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Search for time reversal invariance violation in neutron transmission2
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Time reversal invariance violating (TRIV) effects in neutron transmission through a nuclear target are discussed.
We demonstrate the existence of a class of experiments that are free from false asymmetries. We discuss the
enhancement of TRIV effects for neutron energies corresponding to p-wave resonances in the compound nuclear
system. We analyze a model experiment and show that such tests can have a discovery potential of 102–104

compared to current limits.
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I. INTRODUCTION14

Time reversal invariance violation (TRIV) in nuclear15

physics has been studied for several decades. There are a num-16

ber of TRIV effects in nuclear reactions and nuclear decays,17

which are sensitive to either CP-odd and P-odd (or T- and P-18

violating) interactions or T-violating and P-conserving (C-odd19

and P-even) interactions. Here we consider TRIV effects in20

nuclear reactions which can be measured in the transmission21

of polarized neutrons through a polarized target [1,2]. Such22

reactions can be described within the framework of neutron23

optics (for a discussion of neutron optics, see, for example,24

Refs. [3,4].) The transmitted neutron wave propagates through25

a medium according to a spin-dependent index of refraction.26

The index of refraction depends on any applied magnetic field27

and the polarization of the medium. Because the state of the28

medium does not change, the polarization of the medium can29

be treated as a classical field. Because the initial and final30

propagation vectors of the neutron are the same, the initial and31

final states of the neutron can be time reversed in an experiment32

by rotation of the apparatus.33

The neutron and nuclei are both composite systems and34

any measurement of a T-odd process in a particular system35

may have accidental cancellation of TRIV effects or might36

be relatively insensitive to one or more of the many possible37

sources of T-odd amplitudes. A search for TRIV in neutron38

transmission expands the variety of nuclear systems. This39

provides assurance that possible “accidental” cancellation40

of T-violating effects owing to unknown structural factors41

related to the strong interactions in the particular system42

can be avoided. Taking into account that different models43

of the CP-violation may contribute differently to a particular44

T/CP-odd observable, which may have unknown theoretical45

uncertainties, TRIV nuclear effects could be considered com-46

plementary to electric dipole moment (EDM) measurements,47

whose status as null tests of T invariance is more widely48

known. Moreover, there is the possibility of an enhancement49
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of T-violating observables by many orders of magnitude in 50

neutron transmission owing to the complex nuclear structure 51

(see, i.e., Ref. [5] and references therein). 52

For the observation of TRIV and parity-violating (PV) 53

effects, we consider neutron optical effects related to the T-odd 54

correlation, �σn · (�k×�I ), where �σn is the neutron spin, �I is the 55

target spin, and �k is the neutron momentum, which can be 56

observed in the transmission of polarized neutrons through a 57

polarized target. This correlation leads to a P-odd and T-odd 58

difference between the total neutron cross sections [2] �σ�T �P 59

for �σn parallel and antiparallel to �k×�I and to the neutron spin 60

rotation angle [1] φ �T �P around the axis �k×�I , 61

�σ�T �P = 4π

k
Im(f↑ − f↓),

dφ �T �P
dz

= −2πN

k
Re(f↑ − f↓). (1)

Here f↑,↓ are the zero-angle scattering amplitudes for neutrons 62

polarized parallel and antiparallel to the �k×�I axis, respec- 63

tively; z is the target length and N is the number of target nuclei 64

per unit volume. These TRIV effects can be enhanced [6] by 65

a factor as large as 106. Similar enhancement was already 66

observed for PV effects related to (�σn · �k) correlation in neutron 67

transmission through nuclear targets. For example, the PV 68

asymmetry in the 0.734 eV p-wave resonance in 139La has 69

been measured to be (9.56 ± 0.35)×10−2 (see, for example, 70

Ref. [7] and references therein). 71

The PV and TRI-conserving difference of total cross 72

sections �σ�P in the transmission of polarized neutrons through 73

unpolarized targets which is proportional to the correlation 74

(�σ · �k) can be written in terms of differences of zero-angle 75

elastic scattering amplitudes with negative and positive neu- 76

tron helicities as 77

�σ�P = 4π

k
Im(f− − f+). (2)

One can calculate both TRIV and PV amplitudes using 78

distorted-wave Born approximation to first order in the parity 79

and time reversal violating interactions (see, for example, 80

Ref. [6]). Thus, the symmetry-violating amplitudes can be 81
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written as82

t
f i
�P,�P �T = 〈�−

f |V�P,�P �T |�+
i 〉, (3)

where �±
i,f are the eigenfunctions of the nuclear T-invariant83

Hamiltonian with the appropriate boundary conditions [8]:84

�±
i,f =

∑
k

a±
k(i,f )(E) φk +

∑
m

∫
b±

m(i,f )(E,E′) χ±
m (E′) dE′.

(4)

Here φk is the wave function of the kth compound resonance85

and χ±
m (E) is the potential scattering wave function in the86

channel m. The coefficient87

a±
k(i,f )(E) = exp(±iδi,f )

(2π )
1
2

(
	

i,f
k

) 1
2

E − Ek ± i
2	k

(5)

describes compound nuclear resonances reactions and the88

coefficient b±
m(i,f )(E,E′) describes potential scattering and89

interactions between the continuous spectrum and compound90

resonances. (Here Ek , 	k , and 	i
k are the energy, the total91

width, and the partial width in the channel i of the kth92

nuclear compound resonance, E is the neutron energy, and93

δi is the potential scattering phase shift in the channel i;94

(	i
k)

1
2 = (2π )

