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Abstract We propose a new method to infer road net-
works from GPS trace data and accurately segment
road regions in high resolution aerial images. Unlike
previous efforts that rely on GPS traces alone, we ex-
ploit image features to infer road networks from noisy
trace data. The inferred road network is used to guide
road segmentation. We show that the number of im-
age segments spanned by the traces and the trace ori-
entation validated with image features are important
attributes for identifying GPS traces on road regions.
Based on filtered traces, we construct road networks
and integrate them with image features to segment road
regions. Our experiments show that the proposed method
produces more accurate road networks than the leading
method that uses GPS traces alone, and also achieves
high accuracy in segmenting road regions even with
very noisy GPS data.

Keywords GPS - Aerial image -
Segmentation

Road map -

1 Introduction

Inferring road networks and segmenting road regions in
high resolution aerial images are important tasks that
can benefit diverse applications. Roads are the vital
data layer in geospatial databases. Updated and accu-
rate road networks and road regions are highly desired
for route planning and vehicle navigation. In addition,
recent research shows that knowing road regions pro-
vides contextual information that is valuable in image
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Fig. 1 Illustration of raw GPS traces with significant noise.
Left: the traces are generated by taxi cabs in the downtown
area of San Francisco. Darker pixels represent more traces
passing. Right: the corresponding aerial image.

analysis tasks (e.g., vehicle detection) [19,12,16]. How-
ever, due to the large variations of road appearances,
identifying road regions is rather challenging [18]. A
large number of methods for extracting road regions
have been proposed [2,7,14,17,27]. Most of those meth-
ods assume that road appearances can be modeled in
terms of certain spectral, spatial, and geometric prop-
erties that differentiate road regions from other regions
in images. The road model is predefined or learned from
labeled data. However, this assumption can be sub-
stantially violated for high resolution images contain-
ing complex scenes, where various pavement markings,
vehicles, vegetations, and shadows are visible on roads.
Therefore, those methods have difficulty achieving a re-
liable performance.

In this paper, we utilize GPS traces of vehicles to
(i) infer road networks, and (ii) guide road segmenta-
tion using recovered road network. GPS receivers are
widely deployed in various kinds of vehicles, which gen-
erate large volumes of GPS trace data. The data con-
sists of sequences of location and time information. It
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has been used for creating or updating road networks
[6,21]. Despite prior work, how to deal with noise in
the GPS data remains a major issue. The data is of-
ten generated by low-cost devices, which gives position
records of limited accuracy. The positioning errors can
reach over 100 meters in areas with severe signal in-
terference. Also, due to energy consumption and stor-
age capacity, the data tends to have a low sampling
rate (e.g., once per minute). Previous methods of using
GPS traces to infer road networks mainly adopt three
strategies including k-means clustering, trace merging,
and kernel density estimation [3]. They perform well in
the case when the traces aggregate more densely on ac-
tual roads than in other areas. Unfortunately, such a
case is not guaranteed in real world data. Fig. 1 shows
a dataset of taxi traces in the downtown area of San
Francisco, CA , where the traces spread over the entire
area because of measurement errors and low sampling
frequency. Such trace data is very difficult, if not im-
possible, to deal with for the methods solely relying on
GPS data.

We present a new method that integrates GPS data
with image features. Computer vision techniques are
applied to images, which identify the traces that lie
in potential road regions. After the traces are filtered
based on image information, we design a simple ap-
proach to obtain high quality road networks. Road net-
works are used along with images to produce road re-
gions. The proposed method is built on the algorithms
introduced in [23,24]. This paper provides comprehen-
sive versions of those algorithms, a complete method to
perform road segmentation in aerial images, and exper-
iments on large real world datasets.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of the proposed method. The
components of the method are discussed in detail from
Section 3 to Section 5. In Section 6, we conduct exper-
iments on large-scale data and quantitatively evaluate
the results. We conclude in Section 7.

