Applying Machine Learning to Software Analysis to Achieve
Trusted, Repeatable Scientific Computing

Producing trusted results from high-performance codes is essential for policy
and has significant economic impact. We propose combining rigorous
analytical methods with machine learning techniques to achieve the goal of
repeatable, trustworthy scientific computing.
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“The complexity of computer systems in terms of the amounts of data, the structure
of data, and the algorithms, leads to a situation where one loses direct contact with
the data. This again offers the possibility of presenting incorrect information, either
as a consequence of errors or by deliberately adjusting the results. At the same time,
it offers participants an excuse to accept positive data, even if it is clearly wrong”
[1].

Economics, law, and public opinion all matter when writing policy, but increasingly
scientific evidence informs all of these areas with ever shorter cycles. Scientific
models provide the input to judge the economic impact of policy changes. Scientific
studies are used to judge the efficacy of current and proposed legislation. Scientific
breakthroughs are reported widely in the media and impact public opinion. In
short, complex policy issues are increasingly informed by scientific evidence, and
policy decisions have near-instantaneous impacts in the marketplace. This is
scientific evidence-based policy-making, and it is here to stay.

Increasingly large-scale and high-performance computing provides this scientific
evidence. Climate science is perhaps the most visible of these areas, where scientific
evidence obtained through large-scale computing directly impacts policy decisions
that have significant economic impact. In short, the results of high-performance
codes can select winners and losers in the marketplace. This creates economic
incentives to tamper with, or at least cast doubt on, high-performance codes.

Trust in these results is critical, and lack of trust has serious consequences. A recent
peer-reviewed paper in the Chinese Science Bulletin casts doubt on the result of the
world’s sizable investment in climate modeling and prediction by challenging the
nature of the computations performed [5]. Another study tested a climate code on
ten different architectures and found significant variation for different compilers,
parallel libraries, and optimization levels [2]. Answering these challenges to
reassure policy makers and the public is a serious challenge. Proper science
depends on reproducibility, a quality that is potentially lacking in experiments
performed on high-performance computers [3, 4]. This is a weak point critics can
attack to undermine scientific results, and there are cases critics can cite to show the
cost of computational errors, even in established algorithms [6].



Fortunately this challenge can be met by increasing our trust in the codes that are
run, and several methods hold promise to do just this. Rigorous verification can tell
us that we are solving the problem correctly; static analysis, especially of the
compiled software, can tell us that we have (or have not) implemented our methods
correctly; and symbolic execution can give us a much higher degree of confidence in
our results even if we cannot fully analyze the programs by other means.

Not listed above is testing. While testing is certainly necessary to gain assurance
that assumptions made during design are true, it is inadequate to demonstrate
correctness or to establish trust. Often for the kinds of codes being run there is no
oracle to determine if a test passed or failed (what is the true amount of warming
we can expect in twenty years?), and large-scale testing of complete codes even
when there are known data points is often impractical because of the computational
cost of running the codes.

These methods - verification, static analysis, and symbolic execution - all require
significant expertise to apply and bring their own challenges. Consider static
analysis of compiled software. This is a very powerful tool that allows us to take
into account compiler-introduced errors and optimizations that were not present in
the original source and has the potential to answer the challenges posed in [2].

Many of the issues limiting the full application of the above methods are amenable
to machine learning (ML) [7] solutions. Specifically, several of these challenges can
be formulated as a distinction among several possible outputs based on many
inputs. Moreover, the relations between said inputs and outputs are either
uncertain or too complex to encode in a straightforward manner, but are amenable
to expert analysis and decision making, which suggests the application of machine
learning. Although these problems can consist of very high-dimensional input
spaces, there is repeated structure across examples, shared structure across tasks,
and the availability of (or the ability to generate) large example sets over which to
discover said structure through advanced ML methods [8,9]. These problems are
thus addressable in new ways thanks to advances in large-scale machine learning.

We propose a research program of combining machine learning techniques with
rigorous software analysis to achieve both repeatability and trust in scientific
computing. We can break static analysis of compiled software into common stages:
disassembly, generation of an internal representation, and computation of
functionality. Throughout this process theorem provers, model checkers,
satisfiability-modulo-theorems (SMT) solvers, and term rewriters are employed to
effectively reason about program semantics. Each of these stages has associated
challenges that can be addressed through machine learning.

* Disassembly contains computed jumps and mixed data and code.
Determining what is code and what is not often relies on heuristics. This
area is ripe for application of ML techniques. Direct observation of the
execution of similarly constructed programs yields the classifier for code vs.
data needed to inform machine learning models.



* Generation of an internal representation may involve annotating code with
partial results, such as reachability analysis, and re-structuring the code for
easier analysis. For example, loops among parts of the program may be
detected in this stage and the program transformed to identify the loop
condition and body. Because loops may contain other loops or arbitrarily
complex code, this transformation is not optimal and can result in code that
is very difficult to analyze - whereas the discovery of the correct minimal
loop predicate and properly-structured body could make loop analysis much
simpler. This is an optimization choice among multiple competing solutions
and, again, is directly amenable to a ML approach.

* Computation of functionality typically relies on term rewriting, model
checking, SMT solvers, etc. Here we consider just term rewriting - which is
likely common across all approaches. The system must choose and apply
rewrite rules in some order to simplify expressions or prove theorems. Some
of these results will recur in the program, and should be captured, and some
will not. Some orderings of rules will terminate with a useful result, and
some will either fail to terminate or do so without generating useful
information. Heuristics are often employed to address this. Here again we
have an optimization problem suitable for applying ML.

The application of ML techniques yields additional benefits beyond simply making
these methods more tractable. By establishing a program that combines ML
techniques with rigorous software analysis, we open new avenues for performance
optimization and the discovery of under-exploited parallelism. Introducing ML
techniques into term rewriting promises to yield dividends in computer algebra
systems and theorem provers.

Establishing trust in computational results is an important and worthy goal. This
can be achieved - in part - by rigorous software analysis methods. A research
program is needed that addresses the challenges to full-scale application of rigorous
methods by employing ML techniques where approximations and heuristics are
used today.
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