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vmer Performance — Optimization of Materials

Accelerated Aging - Predicting Polymer Lifetimes

Our broader interests are:
» Understanding the performance of industrial materials

» Develop strategies for lifetime prediction methods

« Combine physical and chemical analyses with modeling

» Developing methods and techniques for accelerated aging of materials

 Using specific materials to better understand polymer degradation

» Key issues and targets for this presentation:

* \We need to better understand the science of accelerated aging
» Arrhenius extrapolation versus non-linear behavior with T

» Accelerated aging, how to extrapolate ?

» Are there anomalies in accelerated aging due to temperature?
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1 performance polymer materials

« Know chemical and mechanical properties, processing variables
» Select compromise material with optimized desirable properties

PROPERTY

PROCESSING

\

Environmental
Influence
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Aqging, deqgradation
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 Infant mortality controlled by material robustness
 Random failure
» \Wear out, autocatalytic failure increase, final life

X accelerated test

Failure

A

Robustness Wear out

Failure

X real world

time time

Extrapolations
Arrhenius

Inverse power law
Eyring

WLF
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Failure modes to be established

Determine acceleration factors

Variability in acceleration of aging mechanism
Variability in sample to sample

Static versus dynamic aging exposure

(Just oven exposure or cyclic stresses, annealing) @ S
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tions may change with temperature

» Two fundamental issues: The classic chicken or the egg problem
Plus, temperature conditions for perfect aging, do they exist?

Accelerated aging

100°C,
5 minutes

Evolution and accelerated aging

Hard boiled

Shelf-life aging
25°C, 30 days

eggs at 100°C

Rotten eggs at 25°C
(ambient temperature)

Henhouse aging
30 days

Baby chicks at 40°C
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elerated aqging - 2 to 3times faster per 10°C ?

* Rule of thumb, widely used in chemistry (reaction kinetics)
 Increase T by 10°C, results in 2 to 3 times faster reaction

» Approach implies that Ea. will depend on T

e Will result in curvature for Arrhenius plot

Constant shift factors
imply Ea will dependon T

Conflicts with Arrhenius
methodology

Mat Celina, Dept. 1811

Relative shift factor
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erated aging of materials - constant Eact.?

» Arrhenius approach to accelerated aging

» Aging kinetics described by liner Arrhenius plot with constant Eact.
» Considerable acceleration even for moderate Eact. And T range
 Relative acceleration will depend on temperature range

o Shift factor of 10° equal to 1d vs. 2740 years
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le 1: Accelerated aging anomaly with T

e DLO: Diffusion Limited Oxidation

« Oxidation in material is faster than oxygen can diffuse into it

* Will lead to oxidation profile formation, heterogeneous degradation
» Oxidation rate @ (consumption) versus permeability P (supply)

» Accelerated aging tests can completely misrepresent real aging

0, uv o, 0,

y-radiation N
heat No DLO present | DLO conditions

coating layers

primer

Unaged coating or polymer Uniform oxidation Oxidation only partially
throughout all layers within top layer
Ambient slow aging Accelerated aging test

Measure or estimate @ and P prior to conducting any accelerated aging tests!

Sandia
. National
Mat Celina, Dept. 1811 Laboratories




le 2: Mechanistic anomaly with T

« Anomalous aging effect in temperature-radiation environments

» Observed for various crosslinked polyolefin materials (cable insulation)
 Reflects mechanistic variations in degradation mechanism

 Elevated temp aging could not predict low temp degradation

350 . . . .
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le 2: Mechanistic anomaly with T

« Anomalous aging effect in temperature-radiation environments

» Observed for various crosslinked polyolefin materials (cable insulation)
 Reflects mechanistic variations in degradation mechanism
 Elevated temp aging could not predict low temp degradation
« Competition between scission and crosslinking (only active at high T’s)
 Faster aging at lower temperature (only scission)

Ultimate tensile elongation [%]
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0
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vmer Performance — Optimization of Materials
Accelerated Aging - Predicting Polymer Lifetimes

Some examples of our approaches:

e OXygen consumption, oxidation rate measurements over
large temperature range

 Analysis of AO consumption with aging

e Chemiluminescence for condition monitoring

Required for meaningful aging study:

* Need to have large set of samples

* Need long-term aging experiments over large T range
e Time = $$$ = aging !
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«en consumption-Predicting aging at low T’s

« Manifold, ampoules, GC-analysis, P transducer

e Fill ampoules to P, required

 Determines consumed O, and produced CO,/CO

e High dynamic sensitivity, polymer/free gas volume

e Measures oxidation rates ranging from 10-8 to 10-*3 mol/g-s

e Experiments require days to months at RT

» Many polymers consume ~20cc/g STP of O, to mechanical failure
 10-12 mols/g-s equivalent to life-times of ~ 280 years at RT

Note: Rates are corrected for increase of P with T, dissolved gas and volatiles @ Sandia

National
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gen consumption-Predicting aging at low T's
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« Comparison of oxidation rate and

» Correlation of oxidation level and
mechanical properties, property
predictions

CO, formation, mechanism feedback
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vagen consumption-Predicting aging at low T's

» Time/temperature superposition of oxidation levels in PU elastomer
 Curvature in Arrhenius plot (similar for O, and CO,)
» Time/temperature superposition for shift factor determination
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en consumption correlates with mechanical

property changes

» Oxygen consumption yields data over large T range
* Non linear extrapolation, change to lower E
» Oxuptake predicts mechanical properties down to ambient

with T

act.
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gen consumption- Pure antioxidant powder

e First time: Analysis of pure phenolic antioxidant (2246)
 Strong dependence of oxidation rates on temperature
 Similar Arrhenius curvature as in the stabilized elastomer
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e a chemical reason for Arrhenius curvature?

