
Software Strategies for Flexible
High-Performance Implicit Numerical Solver Libraries

Roscoe A. Bartlett

Department of Optimization and Uncertainty Estimation

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2006-5858C

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Computational Sciences at Sandia : PDEs and More …

• Chemically reacting
flows

• Climate modeling

• Combustion

• Compressible flows

• Computational biology

• Circuit modeling

• Inhomogeneous fluids

• Materials modeling

• MEMS modeling

• Seismic imaging

• Shock and
multiphysics

• Structural dynamics

• Heat transfer

• Network modeling

Multi-Physics is a Major Theme!

Overview of Trilinos

Trilinos is being developed to:

• Provide a suite of numerical solvers to support massively parallel predictive
simulation capabilities for Sandia’s customers

• Provide a decoupled and scalable development environment to allow for
algorithmic research that can transition to production capabilities

=> “Package”

• Provide support for growing SQA requirements

• Strategic Goals?

At its most basic level Trilinos provides:

• A common source code repository and management system (CVS based)

• A scalable configuration and build support (autoconf/automake based)

• A common infrastructure for SQA

– Bug reporting and tracking (i.e. Bugzilla)

– Automated regression testing and reporting (test harness, results emails and
webpage)

• Developer and user communication (i.e. Mailman email lists)

• Common integrated documentation system (Trilinos website and Doxygen)

Trilinos website

http://software.sandia.gov/trilinos

Trilinos Package SummaryObjective Package(s)

Linear algebra objects Epetra, Jpetra, Tpetra

Krylov solvers AztecOO, Belos, Komplex

ILU-type preconditioners AztecOO, IFPACK

Multilevel preconditioners ML, CLAPS

Eigen problems Anasazi

Block preconditioners Meros

Direct sparse linear solvers Amesos

Direct dense solvers Epetra, Teuchos, Pliris

Abstract interfaces Thyra

Nonlinear system solvers NOX, LOCA, CAPO

Time Integrators/DAEs Rythmos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos

Trilinos Tutorial Didasko

“Skins” PyTrilinos, WebTrilinos, Star-P, Stratimikos

Simulation-Constrained
Optimization

MOOCHO

Archetype package NewPackage

Other new in 7.0 release Galeri, Isorropia, Moertel, RTOp

Trilinos
Package
Summary

Trilinos 7.0
September 2006

Trilinos Strategic Goals

• Scalable Solvers: As problem size and processor counts increase,
the cost of the solver will remain a nearly fixed percentage of the
total solution time.

• Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers.

• Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

• Universal Solver RAS: Trilinos will be:
– Reliable: Leading edge hardened, scalable solutions for each of these

applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Trilinos Development Team

Ross Bartlett
Lead Developer of Thyra and MOOCHO
Developer of Rythmos

Paul Boggs
Developer of Thyra

Todd Coffey
Lead Developer of Rythmos

Jason Cross
Developer of Jpetra

David Day
Developer of Komplex

Clark Dohrmann
Developer of CLAPS

Michael Gee
Developer of ML, NOX

Bob Heaphy
Lead developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex, IFPACK, Thyra, Tpetra

Developer of Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra, Thyra, Tpetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros
Developer of Belos and Thyra

Jonathan Hu
Developer of ML

Sarah Knepper
Developer of Komplex

Tammy Kolda
Lead Developer of NOX

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of Thyra,
Developer of Belos and Teuchos

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster
Lead Developer of New_Package

Eric Phipps
Developer of LOCA and NOX

Marzio Sala
Lead Developer of Didasko and IFPACK
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA

Paul Sexton
Developer of Epetra and Tpetra

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Developer of Epetra, EpetraExt, AztecOO, Tpetra

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Linear Problems:

 Linear equations:

 Eigen problems:

Nonlinear Problems:

 Nonlinear equations:

 Stability analysis:

Transient Nonlinear Problems:

 DAEs/ODEs:

Optimization Problems:

 Unconstrained:

 Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

Rythmos

MOOCHO

Categories of Abstract Problems and Abstract Algorithms

An ANA is a numerical algorithm that can be expressed abstractly solely in terms of vectors,
vector spaces, linear operators, and other abstractions built on top of these without general
direct data access or any general assumptions about data locality

Example : Linear Conjugate Gradients

scalar product
<x,y> defined by
vector space

vector-vector
operations

linear operator
applications

Scalar
operations

Types of operations Types of objects

What is an abstract numerical algorithm (ANA)?

