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Abstract We propose a new method to infer road net-

works from GPS trace data and accurately segment

road regions in high resolution aerial images. Unlike

previous efforts that rely on GPS traces alone, we ex-

ploit image features to infer road networks from noisy

trace data. The inferred road network is used to guide

road segmentation. We show that the number of im-

age segments spanned by the traces and the trace ori-

entation validated with image features are important

attributes for identifying GPS traces on road regions.

Based on filtered traces, we construct road networks

and integrate them with image features to segment road

regions. Our experiments show that the proposed method

produces more accurate road networks than the leading

method that uses GPS traces alone, and also achieves

high accuracy in segmenting road regions even with
very noisy GPS data.

Keywords GPS · Aerial image · Road map ·
Segmentation

1 Introduction

Inferring road networks and segmenting road regions in

high resolution aerial images are important tasks that

can benefit diverse applications. Roads are the vital

data layer in geospatial databases. Updated and accu-

rate road networks and road regions are highly desired

for route planning and vehicle navigation. In addition,

recent research shows that knowing road regions pro-

vides contextual information that is valuable in image
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Fig. 1 Illustration of raw GPS traces with significant noise.
Left: the traces are generated by taxi cabs in the downtown
area of San Francisco. Darker pixels represent more traces
passing. Right: the corresponding aerial image.

analysis tasks (e.g., vehicle detection) [19,12,16]. How-

ever, due to the large variations of road appearances,

identifying road regions is rather challenging [18]. A

large number of methods for extracting road regions

have been proposed [2,7,14,17,27]. Most of those meth-

ods assume that road appearances can be modeled in

terms of certain spectral, spatial, and geometric prop-

erties that differentiate road regions from other regions

in images. The road model is predefined or learned from

labeled data. However, this assumption can be sub-

stantially violated for high resolution images contain-

ing complex scenes, where various pavement markings,

vehicles, vegetations, and shadows are visible on roads.

Therefore, those methods have difficulty achieving a re-

liable performance.

In this paper, we utilize GPS traces of vehicles to

(i) infer road networks, and (ii) guide road segmenta-

tion using recovered road network. GPS receivers are

widely deployed in various kinds of vehicles, which gen-

erate large volumes of GPS trace data. The data con-

sists of sequences of location and time information. It
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has been used for creating or updating road networks

[6,21]. Despite prior work, how to deal with noise in

the GPS data remains a major issue. The data is of-

ten generated by low-cost devices, which gives position

records of limited accuracy. The positioning errors can

reach over 100 meters in areas with severe signal in-

terference. Also, due to energy consumption and stor-

age capacity, the data tends to have a low sampling

rate (e.g., once per minute). Previous methods of using

GPS traces to infer road networks mainly adopt three

strategies including k-means clustering, trace merging,

and kernel density estimation [3]. They perform well in

the case when the traces aggregate more densely on ac-

tual roads than in other areas. Unfortunately, such a

case is not guaranteed in real world data. Fig. 1 shows

a dataset of taxi traces in the downtown area of San

Francisco, CA , where the traces spread over the entire

area because of measurement errors and low sampling

frequency. Such trace data is very difficult, if not im-

possible, to deal with for the methods solely relying on

GPS data.

We present a new method that integrates GPS data

with image features. Computer vision techniques are

applied to images, which identify the traces that lie

in potential road regions. After the traces are filtered

based on image information, we design a simple ap-

proach to obtain high quality road networks. Road net-

works are used along with images to produce road re-

gions. The proposed method is built on the algorithms

introduced in [23,24]. This paper provides comprehen-

sive versions of those algorithms, a complete method to

perform road segmentation in aerial images, and exper-

iments on large real world datasets.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of the proposed method. The

components of the method are discussed in detail from

Section 3 to Section 5. In Section 6, we conduct exper-

iments on large-scale data and quantitatively evaluate

the results. We conclude in Section 7.