1
2 〈χi(E)|V |φk〉, where V is a residual interaction95

operator.)96

Because it is already known that the dominant mechanism97

of symmetry violation in heavy nuclei is the mechanism of98

symmetry mixing in the compound nuclear resonances [6],99

only first term in Eq. (4) is important to include for our100

estimates. For the sake of simplicity we consider the case101

of a two resonance approximations, which is reasonably102

good for many heavy nuclei in the low-neutron-energy region103

E ∼ 1–100 eV. Then, symmetry-violating amplitudes owing104

to mixing of nearby s-wave and p-wave resonances can be105

written as106

〈p|t |s〉 = − 1

2π

(v + iw)
(
	n

s 	
f
p

) 1
2

(E − Es + i	s/2)(E − Ep + i	p/2)
ei(δn

s +δn
p),

(6)

and107

〈s|t |p〉 = − 1

2π

(v − iw)
(
	n

p	n
s

) 1
2

(E − Es + i	s/2)(E − Ep + i	p/2)
ei(δn

p+δn
s ),

(7)

where v and w are the real and imaginary parts of the matrix108

elements for PV and TRIV mixing between s- and p-wave109

compound resonances110

v + iw = 〈φp|V�P + V�P �T |φs〉, (8)

owing to V�P (PV) and V�P �T (TRIV) interactions. One can see111

that PV and TRIV matrix elements are real and imaginary112

parts of the same matrix element calculated with exactly113

the same wave functions. Also, the difference of amplitudes114

(f− − f+) for the PV effect in Eq. (2) is proportional to the sum115

of the symmetry-violating amplitudes [Eqs. (6) and (7)] but116

the difference of amplitudes (f↑ − f↓) for the PT -violating117

effect in Eq. (1) is proportional to the difference of the same 118

amplitudes [Eqs. (6) and (7)]. This results in the same energy 119

dependencies for both PV and TRIV effects. Indeed, taking 120

into account all numerical factors, one gets 121

�σ�P �T = −2πGT
J

k2

w
(
	n

s 	
n
p(S)

) 1
2

[s][p]
[(E−Es)	p + (E−Ep)	s],

(9)

and 122

�σ�P = 2πGP
J

k2

v
(
	n

s 	
n
p

) 1
2

[s][p]
[(E − Es)	p + (E − Ep)	s],

(10)

where [s,p] = (E − Es,p)2 + 	2
s,p/4, GT

J and GP
J are spin 123

factors, and J is the spin of compound nucleus (see details in 124

Refs. [5,6,9]). One can see that owing to the similarity of these 125

two equations, the TRIV effect has the same enhancement on 126

resonance as the PV one. 127

Now one can find the relation between the values of the PV 128

and TRIV effects as 129

�σ�T �P = κ(J )
w

v
�σ�P , (11)

where 130

κ(I + 1/2) = − 3

23/2

(
2I + 1

2I + 3

)3/2( 3√
2I + 3

γ −
√

I

)−1

,

κ(I − 1/2) = − 3

23/2

(
2I + 1

2I − 1

)(
I

I + 1

)1/2

×
(

− I − 1√
2I − 1

1

γ
+ √

I + 1

)−1

. (12)

Here γ = [	n
p(I + 1/2)/	n

p(I − 1/2)]1/2 is the ratio of the 131

neutron width amplitudes for the different channel spins. In 132

general, the parameter γ may be obtained from γ -ray angular 133

correlation measurements in neutron-capture reactions on 134

resonance [6,10]. Using standard unitary transformations, one 135

can rewrite the parameter γ in the neutron spin (j = l ± 1/2) 136

representation scheme 	n
p(j )1/2 as 137

γ = −√
2	n

p(1/2)1/2 + 	n
p(3/2)1/2

	n
p(1/2)1/2 + √

2	n
p(3/2)1/2

. (13)

One can see from Eq. (11) that larger values of the parameter 138

κ(J ) increase the sensitivity of the TRIV difference of total 139

cross sections compared to the PV. One can therefore enhance 140

the sensitivity of TRIV experiments in polarized neutron 141

transmission by choosing a p-wave resonance in a nucleus 142

with favorable properties. 143

II. ENHANCEMENT FACTORS 144

Let us recall the main features of the enhancement factors 145

for TRIV and PV effects using as an example the P-odd 146

difference �σ�P of total cross sections. The quantity �σ�P 147

displays resonance peaks near both s- and p-wave resonances, 148

increasing its value by a factor of (D/	)2 with respect to an 149
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energy between the resonances (D = |Es − Ep|). These peaks150

are caused by the resonant enhancement of the wave-function151

amplitude in the region of the interaction. The physical152

meaning of the resonance enhancement is similar to the153

estimates of the lifetime of the compound nucleus. This154

lifetime τ can be understood as the additional time that the155

neutron spends in the range of the nuclear interaction owing to156

the resonant component of the neutron-nucleus interaction. In157

terms of the neutron-scattering phase shift δ(E), one can write158

τ = 2
dδ(E)

dE
, (14)

where the resonant part of the phase shift for the ith resonance159

is δ(E) � − arctan [(	i/2)/(E − Ei)] near the resonance en-160

ergy. In the resonance state, the particle remains within the161

nucleus for a longer time of the order of the resonance lifetime162

∼(1/	). Therefore, it is natural to expect an enhancement of163

symmetry violation proportional to the ratio of the resonance164

lifetime (1/	) to the lifetime of compound nucleus away from165

the resonance (	/D2), that is, to (D/	)2.166

Let us consider the ratio P = �σ�P /(2σtot), where σtot167

is the total cross section and consists of the s-resonance,168

p-resonance, and the potential scattering contributions. The169

quantity σtot also displays a marked resonance peak in the170

vicinity of s-wave resonance, which compensates completely171

for the corresponding peak of the numerator P . Therefore,172

the quantity P is not enhanced in the vicinity of the s-wave173

resonance and remains approximately on the same level as the174

value between the resonances. In general, σtot is dominated by175

the smooth background of the s-wave resonance and potential176

scattering cross section in the vicinity of the p-wave resonance,177

because for the neutron energies under consideration here178

(kR) � 1 (R is the nuclear radius). Therefore, the resonance179

peak of �σ�P near the p-resonance is retained in the quantity180

P , which is enhanced here by a factor of (D/	)2,181

P (Ep) ∼ 8
v

D

√
	n

p

	n
s

D2

	s	p

[
1 + σp + σpot

σs

]−1

. (15)