Linear Conjugate Gradient Algorithm

Introducing Abstract Numerical Algorithms

Key Points

• ANAs can be very mathematically sophisticated!

• ANAs can be extremely reusable!

• Flexibility needed to achieve high performance!

Trilinos Strategic Goals

• Scalable Solvers: As problem size and processor counts increase,
the cost of the solver will remain a nearly fixed percentage of the
total solution time.

• Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers.

• Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

• Universal Solver RAS: Trilinos will be:
– Reliable: Leading edge hardened, scalable solutions for each of these

applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Thyra is being
developed to
address this
issue

Numerous interactions exist between layered abstract numerical
algorithms (ANAs) in a transient optimization problem

Iterative Linear
Solver

AztecOO, Amesos,
Belos, ???

Operators and
Vectors

Epetra, Tpetra,
PETSc, ???

Nonlinear Solver
NOX, PETSc, ???

Nonlinear
Optimizer

MOOCHO, ???

Key Points

• Higher level algorithms, like optimization, require a lot of interoperability

• Interoperability and layering must be “easy” or these configurations will not
be achieved in practice

What is needed to solve problem?
• Standard interfaces to break O(N2)

1-to-1 couplings
– Operators/vectors
– Linear Solvers
– Nonlinear solvers
– Transient solvers
– etc.

Application
Charon, Aria, ???

Transient
Solver

Rythmos,
CVODES,
IDAS, ???

Interoperability is Especially Important to Optimization

Thyra is being
developed to address
interoperability of
ANAs

Software Componentization and Trilinos Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations, preconditioners)

ANA

APP

ANA/APP
Iterface

ANA Vector
Interface

ANA Linear
Operator Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigen solvers, nonlinear solvers, stability
analysis, uncertainty quantification, transient solvers, optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:
• Belos (linear solvers)
• Anasazi (eigen solvers)
• NOX (nonlinear equations)
• Meros (block preconditioners)
• CAPO (Picard methods)
• Rythoms (ODEs,DAEs)
• MOOCHO (Optimization)
• …

Example Trilinos Packages:
• Epetra, Tpetra, Kokkos (Mat,Vec)
• Ifpack, AztecOO, ML (Preconditioners)
• Pliris, Amesos (Interface to direct solvers)
• Komplex (Complex/Real forms)
• …Three Different Types of Software Components

Thyra
foundational ANA
operator/vector
interfaces

Thyra ???
APP to LAL Interfaces

Thyra ???
LAL to LAL
Interfaces

Thyra::ModelEvaluator

Examples:
• SIERRA
• NEVADA
• Xyce
• Sundance
• …

LAL

Matrix Preconditioner

Vector

Key Point
ANA software allows for a much
more abstract interface than
APP or LAL software!

An important ideal  Object-oriented “overhead” should be constant
and not increase as the problem size increases!

An important ideal  In an object-oriented interface only specify what
needs to happen and not how it happens!

Requirements for Abstract Numerical Algorithms and Thyra

An important consideration  Scientific computing is computationally expensive!

Abstract Numerical Algorithms Implemented through Thyra must:

• Be portable to all ASC (advanced scientific computing) computer platforms

• Provide for stable and accurate numerics

• Result in algorithms with near-optimal storage and runtime performance

– Scientific computing is expensive!

An important ideal  A customized hand-code algorithm in Fortran 77
should not provide significant improvements in storage requirements,
speed, or numerical stability!

An important ideal  Do not constrain the possible implementation
options through a bad interface design or specification!

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

Fundamental Thyra ANA Operator/Vector Interfaces

• Basically compatible with many
other operator/vector interfaces

• Near optimal for many but not all
abstract numerical algorithms
(ANAs)

• What’s missing?

