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Abstract— As control system networks are being connected to
enterprise level networks for remote monitoring, operation, and
system-wide performance optimization, these same connections
are providing vulnerabilities that can be exploited by malicious
actors for attack, financial gain, and theft of intellectual
property. Much effort in cyber-physical system (CPS) protection
has focused on protecting the borders of the system through
traditional information security techniques. Less effort has
been applied to the protection of cyber-physical systems from
intelligent attacks launched after an attacker has defeated the
information security protections to gain access to the control
system.

In this paper, attacks on actuator signals are analyzed from
a system theoretic context. The threat surface is classified into
finite energy and bounded attacks. These two broad classes
encompass a large range of potential attacks. The effect of
theses attacks on a linear quadratic (LQ) control are analyzed,
and the optimal actuator attacks for both finite and infinite
horizon LQ control are derived, therefore the worst case attack
signals are obtained. The closed-loop system under the optimal
attack signals is given and a numerical example illustrating the
effect of an optimal bounded attack is provided.

I. INTRODUCTION

The protection of industrial control systems (ICS) from
malicious attacks is becoming an increasing concern. Su-
pervisory control and data acquisition (SCADA) systems
control many vital function including safety-critical system
such as electric power distribution, oil and natural gas
distribution, water and wastewater treatment, transportation
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systems, health-care devices, and weapon systems to name a
few [1]. Traditionally, only safety-critical system have built
in protections against attack, however recent cyber-attacks on
control system, e.g. [2]–[11] have shown that many of these
protections such as network airgaps are insufficient. Stuxnet
in particular demonstrated the ease with which an airgap can
be penetrated [9].

The many operational and business benefits to connecting
SCADA and cyber-physical (CP) networks to enterprise
networks and the increased utilization of wireless sensor and
actuator networks [12] have introduced new vulnerabilities
that can be exploited to attack control systems.

Information security methods for protecting network such
an authentication and encryption do not appear to be suffi-
cient for protecting CPSs [13]. Additionally, some informa-
tion security techniques can reduce controller performance
or render the control system unstable. Thus, in addition to
information security techniques, attack detection and miti-
gation techniques need to be developed for the controller
closed-loop dynamics.

Much research had been devoted to analyzing specific
attacks on network sensor data. Denial of service and de-
ception attacks on networked control systems are studied
in [14] and a semidefinite programming countermeasure is
proposed. False data injection attacks are shown in [15] and
stealthy deception attacks are studied in [14], [16]. Replay
attacks present difficulties in detection and their effects
on control systems are studied in [17]. In [18] a resilient
control problem where an attacker corrupts control packets
is discussed and a receding-horizon control law is suggested
for stabilization during an attack. Robust and resilient control
techniques applied to CP systems have been reported in [19],
[20]. The underlying physical dynamics are used for key
establishment between the sensor and controller in [21].

In this paper, we analyze actuator attacks from a general
systems theoretic perspective for a large class of potential at-
tack signals. Sensor signal attacks are analyzed for observer-
based controlled systems. In particular, the error signals
between states of attack free systems and systems subject to
these attacks are quantified. Optimal sensor signal attacks for
the finite and infinite horizon linear quadratic (LQ) control
in terms of maximizing the corresponding cost functions
are computed. The closed-loop system under optimal signal
attacks are provided.

II. ACTUATOR CYBER-ATTACKS

In this section, we analyze the effect of cyber-attacks on
the actuators. We assume that the attacker actuator signals



with a time-varying signal ∆u(t) that starts at t = 0. The
system and controller based observer have the following
form:

ẋ(t) = Ax(t) +B(uα(t) + ∆u(t))

y(t) = Cx(t)

˙̂x = Ax̂+B(uα(t) + ∆u(t)) + L(y(t)− Cx̂)

uα(t) = −Kx̂+Gr(t) + ∆u(t)

The error signal err(t) = x(t) − x̂(t), satisfies ˙err =
(A − LC)err(t) and therefore err(t) −→ 0 as t −→ ∞
independently of the actuator attack signal. DoS corresponds
to the case where the attacker cancel out the control signal,
i.e., uα(t) = 0, and will lead to destabilizing the system and
the observer. To see this, from (1) by taking uα(t) = 0 we
have:(

ẋ(t)
˙err(t)

)
=

(
A 0
0 A− LC

)(
x(t)
err(t)

)
+(

B
0

)
∆y(t)

(1)

showing that the system and observer are unstable, since L
is always chosen such that (A − LC) is Hurwitz, but then
−(A − LC) is not. It should be noted that canceling the
control signal is not the only denial of service attack that
cyber-physical systems are vulnerable to.