The presence of the “penetration factor”
√

	n
p/	n

s ∼ (kR)182

in Eq. (15) is characteristic of all correlations observed in183

low-energy nuclear reactions which arise owing to initial-state184

interference and, consequently, are proportional to the neutron185

momentum in the correlation (�σ · �k). It should be noted that P186

might have the maximal magnitude187

Pmax � v

D

D

	
= v

	
, (16)

when the total cross-section contributions from the s- and188

p-resonances have similar magnitudes in the vicinity of the189

p-wave resonance.190

In addition to the resonance enhancement factor, there is191

also the so-called “dynamic” enhancement factor, which is192

connected with the ratio v/D. For a crude estimate of this193

ratio, one can expand the compound resonance wave function194

φ in terms of simple-configuration wave functions (e.g., one-195

particle wave functions) ψi which are admixed to compound196

resonances by strong interactions: 197

φ =
N∑

i=1

ciψi. (17)

Using the normalization condition for the coefficients ci and 198

the statistical random-phase hypothesis for matrix elements 199

〈ψi |W |ψk〉, we obtain 200

v = 〈φs |W |φp〉 = 〈ψi |W |ψk〉rmsN
−1/2. (18)

Here 〈ψi |W |ψk〉rms is the root-mean-square value of the matrix 201

elements between simple configurations. In the black-nucleus 202

statistical model, the number of components N is estimated in 203

terms of the average spacing D of compound resonances and 204

the average spacing D0 of single-particle states: 205

N ≈ D0/D. (19)

One can estimate N from the experimental data on neutron 206

strength functions because, in the statistical model of heavy 207

nuclei, the neutron strength function is proportional to N−1
208

(see, e.g., Ref. [11]). The value of N is about 106. Hence, 209

v

D
� 〈ψi |W |ψk〉rms

D0

√
N, (20)

where the ratio of the single-particle weak matrix element 210

to the single-particle level distance is about 10−7 (or the 211

usual scale of the nucleon-nucleon weak interaction). The 212

enhancement factor
√

N occurs as a result of the small level 213

distance between compound nuclear resonances (D−1 ∼ N ) 214

and the random-phase averaging procedure (∼N−1/2). 215

Using the one-particle formula (18) for the weak matrix 216

element, 217

v � 2×10−4
√

D(eV), (21)

one can see that the maximal possible P -odd effect is estimated 218

to be 219

Pmax ∼ 10−4
√

D(eV)/	 � 10% (22)

for the case of medium and heavy nuclei, which have typical 220

values of the parameters D ∈ (1–103) eV, 	 ∈ (0.05–0.2) eV. 221

Using one-particle PV and TRIV potentials, 222

VP = G

81/2M
{(�σ · �p),ρ(�r)}+, (23)

VPT = iGλ

81/2M
{(�σ · �p),ρ(�r)}−, (24)

where G is the weak interaction Fermi constant, M is the 223

proton mass, ρ(�r) is the nucleon density, and �p is the 224

momentum of the valence nucleon, one can get a relation 225

between the ratio of matrix elements λ = w/v and the ratio of 226

nucleon coupling constants λ = g �P �T /g �P : 227

λ = λ

1 + 2ξ
. (25)

Here ξ ∼ (1–7) (for detailed discussions, see Refs. [12–15]), 228

with 229

ξ = 〈φp|ρ(�σ �p)|φs〉
〈φp|(�σ �p)ρ|φs〉 . (26)
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φs,p are the s,p resonance wave functions of the compound230

nucleus. The value of the matrix element in numerator can be231

estimated [12] using the operator identity 2 �p = iM[Hsp,�r] as232

〈φp|ρ(�σ �p)|φs〉 � iρM

2
Dsp〈φp|(�σ �p)|φs〉. (27)

Here Hsp is the single particle nuclear Hamiltonian, Dsp is233

the average single particle level spacing, and ρ is the average234

value of the nuclear density. For the denominator of Eq. (26)235

one can show236

〈φp|(�σ �p)ρ|φs〉 = −〈φp|(�σ �r)
1

r

∂ρ

∂r
|φs〉

= 2iρ

R2
〈φp|(�σ �r)|φs〉, (28)

where R is the nuclear radius. Then we obtain237

ξ = 1
4MDspR2 = 1

4π (KR), (29)

where238

Dsp = 1

MR2
πKR, (30)