=> Multi-vectors!

<<create>>

UML Class Diagram

What is a multi-vector?

• An m multi-vector V is a tall thin dense
matrix composed of m column vectors vj

Example: m = 4 columns

V = =

What ANAs can exploit multi-vectors?
• Compact limited-memory quasi-Newton (e.g. MOOCHO)
• Tensor methods for nonlinear equations (e.g. NOX)
• Block linear solvers (e.g. Belos)
• Block eigen solvers (e.g. Anasazi)

Why are multi-vectors important?
• Cache performance (level-1 to level-3 BLAS)
• Amortization of global communication

Examples of multi-vector operations

=

Y = A X

Q = XT Y

Y = Y + X Q

• Block dot
products (m2)

• Block update

• Operator
applications

(i.e. mat-vecs)

= +

=

Introducing Multi-Vectors

Fundamental Thyra ANA Operator/Vector Interfaces

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

Where do multi-vectors fit in?
<<create>>

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

Fundamental Thyra ANA Operator/Vector Interfaces

What about standard vector ops?
Reductions (norms, dot etc.)?
Transformations (axpy, scaling etc.)?

What about specialized vector ops?
e.g. Interior point methods for opt

<<create>>

Key Point

It is easy to come up with a list of 100 or more
vector/array operations from a simple literature search

into active-set, interior-point, and other algorithms!

Fundamental Thyra ANA Operator/Vector Interfaces

The Key to success!
Reduction/Transformation
Operators

• Supports all needed element-wise
vector operations

• Data/parallel independence
• Optimal performance

R. A. Bartlett, B. G. van Bloemen Waanders and M. A. Heroux. Vector
Reduction/Transformation Operators, ACM TOMS, March 2004

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

A Few Quick Facts about
Thyra Interfaces

• All interfaces are expressed as
abstract C++ base classes
(i.e. object-oriented)

• All interfaces are templated on
a Scalar data

(i.e. generic)

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

– Level-1 Reduction/Transformation Operations

– Matrix-[Multi]Vector Multiplication

– Multi-Vector Views

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

RTOp vs. Primitives : Distributed Process Communication

• Compare

– RTOp (all-at-once reduction (i.e. ISIS++ QMR solver))

{ , , , ,  }  { (xT x)1/2, (vT v)1/2, (wT w)1/2, wT v, vT t }

– Primitives (5 separate reductions)

 (xT x)1/2,  (vT v)1/2,  (wT w)1/2,  wT v,  vT

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

num_axpys (i.e. local work)

 (

 a
ll

-a
t-

o
n

c
e
 c

p
u

)

ra
ti

o

--
--

--
--

--
--

--
--

--
--

--
--

--

(
5
 p

im
it

iv
e
s
 c

p
u

)

local dim

50,000

5,000

500

50

* 128 processors on CPlant®

Key Point

RTOp allows for amortization of global communication

RTOp vs. Primitives : Local Multiple Ops and Temporaries

• Compare

– RTOp (all-at-once reduction)

{ max  : x +  d  } = min{ max(( - xi)/di, 0), for i = 1 … n }  

– Primitives (5 temporaries, 6 vector operations)

-xi  ui, xi +   vi, vi / di  wi, 0  yi, max{wi,yi}  zi, min{zi,i=1…n}  

0.00

0.20

0.40

0.60

0.80

1.00

1 10 100 1000 10000 100000 1000000

n (number of e lements)

 r
e
la

ti
v
e
 s

p
e
e
d

6 primatives (cached temporaries)

6 primatives (dynamic temporaries)

all-at-once

* 1 processor (gcc 3.1 under Linux)

Key Point

RTOp provides for better cache performance and avoids multiple read/writes

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

– Level-1 Reduction/Transformation Operations

– Matrix-[Multi]Vector Multiplication

– Multi-Vector Views

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Speeding Up Matrix-[Multi]Vector Multiplication

Data Set Dimension Nonzeros # RHS MFLOPS

DIE3D 9873 1733371 1 247.62

2 418.94

3 577.79

4 691.62

5 787.90

dday01 21180 923006 1 230.75

2 407.96

3 553.80

4 668.24

5 738.40

FIDAP035 19716 218308 1 171.22

2 349.29

3 374.24

4 498.99

5 545.77

Key Point

More than a
3X speedup
for 5 RHSs!