2 Method Overview

Fig. 2 gives an overview of the proposed method for

road segmentation. The aerial image and the corre-

sponding GPS trace data are taken as input. GPS traces

are discretized into the same image grid. The image

is segmented using a factorization-based algorithm to

produce a mid-level representation of the image, which

plays an important role in the entire process. The GPS

traces are filtered based on their alignments with re-

spect to image segments and local orientations esti-

mated from structure tensors. The filtered traces are
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Fig. 2 Overview of the proposed method.

mostly aligned with roads in the image and can be pro-

cessed to generate a road network. Based on the seg-

mented image and the road network, we examine the

spatial distribution of region boundaries related to lines

in the network and identify road edges that define road

regions. We now give a detailed description for each

step in the following sections.

3 Trace Filtering

3.1 GPS Trace Data

GPS trace data consists of location records. Let r :<

x, y, t > denote a record, where x and y are position

coordinates and t is the time. The entire trace data is

organized into trips where each trip is a time sequence

of location records. Let rij denote the jth record for

trip i. Line connecting position coordinates of rij and

rij+1 represents a trace segment. We drop time t from

location record as it is not used in our analysis and refer

to rij as a trace point.

GPS trace data is prone to positional errors from

signal interference and device inaccuracies. Addition-

ally, for data collected at a low frequency, the con-

secutive trace points can be far apart that trace seg-

ment connecting the points might span non-road re-

gions making direct estimation of road networks from

trace data challenging. Fig. 3 shows an example, where

the middle trace segment does not correspond to the

actual road. Although those trace points may not be

noise, such trace segments can make detecting actual

road networks difficult. We seek to use image features

to filter out trace segments that span non-road regions
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Fig. 3 An example of noisy traces caused by low sampling
rate.

with the objective that the road network can be more

accurately recovered from traces.

3.2 Initial Filtering

We begin by eliminating non-road trace segments based

on the spatial density of trace points. We estimate the

spatial density of trace points by applying a Gaussian

kernel with σ set to 3 meters, which is determined based

on expected GPS errors and road width. Pixels with

density values outside one σ range are labeled as non-

road regions under the assumption that spatial density

of trace points on actual road regions are sufficiently

high. For a trace segment, a measure Tg is defined as

the length of trace segment passing through non-road

regions over the total length. We remove traces with Tg
values larger than 0.3. It should be noted that this filter-

ing step use GPS data alone to remove obvious outliers

but cannot deal with regions subjected to significant

noise. For instance, this step removes few traces in the

dataset shown in Fig. 1(a) because the point density

is high over the entire area. Hence, we seek to exploit

image features to further remove noisy traces.

3.3 Image based Filtering

3.3.1 Image Segmentation

The first technique is image segmentation, which par-

titions an image into homogeneous regions. Since road

pixels tend to be grouped together to form large seg-

ments in a reasonable segmentation, trace segments on

roads should span fewer segments than non-road trace

segments. We define measure Ts as the ratio of trace

length to total number of image segments spanned by

the trace. A small Ts suggests that the trace traverses

a large number of segments, which is unlikely to be a

road trace segment.

Despite the large number of existing algorithms, seg-

menting aerial images remains a challenging task, espe-

cially for images containing various ground objects [9,
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Fig. 4 Distribution of road and non-road traces with respect
to length-per-segment values.

20]. We employ a factorization-based segmentation al-

gorithm [26]. It has shown be effective to segment aerial

images with great efficiency [25]. For completeness sake,

we give a brief description of the algorithm. An image

is convolved with a bank of filters, and a local spectral

histogram [13] is computed at each pixel location, which

consists of histograms of different filter responses within

a square window centered at the pixel. The size of the

window is called integration scale, which is a tunable

parameter. Such a feature can capture the appearance

of local window, and a homogeneous region has a repre-

sentative feature that is similar to other features in the

region. Each feature in an image can be approximated

by a linear combination of representative features, and

combination weights indicate the region ownership of

the corresponding pixel. A factorization-based image

model can be expressed in the following equation,

Y = Zβ + ε. (1)

Y is a feature matrix consisting of columns represent-

ing features at all pixel locations. Z contains columns

corresponding to representative features. Each column

of β is the combination weights at each pixel location.

The largest weight in each column indicates the seg-

ment the corresponding pixel belongs to. ε represents

the noise.

Based on this image model, the segmentation algo-

rithm aims at factoring Y into two matrices. By ap-

plying singular value decomposition to Y, the number

of segments can be estimated, and a subspace can be

revealed where all features reside. Initial representative

features are estimated by analyzing the feature distri-

bution in the subspace. A nonnegative matrix factoriza-

tion algorithm [1] is then applied to obtain the factored

matrices that give segmentation.