for square-well potential model [11], with K the nucleon239

momentum in the nucleus. This leads to a value of ξ � 1.240

Taking into account that theoretical predictions for λ vary from241

10−2 to 10−10 for different models of CP violation (see, for242

example, Ref. [16] and references therein), one can estimate a243

range of possible values of the TRIV observable and relate a244

particular mechanism of the CP violation to their values.245

III. ABSENCE OF FINAL-STATE INTERACTIONS246

IN FORWARD SCATTERING247

The unique feature of the TRIV neutron optical effects248

in forward neutron-nucleus elastic scattering [as well as the249

similar effects related to the TRIV and parity-conserving250

correlation �σn · (�k×�I ) · (�k · �I )] is the absence of false TRIV251

effects owing to the final-state interactions (FSIs) (see, for252

example, Ref. [5] and references therein). The possibility to253

construct a null test of T invariance in this case is related to254

the fact that neutron optical effects involve elastic scattering255

at zero angle. The general theorem about the absence of FSI256

for TRIV effects in elastic scattering has been proved first by257

Ryndin [17] (see also Refs. [5,18–20]). Because this theorem258

is very important, we give a brief sketch of the proof for the259

case of the zero-angle elastic scattering following Refs. [5,17].260

It is well known that the T-odd angular correlations in261

scattering and in particle decays are not sufficient to establish262

TRIV; i.e., they can have nonzero values in any process with263

strong, electromagnetic, and weak interactions. For example,264

the parity-conserving analyzing power in the scattering of265

polarized particles �σ · (�ki×�kf ) is formally odd under time266

reversal judged superficially according to the change in signs267

of the vectors under a T transformation and is known to268

be O(1) for many systems. This is because TRI, unlike269

parity conservation, does not provide a constraint on a single270

amplitude for any process, but rather relates the amplitudes271

for two different processes: for example, direct and inverse272

channels of reactions. We can relate T-odd correlations to273

TRIV interactions in such processes only in the first-order Born 274

approximation to the scattering amplitude: higher-order pro- 275

cesses can be sources of “final-state effects” which introduce 276

(formally) T-odd correlations from T-invariant interactions. 277

Indeed, the unitarity condition for the scattering matrix in 278

terms of the reaction matrix T , which is proportional to the 279

scattering amplitude, can be written as [21] 280

T † − T = iT T †. (31)

The first Born approximation can be used when the right side 281

of the unitarity equation is much smaller than the left side and 282

results in a Hermitian T matrix 283

〈i|T |f 〉 = 〈i|T ∗|f 〉, (32)

which, with TRI condition 284

〈f |T |i〉 = 〈−i|T | − f 〉∗, (33)

leads to the constraint on the T matrix as 285

〈f |T |i〉 = 〈−f |T | − i〉∗. (34)

This condition forbids T-odd angular correlations, as is the case 286

with the P-odd correlations when parity is conserved. (Here 287

the minus signs in matrix elements mean the opposite signs 288

for particle spins and momenta in the corresponding states.) 289

In the case of forward scattering relevant for neutron optics, 290

which corresponds to zero-angle elastic scattering, the initial 291

and final states coincide (i = f ). Combined with the TRI 292

condition (33), this condition gives Eq. (34) without the 293

violation of unitarity (32). Therefore, in this case, FSI cannot 294

mimic T-odd correlations originated from TRIV interactions. 295

Therefore, an observation of a nonzero value of TRIV effects 296

in neutron transmission directly indicates TRIV, exactly like 297

in the case of neutron EDM [22]. 298

To measure TRIV effects for neutron propagation with the 299

simple changing of neutron and/or nucleus polarizations is 300

unpractical because it requires unobtainably precise control 301

for many parameters which can contribute to systematic errors 302

(see, for example, Refs. [23,24]. The approach to eliminate this 303

difficulties was suggested in Ref. [20] (see also Refs. [25–27]), 304

which are implemented and discussed later in this paper. 305

IV. TRIV TRANSMISSION THEOREM 306

We have shown in the previous section that a null test of T 307

invariance can, in principle, be constructed from transmission 308

differences involving the forward elastic amplitudes in neutron 309

optics. How best to conduct a practical experiment that makes 310

use of the full potential of this null test for T invariance is a 311

separate question. We now start to address this question in the 312

rest of the paper. 313

Many authors have considered this question and have 314

outlined various experimental strategies in the literature. The 315

first impulse one might have when presented with the triple 316

correlation of vectors of interest in the forward-scattering 317

amplitude is that one can simply reverse the sign of whatever 318

vectors are most convenient experimentally and measure the 319

resulting cross-section difference. Because it is typically much 320

easier to flip a spin without changing other aspects of the 321

apparatus, the great majority of these papers have analyzed 322
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procedures in which either the neutron spin or the target spin323

are reversed. Unfortunately, detailed considerations of these324

schemes have shown that this approach is very sensitive to the325

alignment of the relevant vectors which are very difficult to326

control to the required precision.327

In this paper we advocate an experimental approach whose328

essential reversal involves not only a spin flip but also a329

rotation of the apparatus. This approach to the realization of the330

experiment, which we advocate below, has also been suggested331

before in the literature [25,26]. To clarify why we believe332

that this approach can be superior to many of the previous333

schemes proposed in the literature, we first prove a theorem for334

polarized neutron motion in a medium in the presence of any335

external fields (neutron optical, magnetic) whose interaction336

with the neutrons can be treated in the classical limit.337

Systematic errors in a transmission test of T invariance can338

arise from one or more of the following sources: imperfect339

alignment of polarizer, target, and analyzer; differences in the340

polarizer and analyzer; inhomogeneity of the target medium;341

rotations of the neutron spin owing to the holding field342

of a polarized target; and the interaction of the neutron343

spin with the target spin from the spin dependence of the344

strong interaction (sometimes referred to in the literature as345

nuclear pseudomagnetism) [28,29]. Masuda [26,30,31] and346

Serebrov [32] have proposed experiments that involve adding347

additional spin flips to the basic polarizer and polarized target348

apparatus. The difficulty in these approaches is that each349

added spin flip increases the number of parameters needed350

to characterize the apparatus by three: two alignment angles351

and an analyzing power. Lamoreaux and Golub [23] argue that,352

“...it will be necessary to develop new methods to make very353

precise absolute measurements of the neutron-spin direction. It354

seems hopeless to devise a experiment that would convincingly355

measure TRIV in the presence of such a wide variety of356

potential sources of false effects.”357

To resolve this problem we consider a configuration of358

the apparatus related to the approach originally proposed by359

Kabir [20,33], which is shown in Fig. 1, where the polarizer360

and analyzer prepare and select spin perpendicular to neutron361

momentum �k. The target is polarized perpendicular to both �k362

and the polarizer direction.363

To describe the transmission difference between these364

two configurations with both the polarizer and the analyzer365

reversed, we can use the equation of motion for the neutron spin366

as the neutron propagates through a medium and an external367

magnetic field, �B, given by Schrödinger’s equation with the368

effective Hamiltonian (Fermi potential),369

H = 2π�
2

mn

Nf − μ

2
(�σ · �B), (35)