=

Y = A X

Matrix-Multivector
Multiplication

Kokkos Results (Local Effects Only)
Pentium M 1.6GHz Cygwin/GCC 3.2 (WinXP Laptop)

Amortization of Global
communication

= > Epetra

Local sparse matrix-
multivector multiplcation

=> Kokkos (F77)

Courtesy of Mike Heroux

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

– Level-1 Reduction/Transformation Operations

– Matrix-[Multi]Vector Multiplication

– Multi-Vector Views

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Multi-Vectors and Multi-Vector Views

Contiguous
column sub-view

Non-contiguous
column sub-view

BLAS-compatible
column-major
local storage

• Epetra_MultiVector
• Thyra::MultiVector

(Thyra::DefaultSpmdMultiVector)

Use cases for Multi-vector views
• Single-RHS GMRES
• Block Krylov methods
• Compact limited memory quasi-

Newton methods
• …

Epetra Multi-Vector Non-Contiguous Column Views

Create shallow
views of X and Y

Create temporary
contiguous copies
of X and Y

Y = Y + X Q

• Block update
= +

Use level-3 BLAS
DGEMM to update
contiguous copy of YCopy updated Y from

contiguous storage to
non-contiguous parent
multi-vector columns
(Discard the
contiguous views of X
and Y!)

Key Point

Epetra Create temporary
copies of data for every
block update or block
inner product and discards
the tempararies

Parent Epetra
multi-vectors

Key Point

Epetra does not create temporary
contiguous storage for matrix-
multivector multiplication!

Thyra SPMD Multi-Vector Non-Contiguous Column Views

Create temporary
contiguous copies
of noncontiguous
views of X and Y

Y = Y + X Q

• Block update
= +

Use level-3 BLAS
DGEMM to update
contiguous copy of Y

When the views are
destroyed, Y is
updated from
contiguous temporary
(Discard the
tempoararies!)

Key Point

Temporaries created right
away and are used and
reused until they are not
needed anymore.

Parent Thyra
multi-vectors

Key Point

Contiguous copies used for all
operations including block inner
product and matrix-multivector
multiplication.

Performance of Pure Epetra vs. Epetra/Thyra Adatpers

epetra thyra/epetra
-------- ------------

FULL: Apply Operator : 0.153514 0.14886
FULL: MvTimeMatAddMv : 0.278658 0.278105
FULL: MvTransMv : 0.185737 0.185522
CONT-VIEW: Creation : 1.3e-05 3.2e-05
CONT-VIEW: Apply Operator : 0.151971 0.14631
CONT-VIEW: MvTimeMatAddMv : 0.278541 0.27983
CONT-VIEW: MvTransMv : 0.1857 0.1864
VIEW: Creation : 1.5e-05 0.116881
VIEW: Apply Operator : 0.328524 0.146495
VIEW: MvTimeMatAddMv : 0.38062 0.279953
VIEW: MvTransMv : 0.28367 0.185714

CPU Times for Epetra vs. Default Thyra SPMD Implementation with Epetra/Thyra Adapters

1) Apply Operator:

V = A * X

where: X and V
are numel x n

2) Block multivector update
(MvTimeMatAddMv)

Z = alpha*Z + X * T

where: Z is numel x n, X is numel x m,
and T is m x n

3) Block inner (i.e. dot) product
(MvTimesMv)

T = X’ * Y

where: X is numel x m,
Y is numel x n,
and T is m x n

Overall, better performance
for Epetra/Thyra adapters
than for pure Epetra for
noncontiguous views!

Key Point

Abstraction and implementation flexibility
is key to achieving high performance!

Test program put together by Chris Baker for Anasazi

In these tests numel=50000, m=100, and n=5.