In order to show whether our segmentation result

is useful for identifying traces on roads, we classify the

trace segments in Fig. 1 into road and non-road based

on their maximum distances to center road lines that

are manually drawn, and plot the distribution of our

computed measure Ts. (see Fig. 4(a)). We can see that
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the majority of non-road traces have a small value for

Ts. Here, we remove the non-road traces by simple thresh-

olding. The threshold is set to 20 meters per segment

for the experiments in this paper. Although some road

traces are discarded in this step, we find they are mostly

short traces that happen to cross segment boundaries

and discarding them does not significantly affect re-

sults.

Fig. 5(b) displays the result of applying this filtering

step to the trace data in Fig. 5(a). The number of noisy

trace segments is clearly decreased.

3.3.2 Orientation estimation

As can be seen from Fig. 5(b), there still exist a no-

ticeable amount of noisy traces, which happen to lie in

large image segments resulting from either large regions

or under-segmentation. Different types of information is

required to remove those traces.

Inspired by Harris corner detector [11], we propose

a structure tensor approach to examine whether the

alignment of a trace segment is consistent with the im-

age content in its surroundings. From an aerial view,

one can observe that most objects on and near a road,

including vegetation, pavement markings, vehicles, and

buildings, spread along the road. Consequently, if we

shift the image patch containing a road and compute

the pixel difference, the largest difference occurs when

the shift is perpendicular to the road orientation, and

the smallest difference occurs when it is parallel to the

road orientation. The structure tensor is used to find

the orientation.

Given an image I and an image window W , we

slightly shift the window by (∆x,∆y), and the sum of
square differences between W and the shifted window

is written as

S =
∑
W

[I(xi, yi)− I(xi +∆x, yi +∆y)]
2
, (2)

where (xi, yi) is the pixel location in the window. The

second term in the equation, denoting the shifted win-

dow, can be approximated by the first order term of

Taylor expansion. Then, Equation 2 can be rewritten

as

S = [∆x,∆y]A

[
∆x

∆y

]
, (3)

where A is a matrix called structure tensor and takes

the following form

A =

[ ∑
W I2x

∑
W IxIy∑

W IxIy
∑

W I2y

]
. (4)

Here Ix and Iy denote the partial derivatives in x and

y, which are gradients in the image sense. For corner

detection, the relationship between two eigenvalues of

A indicate whether the image window contains a corner.

Let U denote the shift vector [∆x,∆y]T . According

to the Rayleigh quotient [10], UTAU
UTU

reaches the mini-

mum value, which equals to the smallest eigenvalue of

A, when U is the corresponding eigenvector. Likewise,

the maximum value equals to the largest eigenvalue.

It is reasonable to assume a fixed norm for the shift

vector. Thus, the minimum value of S is given by the

smaller one of two eigenvalues of A, and it is achieved

when the shift vector is the corresponding eigenvector.

Based on the aforementioned characteristics of road ap-

pearances, this direction should agree with the road ori-

entation. The two eigenvectors essentially indicate the

dominant direction of gradients in the image window.

Note that the average of gradients does not well repre-

sent the dominant direction [5].

Now we can easily examine whether the orientation

of a trace segment is consistent with the orientation

estimated from the image. For each trace segment, the

image patch is defined as a rectangular area around the

trace that has the same length as the trace segment

and a width of 30 meters. The gradients within the

patch are used to construct the structure tensor, and

the eigenvector corresponding to the smaller eigenvalue

gives the orientation of the patch. We define measure

To as the difference in angle between a trace segment

and the eigenvector, and only retain the traces with

a To value less than 15 degree. In the case when the

image patch contains no road, the eigenvector does not

reflect a road direction and is unlikely to coincide with

a noisy trace. Fig. 5(c) shows the filtering result after

this step. Compared with the original data in Fig. 1,

noisy traces are significantly reduced, and road patterns

are now clearly visible. To provide a better illustration,

we overlay the traces on the aerial images, shown in

Fig. 5(d). As we can see, the filtered traces are mostly

located on roads.