where mn is the neutron mass, N is the number of scattering370

centers per unit volume, f is the forward elastic scattering371

amplitude, and �σ are the Pauli spin matrices. (For discussion of372

the conditions under which Eq. (35) applies, see Ref. [23] and373

references therein.) We can write f as the sum of four terms,374

f = a0 + b0(�σ · �I ) + c0(�σ · �k) + d0(�σ · [�k×�I ]), (36)

where I is the polarization of the target medium, and375

quantities other than the neutron spin �σ are treated as classical376

Collimator
1

Collimator
2

guide
field, Bg

target
polarization, I
field, Bt

polarizer/
analyzer

insensitive
detector

unpolarized
source

target
polarization, -I
field, -Bt

guide
field, -Bg

polarization

FIG. 1. (Color online) Apparatus to search for time reversal sym-
metry violation. The collimators, polarizer/analyzer, and polarized
target are mounted on a turntable that rotates about a vertical axis.
In the forward configuration, the neutrons first pass through the
polarizer/analyzer, then through the target, and then are detected.
In the reversed configuration the neutrons pass through the polarized
target, then through the polarizer/analyzer, and then are detected.
The dashed line is the horizontal axis of symmetry of the apparatus.
The solid line is a neutron trajectory. The collimators select the same
bundles of trajectories in the two configurations. The signs of the
magnetic fields, the target polarization, and the polarizer/analyzer
direction are all opposite in the two configurations.

fields. Neutron spin-optics tests of TRIV have the goal of 377

measuring d, which is the only term that originates from a 378

TRIV interaction. Terms a and b give the strengths of the 379

spin-independent and strong spin-spin (pseudomagnetic) 380

interactions, while terms c and d give the degree of PV 381

and TRIV arising from symmetry mixing in the neutron 382

resonances in the target medium. 383

We now show that if �B and �I are reversed, the forward 384

and reversed transmissions for the apparatus configuration 385

presented in Fig. 1 are equal if d = 0. Note carefully that, 386

in this proposed approach, the magnetic field �B is reversed, 387

but the orientation of the target polarization �I with respect to �B 388

is unchanged. Therefore, one can rewrite Hamiltonian (35) as 389

H = a + b(�σ · �I ) + c(�σ · �k) + d(�σ · [�k×�I ]), (37)

where a = 2π�
2

mn
Na0, b = 2π�

2

mn
Nb0 − (μB)/2, c = 2π�

2

mn
Nc0, 390

and d = 2π�
2

mn
Nd0. The neutron beam phase space acceptance 391

of the apparatus is defined by a pair of collimators mounted 392

on a rigid rotatable platform with the polarizers (analyzer) 393

and target as shown in Fig. 1. Rotating the apparatus by an 394

angle π about an axis perpendicular to the symmetry axis 395

of the collimators reverses the sign of �k for neutrons. We 396

assume that the product of the neutron source strength and 397

neutron detector efficiency is symmetric with respect to the 398

plane of the symmetry axis and the rotation axis. Then, the 399
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time evolution operator for the forward neutron transmission,400

UF , gives the relationship between the initial and final spin401

wave functions for a neutron that propagates from the source402

through the apparatus and ends on the detector.403

Let us consider the case when we have only TRI interac-404

tions. Then we divide the apparatus into m slabs and write the405

time evolution operator UF as a time ordered product of the406

evolution operators for each of the slabs:407

UF =
m∏

j=1

exp

(
−i

�tj

�
HF

j

)
= α + ( �β · �σ ). (38)

Here HF
j is the Hamiltonian from Eq. (37) evaluated at slab j ,408

and α and �β contain only TRI terms, because we temporarily409

assume that the TRIV parameter d = 0. In the expression for410

the reverse evolution operator, UR , the time ordering of the411

product and the signs of the spin-dependent terms in HR
j412

are reversed from those in HF
j . Then, the reverse evolution413

operator is414

UR =
1∏

j=m

exp

(
−i

�tj

�
HR

j

)
= α − ( �β · �σ ). (39)

The fact that the signs of the spin-dependent terms in the415

reverse evolution operator are changed eliminates potential416

systematic effects which may mimic TRIV effects in scattering417

experiments. This analysis agrees with Kabir’s result about418

the possibility to unambiguously [20] measure TRIV effects419

in neutron scattering. Because the relation asserted in Eq. (39)420

between forward and reverse evolution operators is very impor-421

tant for further consideration and not obvious, we prove it here.422

First, let us consider a two-slab medium. The forward and423

reverse evolution operators are424

UF = U
(1)
F U

(2)
F = exp

(
−i

�t1

�
HF

1

)
exp

(
−i

�t2

�
HF

2

)
,

(40)

UR = U
(2)
R U

(1)
R = exp

(
−i

�t2

�
HR

2

)
exp

(
−i

�t1

�
HR

1

)
.

