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The Z-pinch dynamic hohlraum reaches internal 
temperatures >200 eV and peak axial power >10 TW.
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The dynamic hohlraum is formed by an imploding 
tungsten liner, and heated by a strong radiating shock.

2-D RMHD Simulation
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tungsten liner, and heated by a strong radiating shock.

2-D RMHD Simulation



The radiating shock was first 
evidenced by 2-D broadband x-ray images.
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Si emission spectroscopy has been used 
to probe the local conditions of the DH source shock.
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Si emission from the shocked DH foam has 
been recorded for shock radii from 1.1 – 2.8 mm.

Shock Trajectory 

“Shocked” Si emission spectra
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“Noisy” data requires a careful statistical analysis 
to determine line-widths and line-strengths with error bars.

• Determine frequency distribution of 
the data continuum and assume 
Poisson statistics to get weights.

• Perform a least-squares fit to the 
spectra using ROBFIT1

- assume Voigt line profiles (η = 1)
- simultaneously fit background 
and emission lines

1R.L. Coldwell and G.J. Bamford, The Theory and Operation of Spectral Analysis using ROBFIT, (AIP, 1991). 

Effective Counts
20 30 40

F
re
q
u
e
n
cy

‘continuum’ distribution
Gaussian fit

χ2 = 1.1



The ROBFIT analysis shows He / H line ratios 
and line widths that increase with decreasing radius.
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Shock conditions are determined from a 2-D model
with non-LTE population kinetics and non-local radiation.
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• C-R radiation transport

• Non-LTE population kinetics 

• >4000 atomic level transitions

• Fix Tu , ρρρρu -- vary Ts , ρρρρs

• Fit each simulated spectra with ROBFIT

• Tabulate line ratios / widths vs. Ts, ρρρρs
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The shock temperature is determined 
from the He-like to H-like line ratios.

Measured 
He-γ / Ly-β Line Ratios

Te = 330 ± 30 eV

Calculated He-γ / Ly-β
Line Ratios vs. Shock Temperature



Measured 
He-γ / Ly-β Line Ratios

The shock temperature is determined 
from the He-like to H-like line ratios.

He-δ/Ly-β
He-γ/Ly-β He-β/Ly-β

Te = 350 ± 20 eV

Temperatures Inferred from 
Calculated Line Ratios at rs = 2.2 mm



Once the temperature is known, the shock density 
is determined from the opacity & stark broadened line widths.

ρs = 23 ± 5.5 mg/cc

Measured 
He-γ Line Widths

Calculated He-γ Line 
Width vs. Shock Density



Densities Inferred from Calculated 
Line Widths at rs = 2.2 mm

Ly-β He-δ He-γ He-β

ρs = 14.5 ± 1.5 mg/cc

Once the temperature is known, the shock density 
is determined from the opacity & stark broadened line widths.
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The ‘Best-Fit’ plasma conditions are then 
tested for consistency across the measured range.

Spect3D,  Te = 350 eV, ρ = 14.5 mg/cc
(Prism-CS)

Weizmann, Te = 370 eV, ρ = 19.5 mg/cc
(Maron et. al.)
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The measured shock temperature decreases 
and the shock density increases with decreasing shock radius.

M
a
ss D

e
n
sity (m

g
/cc)

50

40

30

20

10

0

500

400

300

200

E
le
ct
ro
n
 T
e
m
p
e
ra
tu
re
 (
e
V
)

1.0 1.5 2.0 2.5 3.0

Shock Radius (mm)

Spect3D
(Prism-CS)

Weizmann
(Maron et. al.)

Original Foam Density



2-D RMHD calculations predict the existence of an 
ablatively driven shock ahead of the main compression shock.
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2-D shock emission data support the presence 
of an ablatively driven shock ahead of the main shock.
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The electron pressure and shock velocity provide a 
LOWER BOUND on the density ahead of the main shock front.

Electron Pressure Behind Main Shock

(determined from Si measurements)
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At late times (rs < 1.5 mm), photo-pumped line emission 
can be used to determine conditions ahead of the shock.
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At rs ~ 1.5 mm, the measured emission ahead 
of the main shock indicates a colder plasma of similar density.

He-β

Measured Si Emission Spectrum

He-β width = 43 ± 3 mÅ

ρ = 38±7 mg/cc

Spect3D Simulation of Photo-Pumped 
He-β Line Width vs. Density
at Ts = 310eV, ρs = 32 mg/cc 



At rs ~ 1.5 mm, the measured emission ahead 
of the main shock indicates a colder plasma of similar density.
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At rs < 1.5 mm, Si emission ahead of the 
main shock is likely dominated by ablatively shocked plasma.

2-D imaged intensity profile

∆r ~ 1 mm
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All inferred quantities can be used to create density and 
temperature profiles to simulate the spatial emission distribution.
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He-β intensity profile He-γ intensity profile

The photo-pumping efficiency is slightly under-predicted 
for the He-β line, but in fair agreement for the He-γ.
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Ly-β intensity profileHe-δ intensity profile
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The photo-pumping efficiency is in 
fair agreement for both the He-δ and the Ly-β.



The broadband emission profile from x-ray pinhole 
camera data is in good agreement up to the emission peak.
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At rs ~ 1.1 mm, the spectra are 
nearly homogeneous across the measured geometry.
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Summary

• A strong radiating shock is the source of thermal energy for the Z-pinch 
Dynamic Hohlraum.

• The temperature and density of this shock have been measured through 
the interpretation of time- and space-resolved Si emission spectra from Si 
atoms doped across the central 3 mm height of the 12 mm tall DH.

• These measurements indicate a shock temperature decreasing from 
400 - 250 eV, a shock density increasing from 15 - 40 mg/cc, and a shock 
pressure increasing from 4 – 8 Mbar.

• Once the main shock conditions are determined, interpretation of the 
photo-pumped Si emission spectra ahead of the main shock provides 
information on the density and temperature of the ablative shock.  

• The measured conditions from both shocks can be used to infer the 
radial profile of the temperature and density conditions in the interior of 
the DH.