Given input GPS trace dataset containing N trips,

represented as {r1, r2, . . . , rN}, the procedure of filter-

ing traces is described in Algorithm 1.

Algorithm 1 Trace filtering
for i:=1 to N do

for each trace segment {rij , rij+1} in trip ri do
Compute Tg, Ts, To

if (segment meets thresholding conditions) then
Retain trace segment

end if
end for

end for



Image Feature Based GPS Trace Filtering for Road Network Generation and Road Segmentation 5

(a) (b) (c) (d)

Fig. 5 Trace filtering. (a) Traces after initial filtering. (b) Traces filtered based on the segmentation result. (c) Traces filtered
by examining the alignment with respect to the image content. (d) Filtered traces (blue lines) overlaid on the aerial image.

4 Road Network Generation

We begin by mapping filtered traces onto image space.

By treating the pixels covered by filtered trace segments

as foreground, we obtain a binary image. Now, with the

filtered traces well describing roads, we apply morpho-

logical operations to the binary image to generate a

road network. A closing operation is first performed to

fill small gaps among traces. Closing includes a dilation

operation where each background pixel next to an ob-

ject pixel is turned into an object pixel, and an erosion

operation where each object pixel next to a background

pixel is turned into a background pixel. Then, a thin-

ning operation is used to extract the medial axes, or

skeletons, which continuously removes boundaries pix-

els but preserves the extent and connectivity of fore-

ground objects. A medial axis point is the center of a

circle that touches object boundaries at two or more

points. The circle radius reflects local thickness, which

in our case can be interpreted as road width. The me-

dial axes extracted from the binary image give a road

network.

For roads that are close to each other, the corre-

sponding traces can incorrectly merge after the closing

operation. As a result, the medial axes do not repre-

sent the actual roads. Fig. 6 shows an example of this

issue. Fig. 6(b) displays the medial axes extracted from

the traces in Fig. 6(a), which fail to capture the struc-

ture of actual roads. Here we design a simple scheme to

cope with this issue. Since incorrectly merged traces are

from multiple roads, they tend to form thick patterns

in the binary image. Thus, we locate those traces by

selecting the medial axis points with radii larger than a

predefined maximum road width. The foreground pixels

associated with those medial axis points form a number

of connected regions. The incorrect merging is caused

by the traces in the areas between roads. Those traces

are distributed much less densely than the traces on

the roads. Therefore, we reduce the effect of those traces

based on their density. For each connected region, we es-

timate the trace density using a Gaussian kernel. A set

(a) (b) (c)

Fig. 6 Extracting medial axis from filtered traces. (a) Fil-
tered traces. (b) The extracted medial axes using morpholog-
ical operations. (c) The extracted medial axes after correc-
tions.

of thresholds are applied to the density map to yield dif-

ferent foreground regions, as well as the corresponding

medial axes. The medial axes with the largest density

value are selected to replace the original medial axes.

The new medial axes better represent the road struc-

ture, hence a more accurate road network. Fig. 6(c)

presents the result after this step, which shows a clear

improvement.

Based on the extracted medial axes, we find all the

intersection points and end points. We prune those points
by merging intersection points close to one another and

removing small branches. The Douglas-Peucker algo-

rithm [8] is then used to reduce the path between points

into line segments. A graph can be constructed, which

provides a typical representation of road network.

5 Road Region Segmentation

Next, we show that the road network generated from

the GPS traces can be further used to produce accu-

rate road segmentation. A simple yet effective method

is proposed in [24], which utilizes publicly available road

vector data to segment road regions from aerial scenes.

Given the road network obtained above, this method

can be readily used to obtain road regions.

Given the road network generated above, segment-

ing road regions can be formulated as identifying two

road edges parallel to each line in the network. We over-

lay the road network with a binary map representing re-



6 Jiangye Yuan, Anil M. Cheriyadat

gion boundaries, which is available from factorization-

based image segmentation. We scan each line in the

road network. On each side of a line, a search space

is defined as a rectangular area, which should be wide

enough to cover potential road regions. The distance

from all boundary pixels in the search space to the line

are assigned to bins in a histogram. The bin width is

chosen based on image resolution. The histogram re-

veals the spatial distribution of boundary pixels with

respect to the line. In aerial images, we can observe that

actual road edges generally have long detected bound-

aries parallel to lines in a road network. Hence, the road

edge is determined as a straight line at the distance

corresponding to the highest peak in the histogram.