For the case of infinitesimally small widths of the slabs,425

each exponential operator in the above equations can be written426

as427

U
(j )
F =

(
1 − i

�tj

�
HF

j

)
= F (j ) + ( �A(j ) · �σ ),

U
(j )
R =

(
1 − i

�tj

�
HR

j

)
= F (j ) − ( �A(j ) · �σ ), (41)

correspondingly, where428

F (j ) = 1 − i
�tj

�
a(j ),

�A(j ) = −i�tj

�
(b(j ) �I + c(j )�k). (42)

These one-slab evolution operators have exactly the same429

structure as the operators in Eqs. (38) and (39), provided430

F (j ) → α(j ) and �A(j ) → �β(j ). Substitution into Eq. (40) leads431

to exactly the same form as for Eqs. (38) and (39), again,432

with 433

α = α(1)α(2) + ( �β(1) · �β(2)),

�β = α(1) �β(2) + α(2) �β(1) − [ �β(1)× �β(2)]. (43)

Then, applying mathematical induction, one can prove the 434

proposition in the general (multislab) case as is given in 435

Eqs. (38) and (39). Applying this result for the calculations 436

of the forward and reverse transmissions, TF and TR , for our 437

experimental setup, we obtain the relation 438

TF = 1
2 Tr(U †

F UF )

= α∗α + ( �β∗ �β)

= 1
2 Tr(U †

RUR) = TR, (44)

which we call TRIV transmission theorem. This theorem 439

shows that if d = 0 and whole apparatus is rotated with �B 440

and �I being reversed, then the transmissions of (unpolarized) 441

neutrons through the apparatus in opposite directions are equal. 442

The proof of TRIV theorem makes no assumption con- 443

cerning the geometrical symmetry of the classical fields and 444

materials of the apparatus. Therefore, any deviation from 445

the equality of the forward and reversed transmissions in 446

Eq. (44) is a clear manifestation of the existence of TRIV 447

interactions [nonzero d coefficient in Eq. (37)]. It should be 448

noted that for nonzero d coefficient the difference between 449

TF and TR transmissions arises from both spin-dependent and 450

spin-independent parts of the evolution operators, which is in 451

agreement with Kabir’s [20,33] conclusion about the existence 452

of a number of possible unambiguous tests. 453

V. EVALUATION OF A MODEL EXPERIMENT 454

No TRIV experiment in neutron optics has been done to 455

date: Polarized targets of materials that have compound nuclear 456

resonances that exhibit large PV asymmetries are not easy to 457

construct. It has proved difficult to devise an experiment that 458

would eliminate false effects that arise from combinations of 459

instrumental imperfections and TRI interactions of the neutron 460

spin with materials and external fields. We believe that we have 461

made progress on the second issue with our TRIV transmission 462

theorem. Considerable progress has also been made on the 463

first problem: groups at Japan’s National Laboratory for High 464

Energy Physics [34,35], at Kyoto University [36], and at Paul 465

Scherrer Institute in Switzerland [37] have achieved substantial 466

polarizations of 139La nuclei in lanthanum aluminate crystals 467

as large as 10 cc. Thus, the 0.734 eV p-wave resonance 468

in 139La, which has a parity-odd longitudinal transmission 469

asymmetry of 9.5% [38], is a good candidate for TRIV studies. 470

To polarize the epithermal neutron beam for the proposed 471

experiment based on the TRIV transmission theorem, we can 472

use cells of polarized 3He as neutron polarizers and analyzers. 473

The direction of the 3He polarization in these polarizers, 474

based on spin-exchange optical pumping, is parallel to the 475

external magnetic field and will reverse direction when the field 476

direction is reversed adiabatically. Note that polarizers and 477

analyzers based on ferromagnetic materials can be difficult to 478

use in this experiment because hysteresis effects prevent their 479

precise reversal. Also, because Earth’s magnetic field cannot be 480
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FIG. 2. (Color online) Pseudomagnetic field in lanthanum
aluminate crystals.

reversed, it must be compensated for or shielded in this experi-481

mental approach. It is also essential that the values of the clas-482

sical fields be stable in time. Magnetic field strengths and the483

polarizations of 3He and the target medium can be accurately484

monitored using nuclear-magnetic-resonance techniques.485

For the target we use 139La nuclei in lanthanum aluminate486

crystals which have a very large PV effect in the vicinity of487

0.734 eV resonance. Using the experimentally achieved value488

of 139La polarization of 47.5% combined with the existing489

knowledge of the spin dependence of the polarized neutron-490

scattering amplitudes on polarized 139La nuclei in the J + 1/2491

and J − 1/2 spin channels, we can estimate [28,39] the size492

of the pseudomagnetic field inside the crystal as a function493

of neutron energy (see Fig. 2); the pseudomagnetic field is494

opposite the applied field. This gives an advantage for using495

lanthanum aluminate crystals, because values of TRIV effects496

in neutron optics, in general, are inverse proportional to the497

sum of magnetic and pseudomagnetic fields [39,40].498

As an example of the statistical accuracy that can be499

achieved with present spallation neutron sources, we make500

a rough estimate of the statistical uncertainty in the T-odd501

cross section that could be achieved in 107 s of data collection502

on the water moderator of Flight Path 16A at the Spallation503

Neutron Source at Oak Ridge National Laboratory. At the504

present time this beamline has not been instrumented. We505

assume a proton current of 1.4 mA at 1 GeV proton energy.506

We carry out the estimate for the 0.734-eV resonance in 139La.507

We assume that the target consists of one neutron interaction508

length of dynamically polarized lanthanum aluminate and that509

the neutron beam is polarized by a one-interaction-length 70%510

polarized 3He spin filter.511

We were unable to find a calculation or measurement of512

the neutron flux for FP16A. We estimated the neutron flux513

using the measurement of the flux from the water moderator514

of Flight Path 2 at the Los Alamos Neutron Scattering Center515

at the Los Alamos National Laboratory. Roberson et al. [41]516

found that the moderator brightness was well described by the517

expression518

d3N

dAdtd�
= k

�E

E

(
E

1 eV

)γ (
i

e

)
(neutrons cm−2 s−1 sr−1),

(45)