2 Method Overview

Fig. 2 gives an overview of the proposed method for
road segmentation. The aerial image and the corre-
sponding GPS trace data are taken as input. GPS traces
are discretized into the same image grid. The image
is segmented using a factorization-based algorithm to
produce a mid-level representation of the image, which
plays an important role in the entire process. The GPS
traces are filtered based on their alignments with re-
spect to image segments and local orientations esti-
mated from structure tensors. The filtered traces are
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Fig. 2 Overview of the proposed method.

mostly aligned with roads in the image and can be pro-
cessed to generate a road network. Based on the seg-
mented image and the road network, we examine the
spatial distribution of region boundaries related to lines
in the network and identify road edges that define road
regions. We now give a detailed description for each
step in the following sections.

3 Trace Filtering
3.1 GPS Trace Data

GPS trace data consists of location records. Let r :<
x,y,t > denote a record, where z and y are position
coordinates and t is the time. The entire trace data is
organized into trips where each trip is a time sequence
of location records. Let r;- denote the j** record for
trip i. Line connecting position coordinates of 7} and
r; 41 represents a trace segment. We drop time ¢ from
location record as it is not used in our analysis and refer
to 7“§ as a trace point.

GPS trace data is prone to positional errors from
signal interference and device inaccuracies. Addition-
ally, for data collected at a low frequency, the con-
secutive trace points can be far apart that trace seg-
ment connecting the points might span non-road re-
gions making direct estimation of road networks from
trace data challenging. Fig. 3 shows an example, where
the middle trace segment does not correspond to the
actual road. Although those trace points may not be
noise, such trace segments can make detecting actual
road networks difficult. We seek to use image features
to filter out trace segments that span non-road regions
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Fig. 3 An example of noisy traces caused by low sampling
rate.

with the objective that the road network can be more
accurately recovered from traces.

3.2 Initial Filtering

We begin by eliminating non-road trace segments based
on the spatial density of trace points. We estimate the
spatial density of trace points by applying a Gaussian
kernel with o set to 3 meters, which is determined based
on expected GPS errors and road width. Pixels with
density values outside one ¢ range are labeled as non-
road regions under the assumption that spatial density
of trace points on actual road regions are sufficiently
high. For a trace segment, a measure T is defined as
the length of trace segment passing through non-road
regions over the total length. We remove traces with 7,
values larger than 0.3. It should be noted that this filter-
ing step use GPS data alone to remove obvious outliers
but cannot deal with regions subjected to significant
noise. For instance, this step removes few traces in the
dataset shown in Fig. 1(a) because the point density
is high over the entire area. Hence, we seek to exploit
image features to further remove noisy traces.

3.3 Image based Filtering
8.8.1 Image Segmentation

The first technique is image segmentation, which par-
titions an image into homogeneous regions. Since road
pixels tend to be grouped together to form large seg-
ments in a reasonable segmentation, trace segments on
roads should span fewer segments than non-road trace
segments. We define measure T as the ratio of trace
length to total number of image segments spanned by
the trace. A small T, suggests that the trace traverses
a large number of segments, which is unlikely to be a
road trace segment.

Despite the large number of existing algorithms, seg-
menting aerial images remains a challenging task, espe-
cially for images containing various ground objects [9,
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Fig. 4 Distribution of road and non-road traces with respect
to length-per-segment values.

20]. We employ a factorization-based segmentation al-
gorithm [26]. It has shown be effective to segment aerial
images with great efficiency [25]. For completeness sake,
we give a brief description of the algorithm. An image
is convolved with a bank of filters, and a local spectral
histogram [13] is computed at each pixel location, which
consists of histograms of different filter responses within
a square window centered at the pixel. The size of the
window is called integration scale, which is a tunable
parameter. Such a feature can capture the appearance
of local window, and a homogeneous region has a repre-
sentative feature that is similar to other features in the
region. Each feature in an image can be approximated
by a linear combination of representative features, and
combination weights indicate the region ownership of
the corresponding pixel. A factorization-based image
model can be expressed in the following equation,

Y =78 +e. (1)

Y is a feature matrix consisting of columns represent-
ing features at all pixel locations. Z contains columns
corresponding to representative features. Each column
of 3 is the combination weights at each pixel location.
The largest weight in each column indicates the seg-
ment the corresponding pixel belongs to. € represents
the noise.

