

Time (h): 7                       23                        48  70                         191
HTPB 50°C

2180h       11600h

PBAN RT

670h       3600h      12400h
We will all age rapidly while we tackle the science of aging  
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• Understand your materials and aging conditions as best 
as possible to conduct meaningful accelerated aging tests!

A few conclusions

Temperature effects are well-known and important for:
DLO conditions during accelerated aging 
Mechanistic variations for combined radiation-thermal aging

Observed non-linear behavior with T:
Oxygen consumption measurements for many materials
AO consumption features and correlation with failure
Wear-out studies of previously aged elastomer materials
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