with k = 5.8×10−3 and γ = 0.1. E is the neutron energy, i is519

the proton current, e is the charge quantum, A is the area of the520

moderator that is viewed, �E is the range of neutron energies 521

accepted, and � is the solid angle acceptance of the apparatus. 522

We assume that the neutron production rate is proportional 523

to the proton energy and increase k by 1000/800, the ratio of 524

proton energies. We assume that Spallation Neutron Source 525

(SNS) will operate at 1.4 MW and i = 1.4 mA. 526

We assume that A = 100 cm2 and that the acceptance of 527

the apparatus is defined by a 10-cm-diameter polarized target 528

located 15 m from the moderator: � = 3.5×10−5 sr. We set 529

�E = 0.045 eV to cover the total width of the resonance. 530

The neutron flux within the 139La p-wave resonance width is 531

dN/dt = 7.8×107 neutrons/s. 532

To determine the uncertainty in the TRIV asymmetry 533

we must make some assumptions concerning running time, 534

source, polarizer, polarized target, detector, and cross sections. 535

We assume a running time of 107 s. We use a peak value of 536

the resonance cross section of 2.9 b, the potential scattering 537

cross section of 3.1 b, and the capture cross section at the 538

resonance energy of 1.6 b. We use cross sections of aluminum 539

and oxygen of 3.8 and 1.4 b [42]. We calculate that the neutron 540

polarization is 46% and the transmission of the polarizer is 541

46%. We assume a one-interaction-length LaAlO3 target. We 542

further reduce the transmission by a factor of 2 to account for 543

various windows. The transmission of the apparatus for 0.7 eV 544

neutrons is then estimated to be 11%. The transmitted beam 545

intensity in �E is flux =0.86×107 neutrons/s. The fractional 546

uncertainty in TRIV cross section is given by 547

δσ

σ
= 1√

flux×time

∑
σk

σp

. (46)

(The sum runs over all the cross sections given above.) If 548

we adopt a fractional PV asymmetry for the resonance of 549

9.5% [38], we obtain an uncertainty in λ and a ratio of the 550

TRIV to PV asymmetries of 6.0×10−6. 551

VI. DISCOVERY POTENTIAL 552

As noted in the Introduction, the question of how sensitive 553

any T-odd observable is to a particular source of T violation in 554

the nucleon system is theoretically nontrivial, owing in part to 555

our lack of quantitative understanding of many of the relevant 556

aspects of the strong interaction. As an example, to set the 557

scale for the potential sensitivity of a TRIV search in neutron 558

transmission, we start first with a case in which a quantitative 559

analysis is possible and has already been performed: the 560

neutron-deuteron system. Using the results of the recent 561

calculations of PV and TRIV effects in neutron deuteron 562

scattering [43,44], one can calculate the parameter λ for this 563

reaction and compare it to the case of the complex nuclei. 564

Let us consider the ratio of the TRIV difference of total cross 565

sections in neutron deuteron scattering given in Ref. [44], 566

P�T �P = �σ�P �T
2σtot

= (−0.185 b)

2σtot

[
ḡ(0)

π + 0.26ḡ(1)
π − 0.0012ḡ(0)

η

+ 0.0034ḡ(1)
η − 0.0071ḡ(0)

ρ + 0.0035ḡ(1)
ρ

+ 0.0019ḡ(0)
ω − 0.000 63ḡ(1)

ω

]
, (47)
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to the corresponding PV difference [43],567

P�P = �σ�P
2σtot

= (0.395 b)

2σtot

[
h1

π + h0
ρ(0.021) + h1

ρ(0.0027)

+h0
ω(0.022) + h1

ω(−0.043) + h
′1
ρ (−0.012)

]
.

(48)
Here we use the one-meson exchange model, known as the568

Desplanques, Donoghue, and Holstein (DDH) model for PV569

nucleon-nucleon interactions, to calculate both effects; in570

the above expressions, ḡ and h are meson- nucleon TRIV571

and PV coupling constants, correspondingly (see, for details,572

Refs. [43,44]). The dimensionless numerical constants multi-573

plying these couplings come from the detailed evaluation of574

n-D scattering given the measured properties of the strong NN575

interactions. These factors naturally become progressively576

more difficult to calculate for heavier nuclei. From these577

expressions, one can see that, in this case, contributions from578

pion exchange are dominant for both TRIV and PV parameters.579

Taking into account only the dominant pion contributions, one580

can estimate λ as581

λ = �σ�T �P
�σ�P

� (−0.47)

[
ḡ(0)

π

h1
π

+ (0.26)
ḡ(1)

π

h1
π

]
. (49)