Based on this image model, the segmentation algo-
rithm aims at factoring Y into two matrices. By ap-
plying singular value decomposition to Y, the number
of segments can be estimated, and a subspace can be
revealed where all features reside. Initial representative
features are estimated by analyzing the feature distri-
bution in the subspace. A nonnegative matrix factoriza-
tion algorithm [1] is then applied to obtain the factored
matrices that give segmentation.

In order to show whether our segmentation result
is useful for identifying traces on roads, we classify the
trace segments in Fig. 1 into road and non-road based
on their maximum distances to center road lines that
are manually drawn, and plot the distribution of our
computed measure T;. (see Fig. 4(a)). We can see that
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the majority of non-road traces have a small value for
Ts. Here, we remove the non-road traces by simple thresh-
olding. The threshold is set to 20 meters per segment
for the experiments in this paper. Although some road
traces are discarded in this step, we find they are mostly
short traces that happen to cross segment boundaries
and discarding them does not significantly affect re-
sults.

Fig. 5(b) displays the result of applying this filtering
step to the trace data in Fig. 5(a). The number of noisy
trace segments is clearly decreased.

3.3.2 Orientation estimation

As can be seen from Fig. 5(b), there still exist a no-
ticeable amount of noisy traces, which happen to lie in
large image segments resulting from either large regions
or under-segmentation. Different types of information is
required to remove those traces.

Inspired by Harris corner detector [11], we propose
a structure tensor approach to examine whether the
alignment of a trace segment is consistent with the im-
age content in its surroundings. From an aerial view,
one can observe that most objects on and near a road,
including vegetation, pavement markings, vehicles, and
buildings, spread along the road. Consequently, if we
shift the image patch containing a road and compute
the pixel difference, the largest difference occurs when
the shift is perpendicular to the road orientation, and
the smallest difference occurs when it is parallel to the
road orientation. The structure tensor is used to find
the orientation.

Given an image I and an image window W, we
slightly shift the window by (Az, Ay), and the sum of
square differences between W and the shifted window
is written as

S = [I(wiy:) — I(w; + Az,y; + Ay)]?, (2)
w

where (z;,y;) is the pixel location in the window. The

second term in the equation, denoting the shifted win-

dow, can be approximated by the first order term of

Taylor expansion. Then, Equation 2 can be rewritten

as

3)

S = [Az, Ay A [M] ,

Ay
where A is a matrix called structure tensor and takes
the following form

A [ Sl St
Ywlady 2wl 5

Here I, and I, denote the partial derivatives in x and

y, which are gradients in the image sense. For corner

(4)

detection, the relationship between two eigenvalues of
A indicate whether the image window contains a corner.

Let U denote the shift vector [Az, Ay]T. According
to the Rayleigh quotient [10], UUTTAUU reaches the mini-
mum value, which equals to the smallest eigenvalue of
A, when U is the corresponding eigenvector. Likewise,
the maximum value equals to the largest eigenvalue.
It is reasonable to assume a fixed norm for the shift
vector. Thus, the minimum value of S is given by the
smaller one of two eigenvalues of A, and it is achieved
when the shift vector is the corresponding eigenvector.
Based on the aforementioned characteristics of road ap-
pearances, this direction should agree with the road ori-
entation. The two eigenvectors essentially indicate the
dominant direction of gradients in the image window.
Note that the average of gradients does not well repre-
sent the dominant direction [5].

Now we can easily examine whether the orientation
of a trace segment is consistent with the orientation
estimated from the image. For each trace segment, the
image patch is defined as a rectangular area around the
trace that has the same length as the trace segment
and a width of 30 meters. The gradients within the
patch are used to construct the structure tensor, and
the eigenvector corresponding to the smaller eigenvalue
gives the orientation of the patch. We define measure
T, as the difference in angle between a trace segment
and the eigenvector, and only retain the traces with
a T, value less than 15 degree. In the case when the
image patch contains no road, the eigenvector does not
reflect a road direction and is unlikely to coincide with
a noisy trace. Fig. 5(c) shows the filtering result after
this step. Compared with the original data in Fig. 1,
noisy traces are significantly reduced, and road patterns
are now clearly visible. To provide a better illustration,
we overlay the traces on the aerial images, shown in
Fig. 5(d). As we can see, the filtered traces are mostly
located on roads.