Two actuator attack signals classes will be considered in
the following, finite energy signals, and bounded signals.
Finite energy signals correspond to attacks such as individual
packet loss or modification, finite time attacks, and impulse
attacks. Bounded attack signals encompass a large class of
potential long term attack scenarios. The denial of service
attack consisting of canceling the control signal is a special
case of these attack classes.

A. Finite Energy Attacks
The first scenario is to assume that the attacker can

modify the actuator signal u(t) with a finite energy signal
in time, ∆u ∈ L2([0,∞)) where L2([0,∞)) is the space of
Lesbesgue measurable and square integrable functions

‖∆u‖22 :=

∫ ∞
0

‖∆u(t)‖2dt <∞ (2)

where ‖ · ‖ is the Euclidean norm.
Assuming a deception attack of finite energy ∆u(t) ∈

L2[0,∞), its Laplace transform ∆u(s) ∈ H2. Taking the
Laplace transform of (1) yields:

X(s) = (sI −A+BK)−1x(0)

+ (sI −A+BK)−1BKErr(s)

+ (sI −A+BK)−1BGR(s)

Err(s) = (sI −A+ LC)−1err(0)

− (sI −A+ LC)−1L∆y(s)

(3)

where X(·) and Err(·) are the Laplace Transforms of x(t)
and err(t), respectively. Applying the final value theorem
yields:

lim
t−→∞

x(t) = lim
s−→0

s(sI −A+BK)−1BGR(s) (4)

lim
t−→∞

err(t) = lim
s−→0

s
(

(sI −A+ LC)−1err(0)
)

= 0 (5)

Expression (4) shows that under a finite energy actuator
deception attack, the steady state converges to the corre-
sponding reference signal. This is expected since the finite
energy assumption, ∆u(t) ∈ L2[0,∞), implies that the time-
varying bias signal satisfies ∆u(t) −→ 0 in steady state. (5)
shows that the error signal converges to zero, in other words,
the system maintains state awareness.

B. Bounded Attacks

For a persistent and bounded actuator attack, ∆u(t) ∈
L∞[0,∞),

‖∆u‖∞ = ess sup
t∈[0,∞)

‖∆u(t)‖ ≤ β, ∃ β ≥ 0 (6)

and taking the reference signal err(t) ≡ 0, it follows from
(1):

lim
t−→∞

‖x(t)‖ ≤ lim
t−→∞

{
‖e(A−BK)te(0)‖

+

∫ t

0

‖e(A−BK)(t−τ)BKe(τ)‖dτ

+

∫ t

0

‖e(A−BK)(t−τ)‖‖B‖‖∆u(τ)‖dτ
}

≤ −βc1‖B‖
λ̃

, ∃ c1 ≥ 0, λ̃ < 0

(7)

III. OPTIMAL ATTACKS ON FINITE HORIZON LINEAR
QUADRATIC (LQ) CONTROL

We consider the plant described by the following state-
space system:

ẋ(t) = Ax(t) +B2(t)u(t), x(0) = x0

z(t) =

(
C1 x
u

)
(8)

The finite horizon linear quadratic (LQ) problem is con-
cerned with minimizing the cost function:

J(u, x0, h,Q) =

∫ h

0

zT (τ)z(τ)dτ + xT (h)Qx(h) (9)

where Q is a positive semi-definite matrix, Q ≥ 0. The ob-
jective of the LQ controller is the minimization of the cost (9)
over causal linear full-information controllers. From standard
LQ theory the optimal controller is the state feedback [22]:

u = −BT2 Px (10)

where P is the solution of the Riccati equation:

−Ṗ = PA+ATP −PB2B
T
2 P +CT1 C1, P (h) = Q (11)

The matrix P is non negative semi-definite, P ≥ 0 and is
bounded above for any τ ≤ h [22].
By completing the square the cost J(u, x0, h,Q) takes the
form:

J(u, x0, h,Q) = xT0 P (0)x0

+

∫ h

0

(u+BT2 Px)T (u+BT2 Px)dτ
(12)



from where it can be seen that with no attack the optimal
controller is given by (10), and the optimal cost:

J?(u, x0, h,Q) = xT0 P (0)x0 (13)

In the next section, the effect of actuator signal attacks on
LQ control system is studied.