This result is in reasonable agreement with an estimate for582

complex nuclei [12].583

We can attempt to relate the parameter λ to the existing584

experimental constrains obtained from EDM measurements,585

with the understanding that even such a relative comparison is586

highly model dependent. The CP-odd coupling constant ḡ(0)
π587

can be related to the value of the neutron EDM dn generated588

via a π loop in the chiral limit [45]. Using the experimental589

limit [46] on dn, one can estimate ḡ(0)
π < 2.5×10−10. The590

constant ḡ(1)
π can be bounded using the constraint [47] on the591

199Hg atomic EDM as ḡ(1)
π < 0.5×10−11 [48].592

The comparison of the λ parameter with the constraints593

on the coupling constants from the EDM experiments gives594

us the opportunity to estimate the possible sensitivity of595

TRIV effects to the value of TRIV nucleon coupling constant,596

which we call a “discovery potential” for neutron-scattering597

experiments [49,50], because it shows a possible factor for598

improving the current limits of the EDM experiments. Taking599

the DDH “best value” of h1
π ∼ 4.6×10−7 and the nuclear600

enhancement factors estimated above, and assuming that the601

parameter λ could be measured with an accuracy of 10−5
602

on complex nuclei, one can see from Eq. (49) that the603

existing limits on the TRIV coupling constants could be604

improved in neutron-optics transmission measurements using605

existing neutron sources by two orders of magnitude. To606

obtain Eq. (49), we assumed that the π exchange contribution607

dominates the PV effects. However, there is an indication608

[51–53] that the PV coupling constant h1
π could well be much609

smaller than the “best value” of the DDH. If this hint were610

confirmed by the −→n + p → d + γ experiment, the estimate611

for the sensitivity of λ to the TRIV coupling constant would be612

increased, as can be seen from Eqs. (47)–(49), because in most613

theoretical estimates the parameter λ is a ratio of TRIV to PV614

pion coupling constants (λ). (Note that, to our knowledge, there615

is absolutely no fundamental reason why the an effective TRIV616

pion coupling should be suppressed if the PV pion coupling is617

suppressed: Barton’s theorem, for example, suppresses neutral 618

pion exchange in PV meson-nucleon interactions but not in 619

TRIV interactions.) This increased sensitivity combined with 620

a possible choice of the target with large spin factor (13) might 621

increase the relative values of TRIV effects by two orders of 622

magnitude, and as a consequence, the discovery potential of 623

the TRIV experiments could be about 104. 624

The TRIV effects in neutron transmission through a nuclei 625

target are unique TRIV observables being free from FSI and 626

constitute null tests for time reversal invariance, as do EDM 627

experiments. These TRIV effects can be enhanced on certain 628

p-wave epithermal neutron resonances by about a factor 629

of 106 owing to the nuclear enhancement well-understood 630

mechanisms discussed above. In addition to this resonant 631

enhancement in complex nuclei, the sensitivity to TRIV inter- 632

actions in these effects might be structurally enhanced by about 633

102 if PV π -nucleon coupling constant is less than the “best 634

value” DDH estimate. Therefore, these types of experiments 635

with high-intensity neutron sources have a discovery potential 636

of about 102–104 for the improvement of the current limits on 637

the TRIV interaction obtained from the EDM experiments. 638

Another important feature of these experiments is the 639

complementarity to other searchers for TRIV. To illustrate 640

this, we use results of the calculations of neutron and proton 641

EDMs [54] and EDMs of few-body nuclei [55] presented 642

in terms of TRIV meson-nucleon coupling constants. Then, 643

assuming that TRIV pion, ρ, η, and ω meson coupling 644

constants have about the same order of magnitude, we can 645

write the main contributions to these EDMs in e fm units as 646

dn � 0.14
(
ḡ(0)

π − ḡ(2)
π

)
, (50)

dp � 0.14ḡ(2)
π , (51)

dD � 0.22ḡ(1)
π , (52)

d3He � 0.2ḡ(0)
π + 0.14ḡ(1)

π , (53)

d3H � 0.22ḡ(0)
π − 0.14ḡ(1)

π , (54)

4 2 0 2 4

4

2

0

2

4

g0

g2

FIG. 3. The dependence of neutron EDM (solid line), 3He EDM
(dot-dashed line), 3H EDM (dotted line), and parameter λ on TRIV
π mesons isoscalar and isotensor coupling constants.
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FIG. 4. The dependence of neutron EDM (solid line), 3He EDM
(do-dashed line), 3H EDM (dotted line), and parameter λ on TRIV π

mesons isoscalar and isovector coupling constants,

where ḡ(T )
π is pion-nucleon TRIV coupling constant with647

isospin T . The comparison of these results with Eq. (47)648

shows that all these observable have different sensitivities to649

the models of TRIV. This becomes even more pronounced if we650

relax the assumption about values of TRIV coupling constants.651

These sensitivities of TRIV neutron-scattering effect and652

neutron and light nuclei to TRIV π -meson coupling constants653

are shown Figs. 3 and 4. Therefore, one can see that even for654

the simplest case with the dominance of TRIV pion-nucleon655

coupling constants, it is necessary to measure at least three656

independent TRIV effects to constrain the source of CP657

violation.658

VII. CONCLUSIONS 659

We presented the summary of theoretical description of the 660

TRIV effects in neutron transmission through a nuclei target 661

and demonstrated that these TRIV observables are free from 662

FSI, and, as a consequence, are of the same quality as the 663

EDM experiments. The neutron transmission effects can be 664

enhanced by about 106 owing to the nuclear enhancement 665

factor. In addition to this enhancement, the sensitivity to TRIV 666

interactions in these effects compared to observed PV effects 667

might be enhanced by about 102 if the PV π -nucleon coupling 668

constant is less than the “best value” DDH estimate and by 669

choosing a target with large partial neutron width related to 670

TRIV observables. 671

The main result of this paper is the proof of the TRIV 672

transmission theorem showing that the transmission of neu- 673

trons through an apparatus with arbitrary spin-dependent 674

interactions that arise from time-reversal-invariant interactions 675

is unchanged when the signs of all classical fields that 676

interact with the neutron spin are reversed. We have used 677

this result to propose a specific experimental procedure to 678

test time reversal invariance, which is, in principle, free of 679

false asymmetries arising from combinations of time reversal 680

invariant interactions and asymmetries in the apparatus. These 681

types of experiments with high-intensity neutron sources have 682

a discovery potential of about 102–104 for the improvement of 683

the current limits on the TRIV interaction obtained from the 684

EDM experiments. 685
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