Given input GPS trace dataset containing N trips,
represented as {r!,r% ... ,rN}, the procedure of filter-
ing traces is described in Algorithm 1.

Algorithm 1 Trace filtering

for i:=1to N do
for each trace segment {r?,7%,,} in trip * do
Compute Ty, Ts, T,
if (segment meets thresholding conditions) then
Retain trace segment
end if
end for
end for
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(a)

4 Road Network Generation

We begin by mapping filtered traces onto image space.
By treating the pixels covered by filtered trace segments
as foreground, we obtain a binary image. Now, with the
filtered traces well describing roads, we apply morpho-
logical operations to the binary image to generate a
road network. A closing operation is first performed to
fill small gaps among traces. Closing includes a dilation
operation where each background pixel next to an ob-
ject pixel is turned into an object pixel, and an erosion
operation where each object pixel next to a background
pixel is turned into a background pixel. Then, a thin-
ning operation is used to extract the medial axes, or
skeletons, which continuously removes boundaries pix-
els but preserves the extent and connectivity of fore-
ground objects. A medial axis point is the center of a
circle that touches object boundaries at two or more
points. The circle radius reflects local thickness, which
in our case can be interpreted as road width. The me-
dial axes extracted from the binary image give a road
network.

For roads that are close to each other, the corre-
sponding traces can incorrectly merge after the closing
operation. As a result, the medial axes do not repre-
sent the actual roads. Fig. 6 shows an example of this
issue. Fig. 6(b) displays the medial axes extracted from
the traces in Fig. 6(a), which fail to capture the struc-
ture of actual roads. Here we design a simple scheme to
cope with this issue. Since incorrectly merged traces are
from multiple roads, they tend to form thick patterns
in the binary image. Thus, we locate those traces by
selecting the medial axis points with radii larger than a
predefined maximum road width. The foreground pixels
associated with those medial axis points form a number
of connected regions. The incorrect merging is caused
by the traces in the areas between roads. Those traces
are distributed much less densely than the traces on
the roads. Therefore, we reduce the effect of those traces
based on their density. For each connected region, we es-
timate the trace density using a Gaussian kernel. A set

(@)

Fig. 5 Trace filtering. (a) Traces after initial filtering. (b) Traces filtered based on the segmentation result. (c) Traces filtered
by examining the alignment with respect to the image content. (d) Filtered traces (blue lines) overlaid on the aerial image.

(b) (c)

Fig. 6 Extracting medial axis from filtered traces. (a) Fil-
tered traces. (b) The extracted medial axes using morpholog-
ical operations. (¢) The extracted medial axes after correc-
tions.

of thresholds are applied to the density map to yield dif-
ferent foreground regions, as well as the corresponding
medial axes. The medial axes with the largest density
value are selected to replace the original medial axes.
The new medial axes better represent the road struc-
ture, hence a more accurate road network. Fig. 6(c)
presents the result after this step, which shows a clear
improvement.

Based on the extracted medial axes, we find all the
intersection points and end points. We prune those points
by merging intersection points close to one another and
removing small branches. The Douglas-Peucker algo-
rithm [8] is then used to reduce the path between points
into line segments. A graph can be constructed, which
provides a typical representation of road network.

5 Road Region Segmentation

Next, we show that the road network generated from
the GPS traces can be further used to produce accu-
rate road segmentation. A simple yet effective method
is proposed in [24], which utilizes publicly available road
vector data to segment road regions from aerial scenes.
Given the road network obtained above, this method
can be readily used to obtain road regions.