Similar performance for whole
multi-vectors and contiguous

multi-vector views

* Pentium 1.8GHz Linux/g++ 3.4.3

Overall Performance of Pure Epetra vs. Epetra/Thyra Adatpers

Performance of block Block Davidson and LOBPCG algorithms in Anasazi:

 Block size = 5

 Global sizes n = 103, 104 , 105 , 106

 QED (32 node Linux cluster, 2.8GHz dual processors)

 See Trilinos/packages/anasazi/doc/ThyraPerf/thyra_overhead.pdf

Key Point

Thyra-based implementation performs as well or
out-performs Epetra-based implementation

Courtesy of Chris Baker and Heidi Thornquist (Lead Anasazi Developer)

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Create const
or mutable

view?

Object-Oriented Design Pattern Efficient Abstract “Views”

Parent

views

Examples of Views

• Abstract multi-vector
column views

• Explicit element access

• Sub-matrix views

• …

Interface design issues

• Don’t constrain freedom to
achieve high performance

(i.e. allow for “detached”
views)

• Don’t make it too difficult to
provide correct concrete
implementations

Parent
State: No views

Allow Query : Yes
Allow Change : Yes

Parent
State: Has const view(s)

Allow Query : Yes
Allow Change : No

Parent
State: Has mutable view

Allow Query : No
Allow Change : No

Suggested Behavior of Parent and Views (UML State Diagram)

Create const view

Destroy last view

Create const
view

Create
mutable view

Destroy
view Suggestions for implementing views

• Distinguish between const and mutable
(nonconst) views => safety and speed!

• Uses Teuchos::RefCountPtr in C++ to
trigger events on view destruction.

Outline

• Overview of Sandia Labs and Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Thyra

• Overview of fundamental Thyra ANA operator/vector interfaces

• Performance of Thyra-based software and algorithms

• Object-Oriented Design Pattern Efficient Abstract “Views”

• Wrapping it up

Summary

• Trilinos:

– provides a suite of numerical solvers to support massively parallel predictive simulation
capabilities for Sandia’s customers

– provides a decoupled and scalable development environment based on packages to
allow for algorithmic research that can transition to production capabilities

– provides support for growing SQA requirements

• Abstract Numerical Algorithms(ANAs):

– are mathematically sophisticated but are independent of the implementation
characteristics of vectors, vector spaces, linear operators or abstractions built on top of
these

– can be extremely reusable if implemented in the right way

– allow great freedom in the implementation of operators/vectors etc. to achieve high
performance

• Thyra:

– defines basic interoperability interfaces between ANAs and concrete implementations of
operators/vectors etc.

– allows for unmatched flexibility in the implementation and performance of ANA objects

– allows ANAs that are stable and near optimal in speed and storage

Acknowledgements and the TUG

• Paul Boggs (ptboggs@sandia.gov) : Split/O3D lead developer, Thyra developer

• Todd Coffey (tscoffe@sandia.gov) : Rythmos lead developer, Thyra developer

• Michael Heroux (maherou@sandia.gov): Trilinos leader, Epetra and AztecOO lead
developer, Thyra developer

• Rob Hoekstra (rjhoeks@sandia.gov) : EpetraExt lead developer

• Victoria Howle (vehowle@sandia.gov) : Meros lead developer, Thyra developer

• Kevin Long (krlong@sandia.gov) : Sundance lead developer, Thyra developer

• Roger Pawlowski (rppawlo@sandia.gov) : NOX lead developer

• Eric Phipps (etphipp@sandia.gov) : LOCA lead developer, Thyra developer

• Bill Spotz (wfspotz@sanida.gov) : PyTrilinos Lead developer, Thyra/Python adapter
developer

• Heidi Thornquist (hkthorn@sandia.gov): Belos and Anasazi lead developer, Thyra
developer

• Allan Williams (william@sandia.gov) : FEI lead developer, Thyra developer

Trilinos Users Group (TUG) Meeting: Nov 7-9, 2006, at Sandia Labs, Albuquerque, NM