Fig. 7 shows an example, where the histogram peaks

well match actual road edges. As the lines in the road

network may not be at the centers of roads, the road

edge on each side of a line segment is estimated sepa-

rately. Previously, in [24] it was shown that this method

exhibits reliable performance with manually generated

road networks. Our experiments described in the next

section demonstrate that this method performs well

with road networks automatically generated from GPS

traces.

6 Experiments

In this section, we present experimental results of ap-

plying the proposed method to a large dataset. We also

quantitatively evaluate the results and compare with

the leading method of inferring road maps from GPS

traces.

6.1 Dataset

We use the GPS trace data of taxi cabs in San Fran-

cisco, CA [15]. It contains the GPS coordinates of over

500 taxis in one month. In the dataset, the traces in

the downtown areas are highly prone to measurement

errors due to tall buildings. The time intervals between

two sample points are varying, most of which are 60

seconds, and a considerable amount has even longer in-

tervals. A vehicle can pass several different roads within

such long intervals. As a pre-processing to reduce noisy

traces, we remove trace segments with average speed

exceeding 150 km/h. We also remove trace segments

shorter than 15 meters, which appear to be very noisy.

We use two geo-referenced color images covering the

same areas, each of which is a 5000 × 5000 tile. The

spatial resolution is 0.3 m. Figs. 8 and 9 show the im-

ages and the corresponding traces, which respectively

correspond to a residential area, where the traces are

Fig. 7 Determining road edges based on the histogram of
boundary pixels. The yellow line shows a line in the road
network. The boundaries marked in red are generated by the
factorization-based algorithm. The white lines indicate the
search space on each side of the road.

relatively less noisy, and the downtown area, where the

traces are the most severely affected by noisy measure-

ments.

6.2 Road network

We feed the datasets into the proposed method to gen-

erate road networks. The parameter values are fixed in

our experiments. The results are illustrated in Figs. 10(a)

and 11(a), where the road network are overlaid on the

aerial images. For the dataset in Fig. 8, although the

density of traces on different roads varies to a large ex-

tent, our method produces a rather complete road net-

work. Roads in the dataset in Fig. 9 are highly difficult

to extract from either GPS data or the image. Many

traces corresponding to roads are completely buried in

noise. Road regions in the image are occluded by ve-

hicles and shadows. It can be seen that our method

generates very promising results by exploiting the infor-

mation from both data sources. We observe that some

curvy roads are missing in the results. Because GPS

data is collected at a low frequency, most traces on
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(a) (b)

Fig. 8 The dataset covering a residential area. (a) GPS traces. (b) Aerial image.

(a) (b)

Fig. 9 The dataset covering the downtown area. (a) GPS traces. (b) Aerial image.

curvy roads lie outside road regions and hence are re-

moved as noisy.

Previous efforts have been made in generating road

networks from GPS data. Biagioni and Eriksson re-

cently proposed a method that combines several ex-

isting techniques and report the start-of-the-art per-

formance [4]. For comparison, we apply their method,

which will be referred to as the BE method, to our

dataset. We use the code distributed by the authors.

For quantitative evaluation, we use two indices, com-

pleteness and correctness [22], which are commonly used

to assess road network extraction. The indices are cal-

culated through a two-step matching. First, a buffer

with a constant width is defined around the ground

truth road. The extracted roads within the buffer are
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(b) (c) 

(a) (d) (e)

Fig. 10 Road network and road regions generated from the dataset in Fig. 8. (a) Road network (blue lines) overlaid on the
aerial image. (b) Road regions marked in red. (c)-(e) Detailed views of extracted road regions.

(b) (c) 

(a) (d) (e)

Fig. 11 Road network and road regions generated from the dataset in Fig. 9. (a) Road network. (b) Road regions. (c)-(e)
Detailed views of extracted road regions.
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Fig. 12 Comparison between the Biagioni & Eriksson
method and the proposed method on the dataset shown in
Fig. 8. (a) Completeness plot. (b) Correctness plot.

denoted as true positive (TP ), and the extracted roads

out of the buffer false positive (FP ). In the second step,

a buffer is placed around the extracted road, and the

ground truth road out of the buffer are denoted as false

negative (FN). Completeness and correctness are de-

fined by the following equations

completeness =
TP

TP + FN

correctness =
TP

TP + FP
.