Given the road network generated above, segment-
ing road regions can be formulated as identifying two
road edges parallel to each line in the network. We over-
lay the road network with a binary map representing re-
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gion boundaries, which is available from factorization-
based image segmentation. We scan each line in the
road network. On each side of a line, a search space
is defined as a rectangular area, which should be wide
enough to cover potential road regions. The distance
from all boundary pixels in the search space to the line
are assigned to bins in a histogram. The bin width is
chosen based on image resolution. The histogram re-
veals the spatial distribution of boundary pixels with
respect to the line. In aerial images, we can observe that
actual road edges generally have long detected bound-
aries parallel to lines in a road network. Hence, the road
edge is determined as a straight line at the distance
corresponding to the highest peak in the histogram.
Fig. 7 shows an example, where the histogram peaks
well match actual road edges. As the lines in the road
network may not be at the centers of roads, the road
edge on each side of a line segment is estimated sepa-
rately. Previously, in [24] it was shown that this method
exhibits reliable performance with manually generated
road networks. Our experiments described in the next
section demonstrate that this method performs well
with road networks automatically generated from GPS
traces.

6 Experiments

In this section, we present experimental results of ap-
plying the proposed method to a large dataset. We also
quantitatively evaluate the results and compare with
the leading method of inferring road maps from GPS
traces.

6.1 Dataset

We use the GPS trace data of taxi cabs in San Fran-
cisco, CA [15]. It contains the GPS coordinates of over
500 taxis in one month. In the dataset, the traces in
the downtown areas are highly prone to measurement
errors due to tall buildings. The time intervals between
two sample points are varying, most of which are 60
seconds, and a considerable amount has even longer in-
tervals. A vehicle can pass several different roads within
such long intervals. As a pre-processing to reduce noisy
traces, we remove trace segments with average speed
exceeding 150 km/h. We also remove trace segments
shorter than 15 meters, which appear to be very noisy.
We use two geo-referenced color images covering the
same areas, each of which is a 5000 x 5000 tile. The
spatial resolution is 0.3 m. Figs. 8 and 9 show the im-
ages and the corresponding traces, which respectively
correspond to a residential area, where the traces are
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Fig. 7 Determining road edges based on the histogram of
boundary pixels. The yellow line shows a line in the road
network. The boundaries marked in red are generated by the
factorization-based algorithm. The white lines indicate the
search space on each side of the road.

relatively less noisy, and the downtown area, where the
traces are the most severely affected by noisy measure-
ments.

6.2 Road network

We feed the datasets into the proposed method to gen-
erate road networks. The parameter values are fixed in
our experiments. The results are illustrated in Figs. 10(a)
and 11(a), where the road network are overlaid on the
aerial images. For the dataset in Fig. 8, although the
density of traces on different roads varies to a large ex-
tent, our method produces a rather complete road net-
work. Roads in the dataset in Fig. 9 are highly difficult
to extract from either GPS data or the image. Many
traces corresponding to roads are completely buried in
noise. Road regions in the image are occluded by ve-
hicles and shadows. It can be seen that our method
generates very promising results by exploiting the infor-
mation from both data sources. We observe that some
curvy roads are missing in the results. Because GPS
data is collected at a low frequency, most traces on
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Fig. 9 The dataset covering the downtown area. (a) GPS traces. (b) Aerial image.

curvy roads lie outside road regions and hence are re-
moved as noisy.

Previous efforts have been made in generating road
networks from GPS data. Biagioni and Eriksson re-
cently proposed a method that combines several ex-
isting techniques and report the start-of-the-art per-
formance [4]. For comparison, we apply their method,

which will be referred to as the BE method, to our
dataset. We use the code distributed by the authors.

For quantitative evaluation, we use two indices, com-
pleteness and correctness [22], which are commonly used
to assess road network extraction. The indices are cal-
culated through a two-step matching. First, a buffer
with a constant width is defined around the ground
truth road. The extracted roads within the buffer are
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Fig. 10 Road network and road regions generated from the dataset in Fig. 8. (a) Road network (blue lines) overlaid on the
aerial image. (b) Road regions marked in red. (c)-(e) Detailed views of extracted road regions.

Fig. 11 Road network and road regions generated from the dataset in Fig. 9. (a) Road network. (b) Road regions. (c)-(e)
Detailed views of extracted road regions.
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Fig. 12 Comparison between the Biagioni & Eriksson
method and the proposed method on the dataset shown in
Fig. 8. (a) Completeness plot. (b) Correctness plot.

denoted as true positive (T'P), and the extracted roads
out of the buffer false positive (FP). In the second step,
a buffer is placed around the extracted road, and the
ground truth road out of the buffer are denoted as false
negative (F'N). Completeness and correctness are de-
fined by the following equations

completeness = L
TP+ FN (5)

correctness = L

TP+ FP

For ground truth, we use the road vector data acquired
from OpenStreetMap®.

