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Si Emission Measurements of a Strong
Radiating Shock in the Z-pinch Dynamic Hohlraum
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The Z-pinch dynamic hohlraum reaches internal
temperatures >200 eV and peak axial power >10 TW.
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&“ The dynamic hohlraum is formed by an imploding @

tungsten liner, and heated by a strong radiating shock.

2-D RMHD Simulation
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% The dynamic hohlraum is formed by an imploding @

tungsten liner, and heated by a strong radiating shock.

2-D RMHD Simulation
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The radiating shock was first @
evidenced by 2-D broadband x-ray images.
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% Si emission spectroscopy has been used @

to probe the local conditions of the DH source shock.

slot aperture Time- and 1-D Space-Resolved Si Spectra
for 1-D spatial P i . :
resolution Shocked Si
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% Si emission from the shocked DH foam has iy

been recorded for shock radii from 1.1 — 2.8 mm.

“Shocked” Si emission spectra
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& “Noisy” data requires a careful statistical analysis iy

to determine line-widths and line-strengths with error bars.

. — ‘continuum’ distribution

» Determine frequency distribution of _ — Gaussian fit

the data continuum and assume
Poisson statistics to get weights.

» Perform a least-squares fit to the
spectra using ROBFIT?
- assume Voigt line profiles (n = 1)
- simultaneously fit background
and emission lines
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'R.L. Coldwell and G.J. Bamford, The Theory and Operation of Spectral Analysis using ROBFIT, (AIP, 1991).



V b g—
}' The ROBFIT analysis shows He / H line ratios i“,

and line widths that increase with decreasing radius.
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} Shock conditions are determined from a 2-D model
with non-LTE population kinetics and non-local radiation.

SPECT3D modeling Simulated Si Emission Spectrum
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Line Ratio
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The shock temperature is determined
from the He-like to H-like line ratios.

He-y/ Ly-PB Line Ratios
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& (fh)
} The shock temperature is determined )

from the He-like to H-like line ratios.
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Line Width (Angstroms)

Once the temperature is known, the shock density
Is determined from the opacity & stark broadened line widths.
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Once the temperature is known, the shock density
Is determined from the opacity & stark broadened line widths.

Measured Densities Inferred from Calculated
He-y Line Widths Line Widths at r,=2.2 mm
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% The ‘Best-Fit’ plasma conditions are then

tested for consistency across the measured range.
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The measured shock temperature decreases @
and the shock density increases with decreasing shock radius.
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% 2-D RMHD calculations predict the existence of an @
ablatively driven shock ahead of the main compression shock.

0.0 T T T T T 800
| - — Density 1 1
1
————— Temperature b

- 4 | 1 e
7 . =

. B _ ‘' Main | |
- OU8 Ablation ) Sh?)ck .: '. SO
J 1 1 >
—> . - hock L
run-in E Shoc '1] E
radiation > : ! : .
H, /_/_,-/ W G 0.04F ', 1400 &
n zpinch & ' T
iy -
0 ! g
. Ablating = 002k froe > 1200 §
Foam § N ____ Ll

1
I D.DO 1 1 1 1 | 1 1 1 1 | | | | 1 | 1 1 1 1 | 1 | 1 1 | | 1 1 1 C:I

0.0 0.3 1.0 1.5 2.0 2.5 3.0
Radius (mm)



_

$'

Broad-Band Axial Emission

2-D shock emission data support the presence

()

of an ablatively driven shock ahead of the main shock.

Azimuthally Averaged Radial Lineout of

Shock Emission at hv~ 200-300eV
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&i The electron pressure and shock velocity provide a
OWER BOUND on the density ahead of the main shock front.

M)

Electron Pressure Behind Main Shock

Electron Pressure (Mbar)

(.
T I T 1
|

S L

o
I 1 T
|

~
! |

oL . v v vy

(determined from Si measurements)

1.5 2.0 2.5
Shack Radius {mm)

3.0

Py Ima/cc)

Density Ahead of Main Shock
Assuming T, =T,

Front

12~~~ rr T

T \(y+1) |
- =P 1+— -
g ? i_{ Pu e( ZTJ u’
8t i
! 2% _:
i N |
i HH { i
i ¥ b3
I e
2T strong shock limit, p, = o,/ 4 )
0 (density can’t be less than this)
1.0 1.5 2.0 2.5 3.0

Shack Radius {mm)



N (1)
}gate times (r, < 1.5 mm), photo-pumped line emission
can be used to determine conditions ahead of the shock.
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Atr, ~ 1.5 mm, the measured emission ahead @
of the main shock indicates a colder plasma of similar density.

Measured Si Emission Spectrum
s i & Spect3D Simulation of Photo-Pumped

He-B Line Width vs. Density
at T, =310eV, p, = 32 mg/cc
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Atr, ~ 1.5 mm, the measured emission ahead @
of the main shock indicates a colder plasma of similar density.

Measured Si Emission Spectrum
s i & Spect3D Simulation of Photo-Pumped

He-B / Ly-B Line Ratio vs. Temperature
at T, =310eV, p, = 32 mg/cc
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% At r, < 1.5 mm, Si emission ahead of the @

main shock is likely dominated by ablatively shocked plasma.

Spectrometer View 2-D imaged intensity profile
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= ()
*!ephoto-pumping efficiency is slightly under-predicted

for the He-f3 line, but in fair agreement for the He-y.

He-f intensity profile He-y intensity profile
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Intensity

The photo-pumping efficiency is in
fair agreement for both the He-o and the Ly-p3.

He-o intensity profile
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&- The broadband emission profile from x-ray pinhole @

camera data is in good agreement up to the emission peak.

Broadband Axial Emission Profile
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‘ Atr, ~ 1.1 mm, the spectra are @

nearly homogeneous across the measured geometry.

Measured Si Emission Spectrum
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} Summary Ll

A strong radiating shock is the source of thermal energy for the Z-pinch
Dynamic Hohlraum.

* The temperature and density of this shock have been measured through
the interpretation of time- and space-resolved Si emission spectra from Si
atoms doped across the central 3 mm height of the 12 mm tall DH.

« These measurements indicate a shock temperature decreasing from
400 - 250 eV, a shock density increasing from 15 - 40 mg/cc, and a shock
pressure increasing from 4 — 8 Mbar.

* Once the main shock conditions are determined, interpretation of the
photo-pumped Si emission spectra ahead of the main shock provides
information on the density and temperature of the ablative shock.

* The measured conditions from both shocks can be used to infer the
radial profile of the temperature and density conditions in the interior of
the DH.