(5)

For ground truth, we use the road vector data acquired

from OpenStreetMap1.

Fig. 12 shows the quantitative comparison of apply-

ing two methods to the dataset in Fig. 8. The two in-

dices are calculated using different buffer widths. Clearly,

our method achieves higher scores for both complete-

ness and correctness. The BE method constructs an ini-

tial road network based on the trace density and applies

map matching to the network to remove the edges with

very few matched traces. When applied to this dataset,

it confuses many crowded noisy traces as roads, which

causes the low correctness rate. Also, because the initial

network includes a large number of incorrect edges, the

1 http://www.openstreetmap.org/

method matches the traces to those edges and misses

the edges corresponding to actual roads, which decrease

the completeness rate. In contrast, our method benefits

from the use of image information and identifies much

more roads with very few false detections. Note that

some roads are not detected due to the lack of qual-

ity GPS traces on those roads. The correctness rate

of our result is particularly high. The reason is that

the detected roads are actually verified by both GPS

and image information. We have also applied the BE

method to the dataset in Fig. 9, but found that it fails

to produce a reasonable result.

6.3 Road regions

Based on the road networks, we produce road regions

for both datasets, as shown in Figs. 10(b) and 11(b).

Several patches in both figures are also presented to

give detailed views of extracted road regions. We can

see that the road regions are accurately delineated. To

quantitatively measure accuracy, we create ground truth

by manually labeling road regions on images with as-

sistance of road vector data. As a typical binary classi-

fication task, we measure the extraction accuracy us-

ing precision and recall. Precision is the percentage

of the correctly detected road pixels among those de-

tected by the algorithm, and recall the percentage of the

correctly detected road pixels among those in ground

truth. The average precision and recall for the result in

Fig. 10(b) are 0.81 and 0.73, respectively. For the result

in Fig. 11(b), they are 0.78 and 0.68, respectively.

We implement the entire method using MATLAB.

On a 3.2-GHz Intel processor, the running time for pro-
cessing the two sets of data is 8 minutes and 12 minutes,

respectively.

6.4 Visualization applications

The results of our methods can be transferred to useful

visualization. One simple example is to assign a con-

stant road surface color to road regions, which creates

a view of empty streets, as shown in Fig. 13.

By incorporating trace data, we can also provide

traffic pattern visualization. After obtaining the road

network and road regions, we project each GPS sam-

ple onto the closest line in the road network. We com-

pute the shortest path between two consecutive samples

and accumulate the trips on the road network. The 1-

D representation is then dilated to the segmented road

regions. Fig. 14 illustrates the results of counting the

taxi trips within three time intervals in each day. Three

cropped areas are shown, where the roads colored based
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Fig. 13 Empty street view. (a) Original image. (b) Road
regions filled with a single color.

on trip numbers are overlaid on gray-level images. This

provides a clean and informative visualization of taxi

traffic, where further analysis can be conducted, e.g.,

travel time estimation and hotspot detection.

7 Conclusions

We have presented a new method that integrates aerial

images with GPS trace data for road network infer-

ence and road segmentation. Applying computer vision

techniques to aerial images offers valuable information

to remove noisy traces while preserving the useful ones.

The road network generated from filtered traces pro-

vides guidance to accurately delineated road regions.

Our experiments demonstrate that our method can use

GPS data with high level noise to segment road regions

in highly complex scenes. Moreover, we show that our

method leads to useful visualization.

There are several directions for future work. First,

the current method does not consider fine details of

road networks, such as separated lanes, ramps, and

overpasses. One reason is that the coarse-grained trace

data cannot provide such detailed information, which,

however, may be available from high-resolution images.

It is interesting to explore how to utilize images to re-

fine generated road networks. Secondly, this paper fo-

cuses on the GPS data of vehicles. In future research, we

plan to investigate the use of other types of GPS data,

e.g., smartphone location data, which may be capable of

characterizing semantic regions other than roads when

combined with images.
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