» Explored mechanistic variations between high and low T aging
e Curvature in Arrhenius plots observed for many materials
 Evidence for mechanistic changes, i.e. more CO, production at high T’s
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nsumption and Wear-out behavior

» Material failure at the end of the induction time (low AO level)

* How does AO consumption depend on T?

» \Wear out concept: Prior aging leaves signature in material

» Accelerated aging of aged samples, determine fractional changes

Consumption of antioxidant during aging Prior aging levels affect follow-up aging

unaged
material

k. =k*[RH]/([AH], *(1-t/t,
[AO] = f (1) ¢ = K*[RHT/(LAH ], *( )

[AO], =[AO], -k #t

[Antioxidant]

Heavily aged
Some aging

rFaTeriaI Unaged
failure

Degradation variable (i.e. rate)

Aging time Aging time

M. Celina, J. Skutnik Elliott, S. Winters, R. Assink, and L. Minier, Poly. Deg. Stab., 91 (2006) 1870 @ ﬁgt"igﬁal
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' . - -
redictive aqing study of elastomer

« Aim: Establish features of AO depletion
» Developed GC method
» Aim: Correlation of AO level with mechanical state

Binder has 1% AO stabilizer Reduction in free AO with aging time
hindered phenol 2246

OH OH
~ CH, e
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dictive aging study of elastomer

» Rapid decrease in AO at elevated T
» Continued presence of AO at lower T

AO depletion features depends on T

0.8
¢ 110°C
v 95°C
0.6 A A 380°C
@ 65°C
® 50°C

0.4 -

AO 2246 [%)]

0.2 A1

1.0 0.8 0.6 0.4 0.2
Relative elongation (e/e)

0.0

AO 2246 [%]

Loss of mech. properties at diff. AO levels

0.8
initial AO level
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m 05e¢ele 7y
0.6 ° P /

/ /
/
0.4 /
[ |
0.2
]
0.0 : . . .
120 100 80 60 40 2C

Aging temperature [°C]

* No universal correlation between AO level and mechanical properties
* Aging and failure will occur at low T’s despite high levels of active AO
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nsumption and Wear-out behavior

» Material failure at the end of the induction time (low AO level)

* How does AO consumption depend on T?

» \Wear out concept: Prior aging leaves signature in material

» Accelerated aging of aged samples, determine fractional changes

Consumption of antioxidant during aging Prior aging levels affect follow-up aging

unaged
material

k. =k*[RH]/([AH], *(1-t/t,
[AO] = f (1) ¢ = K*[RHT/(LAH ], *( )

[AO], =[AO], -k #t

[Antioxidant]

Heavily aged
Some aging

rFaTeriaI Unaged
failure

Degradation variable (i.e. rate)

Aging time Aging time
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lluminescence (CL) in Polymer Deqgradation

CL accompanies oxidative aging processes
*\Weak photon emission in the visible
*Provides feedback on degradation processes
*Photon counting apparatus required

» Sensitive technique for fundamental studies

*In-situ studies and analysis of aged materials

- Aims:
sensitive photomultiplier |* Use CL as a condition
detection monitoring technique

e |Isothermal ‘Wear-out’
aging via in-situ CL

: chemical condition probing
aged polymer,

chain defects with Sandia
Mat Celin, Dept, 1611 reactive species, i.e. hydroperoxides @ e, |



ndition monitoring of aged HTPB material

Decrease in E, with aging time

400
¢ 110°C
. v 95°C
S A 80°C
'E' 300 = ] 650C
o @ 50°C
©
(@)
c 200
o
()]
Q
2 100 A
(O]
|_
O T T ML T T oot T T T T T oot T
0.1 1 10 100 1000

Aging time [d]

» Use pre-aged samples and apply
‘Wear-out’ aging at elevated T

CL signal [10° s'mg™]

3
shorter t,, 5 With prior aging
21 80°C
140 d 0d

increase in liy;
11 . .

with aging
0

0 10 20 30

40

Wear-out time at 120°C [h]

e Detect isothermal CL with time

e under O2 (i.e. at 120°C)

* Observe shorter times to maximum CL with previous aging
e Sensitive increase in initial rate with previous aging

Mat Celina, Dept. 1811 M. Celina, A. B. Trujillo, K. T. Gillen, L. Minier, Poly. Deg. Stab., 91 (2006) 2365
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Ition monitoring of aged HTPB material
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* Observe shorter times to CL maximum with previous aging
e Sensitive increase in initial rate with previous aging

Sandia
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: Combined hydrolytic and thermal aging

 Polyurethane elastomer, lifetime estimation needed for re-qualification
 Property changes monitored via mechanical and T, NMR changes

« Unexpected rapid degradation at low temperatures

e Significant curvature, overestimation based on high T data

Material A aging time prediction 3 100 Material B aging time prediction 7 100
at 20% humidity i at 20% humidity Predicted lifetimes at RT® [
I based on wear-out g))n’g
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» Tinned copper wire, copper is a well-
known catalyst
« Example of localized degradation

BPAN 95°C

HTPB 50°C

2180h 11600h 670h 3600h  12400h

We will all age rapidly while we tackle the science of aging @ Eat?ig:ga%_
oratories
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. .
}‘ A few conclusions

Temperature effects are well-known and important for:
DL O conditions during accelerated aging
Mechanistic variations for combined radiation-thermal aging

Observed non-linear behavior with T:

Oxygen consumption measurements for many materials
AQO consumption features and correlation with failure
Wear-out studies of previously aged elastomer materials

e Understand your materials and aging con
as possible to conduct meaningful accelerat
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