A. Optimal Actuator Attack

The LQ cost (9) at time t can be written as [23]:

J(u, xt, h,Q)− xT (t)P (t)x(t) =∫ h

t

[
xTCT1 C1x+ uTu+

d

dt
(xTPx)

]
dτ, P (h) = Q

=

∫ h

t

[
xTCT1 C1x+ uTu

+ (Ax+B2u)TPx+ xTP (Ax+B2u) + xT Ṗ x
]
dτ

(14)

An attack at the actuator takes the form:

uα(t) = u(t) + ∆u(t), t ≥ 0 (15)

and transforms the LQ cost function (14) into:

J(u, xt, h,Q)− xT (t)P (t)x(t) =∫ h

t

[
xTCT1 C1x+ uTu+ (Ax+B2uα)TPx

+ xTP (Ax+B2uα) + xT Ṗ x
]
dτ

=

∫ h

t

[
xTCT1 C1x+ uTu+ (Ax+B2u)TPx

+ xTP (Ax+B2u) + xT Ṗ x+ 2xTPB2∆u

]
dτ

=

∫ h

t

[
(u+BT2 Px)T (u+BT2 Px)

+ 2xTPB2∆u

]
dτ

(16)

The control u(·) objective is to minimize (16 ), while the
attacker aims at maximizing it. Therefore, u = −BT2 Px and
the optimal actuator attack is the solution to:

sup
∆u

J?(u, xt, h,Q)− xT (t)P (t)x(t)

= 2 sup
∆u

∫ h

t

xTPB2∆u(τ)dτ
(17)

As before we shall assume some constraints on the signal
∆u(·) otherwise the supremum in (22) would be infinite.
That is, if the attacker has infinite energy or power then he
can drive the cost to infinity. As discussed previously, more
realistic attacks include finite energy and bounded signals.
Let us first assume the former, i.e., ∆u ∈ L2([0, h),Rm),
with say ‖∆u‖2 ≤ M , for some constant M > 0. In this
case, the RHS of (22) is the L2-inner product of BT2 Px
with ∆u and satisfies the following by the Cauchy-Schwarz

inequality:

sup
‖∆u‖2≤M

∫ h

t

xTPB2∆u(τ)dτ

≤

√∫ h

t

‖BT2 Px(τ)‖2dτ

√∫ h

t

‖∆u(τ)‖2dτ︸ ︷︷ ︸
≤M

≤M

√∫ h

t

‖BT2 Px(τ)‖2dτ

(18)

Equality in the Cauchy-Schwartz inequality (18) is achieved
when ∆u and BT2 Px are linearly dependent, i.e., there exits
a scalar β > 0 such

∆u(τ) = βBT2 Px(τ), 0 ≤ t ≤ τ < h (19)

which gives the actuator signal attack that achieves the upper
bound in (19). To compute β note that

‖∆u‖2 = ‖βBT2 Px‖2 = M =⇒ β =
M

‖BT2 Px‖2
(20)

Therefore, the optimal actuator signal attack is given by:

∆u(τ) =
M

‖BT2 Px‖2
BT2 Px(τ), 0 ≤ t ≤ τ < h (21)

The attack signal (21) yields the corresponding worst case
cost function:

sup
∆u

J?(u, xt, h,Q)− xT (t)P (t)x(t)

= 2

∫ h

t

M

‖BT2 Px‖2
xTPB2B

T
2 Px(τ)dτ

= 2
M

‖BT2 Px‖2
‖BT2 Px‖22

= 2M‖BT2 Px‖2

(22)

The closed-loop state-space system under the optimal actu-
ator attack signal (21) takes the form:

ẋ =
(
A−B2B

T
2 P + 2

M

‖BT2 Px‖2
B2B

T
2 P
)
x (23)

Expression (23) shows that an optimal actuator attack can
cancel out the optimal negative state feedback u = −BT2 Px,
and replace it with positive feedback completely destabilizing
the closed-loop system. The solution to the state equation
(23) can be written as:

x(t) = Φ(t, 0)x(0)

+ 2M

∫ t

0

Φ(t, τ)B2
BT2 P (τ)x(τ)

‖BT2 Px‖2
dτ︸ ︷︷ ︸

state response due to optimal L2 actuator attack

(24)

where Φ(·, ·) is the state transition matrix corresponding to
A−B2B

t
2P (·).