Fig. 12 shows the quantitative comparison of apply-
ing two methods to the dataset in Fig. 8. The two in-
dices are calculated using different buffer widths. Clearly,
our method achieves higher scores for both complete-
ness and correctness. The BE method constructs an ini-
tial road network based on the trace density and applies
map matching to the network to remove the edges with
very few matched traces. When applied to this dataset,
it confuses many crowded noisy traces as roads, which
causes the low correctness rate. Also, because the initial
network includes a large number of incorrect edges, the

1 http://www.openstreetmap.org/

method matches the traces to those edges and misses
the edges corresponding to actual roads, which decrease
the completeness rate. In contrast, our method benefits
from the use of image information and identifies much
more roads with very few false detections. Note that
some roads are not detected due to the lack of qual-
ity GPS traces on those roads. The correctness rate
of our result is particularly high. The reason is that
the detected roads are actually verified by both GPS
and image information. We have also applied the BE
method to the dataset in Fig. 9, but found that it fails
to produce a reasonable result.

6.3 Road regions

Based on the road networks, we produce road regions
for both datasets, as shown in Figs. 10(b) and 11(b).
Several patches in both figures are also presented to
give detailed views of extracted road regions. We can
see that the road regions are accurately delineated. To
quantitatively measure accuracy, we create ground truth
by manually labeling road regions on images with as-
sistance of road vector data. As a typical binary classi-
fication task, we measure the extraction accuracy us-
ing precision and recall. Precision is the percentage
of the correctly detected road pixels among those de-
tected by the algorithm, and recall the percentage of the
correctly detected road pixels among those in ground
truth. The average precision and recall for the result in
Fig. 10(b) are 0.81 and 0.73, respectively. For the result
in Fig. 11(b), they are 0.78 and 0.68, respectively.

We implement the entire method using MATLAB.
On a 3.2-GHz Intel processor, the running time for pro-
cessing the two sets of data is 8 minutes and 12 minutes,
respectively.

6.4 Visualization applications

The results of our methods can be transferred to useful
visualization. One simple example is to assign a con-
stant road surface color to road regions, which creates
a view of empty streets, as shown in Fig. 13.

By incorporating trace data, we can also provide
traffic pattern visualization. After obtaining the road
network and road regions, we project each GPS sam-
ple onto the closest line in the road network. We com-
pute the shortest path between two consecutive samples
and accumulate the trips on the road network. The 1-
D representation is then dilated to the segmented road
regions. Fig. 14 illustrates the results of counting the
taxi trips within three time intervals in each day. Three
cropped areas are shown, where the roads colored based
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Fig. 13 Empty street view. (a) Original image. (b) Road
regions filled with a single color.

on trip numbers are overlaid on gray-level images. This
provides a clean and informative visualization of taxi
traffic, where further analysis can be conducted, e.g.,
travel time estimation and hotspot detection.

7 Conclusions

We have presented a new method that integrates aerial
images with GPS trace data for road network infer-
ence and road segmentation. Applying computer vision
techniques to aerial images offers valuable information
to remove noisy traces while preserving the useful ones.
The road network generated from filtered traces pro-
vides guidance to accurately delineated road regions.
Our experiments demonstrate that our method can use
GPS data with high level noise to segment road regions
in highly complex scenes. Moreover, we show that our
method leads to useful visualization.

There are several directions for future work. First,
the current method does not consider fine details of
road networks, such as separated lanes, ramps, and
overpasses. One reason is that the coarse-grained trace
data cannot provide such detailed information, which,
however, may be available from high-resolution images.
It is interesting to explore how to utilize images to re-
fine generated road networks. Secondly, this paper fo-
cuses on the GPS data of vehicles. In future research, we
plan to investigate the use of other types of GPS data,
e.g., smartphone location data, which may be capable of
characterizing semantic regions other than roads when
combined with images.
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