Next, let us consider bounded signal actuator attacks, i.e.
∆u ∈ L∞([0, h),Rm, with ‖∆u‖∞ ≤M . In this case

sup
‖∆u‖∞≤M

J?(u, xt, h,Q)− xT (t)P (t)x(t)

= 2 sup
‖∆u‖∞≤M

∫ h

t

xTPB2∆u(τ)dτ
(25)



clearly, for all ∆u ∈ L∞([0, h),Rm the RHS of (25) satisfies
the inequality:

sup
‖∆u‖∞≤M

∫ h

t

xTPB2∆u(τ)dτ

≤M
∫ h

0

‖BT2 Px(τ)‖dτ
(26)

The upper bound is achieved by choosing the actuator signal
attack as:

∆u(τ) = M
BT2 Px(τ)

‖BT2 Px(τ)‖
, (27)

on the set

E := {τ ∈ (0, h) : BT2 Px(τ) 6= 0} (28)

Note the actuator signal depend in a nonlinear fashion on
the state vector x(·). As a result under (28) the closed-loop
system becomes nonlinear and can be written as:

ẋ(τ) =

{ (
A−B2B

T
2 P +M

B2B
T
2 Px(τ)

‖BT
2 Px(τ)‖

)
x(τ), τ ∈ E

Ax(τ), if BT2 Px(τ) = 0, τ 6∈ E)
(29)

The solution to (29) can be written as:

x(t) =

{
Φ(t, 0)x(0) +M

∫
E

Φ(t, τ)B2
BT

2 Px(τ)

‖BT
2 Px(τ)‖dτ

eAtx(0), t 6∈ E
(30)

In the next section, optimal actuator attacks for the infinite
horizon LQ control are discussed.

IV. OPTIMAL ACTUATOR ATTACKS FOR INFINITE
HORIZON LQ CONTROL

The optimal actuator attacks in the infinite horizon case
are similar to the finite horizon case. From (21) it is given
by:

∆u(τ) =
M

‖BT2 Px‖2
BT2 Px(τ), 0 ≤ t ≤ τ <∞ (31)

for the finite energy case, and for bounded signal attacks by
(28)

∆u(τ) = M
BT2 Px(τ)

‖BT2 Px(τ)‖
, (32)

on the set

E := {τ ∈ (0,∞) : BT2 Px(τ) 6= 0} (33)

The parallel closed-loop state equation is similar to the finite
horizon case (23) with the state transition matrix Φ(·, ·) in
(24) given by:

Φ(t, τ) = Φ(t− τ) = e(A−B2B
T
2 P )(t−τ), t ≥ τ (34)
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Fig. 1. All states with no attack infinite horizon

V. NUMERICAL EXAMPLE

This section provides a numerical experiment to demon-
strate the effectiveness of the proposed attack strategies and
validate the theoretical analysis. Considering the same power
network model studied in [24], we illustrate the effect of the
actuator attack on system states for both finite and infinite
horizon cases. Assuming that the attacker has access to the
system parameters such as the state matrices A, B and C, the
optimal actuator attacks for the infinite horizon LQ problem
and for the finite horizon are simulated.

To illustrate the finite energy actuator signal attack for infi-
nite horizon using a power network system of five generators,
therefore a total ten states the simulation results are shown
by the following Figures: actuator signal with no attack in
Figure 1, actuator signal with optimal attack in Figure 2, the
difference between no attack and optimal attack signals in
Figure 3. Now, to illustrate the finite energy actuator signal
attack for finite horizon. The simulation results are shown
by the following Figures: actuator signal with no attack in
Figure 4, actuator signal with optimal attack in Figure 5, the
difference between no attack and optimal attack signals in
Figure 6.

Finally, the difference for the state signal with and without
the undetectable attacks imply that the optimal actuator
attack affect significantly the performance of the system.

VI. CONCLUSIONS

In this paper, a system theoretic analysis of the effect of
finite energy and bounded attacks on linear systems with an
LQ controller was presented. Specifically, the effects on the
steady state response are derived. The optimal finite energy
and bounded attacks for both the finite and infinite horizon
LQ problem are developed my maximizing the corresponding
LQ cost functions. The closed-loop systems under attack are
given and a numerical simulation illustrates the effectiveness
of the optimal attack. Future work will include analyzing the
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effects of finite energy and bounded attacks on sensors and
actuators for linear quadratic Gaussian control formulation
and H∞ controller with external disturbances and noise.
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