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Producing	
  trusted	
  results	
  from	
  high-­‐performance	
  codes	
  is	
  essential	
  for	
  policy	
  
and	
  has	
  significant	
  economic	
  impact.	
  	
  We	
  propose	
  combining	
  rigorous	
  
analytical	
  methods	
  with	
  machine	
  learning	
  techniques	
  to	
  achieve	
  the	
  goal	
  of	
  
repeatable,	
  trustworthy	
  scientific	
  computing.	
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“The	
  complexity	
  of	
  computer	
  systems	
  in	
  terms	
  of	
  the	
  amounts	
  of	
  data,	
  the	
  structure	
  
of	
  data,	
  and	
  the	
  algorithms,	
  leads	
  to	
  a	
  situation	
  where	
  one	
  loses	
  direct	
  contact	
  with	
  
the	
  data.	
  This	
  again	
  offers	
  the	
  possibility	
  of	
  presenting	
  incorrect	
  information,	
  either	
  
as	
  a	
  consequence	
  of	
  errors	
  or	
  by	
  deliberately	
  adjusting	
  the	
  results.	
  At	
  the	
  same	
  time,	
  
it	
  offers	
  participants	
  an	
  excuse	
  to	
  accept	
  positive	
  data,	
  even	
  if	
  it	
  is	
  clearly	
  wrong”	
  
[1].	
  
Economics,	
  law,	
  and	
  public	
  opinion	
  all	
  matter	
  when	
  writing	
  policy,	
  but	
  increasingly	
  
scientific	
  evidence	
  informs	
  all	
  of	
  these	
  areas	
  with	
  ever	
  shorter	
  cycles.	
  	
  Scientific	
  
models	
  provide	
  the	
  input	
  to	
  judge	
  the	
  economic	
  impact	
  of	
  policy	
  changes.	
  	
  Scientific	
  
studies	
  are	
  used	
  to	
  judge	
  the	
  efficacy	
  of	
  current	
  and	
  proposed	
  legislation.	
  	
  Scientific	
  
breakthroughs	
  are	
  reported	
  widely	
  in	
  the	
  media	
  and	
  impact	
  public	
  opinion.	
  	
  In	
  
short,	
  complex	
  policy	
  issues	
  are	
  increasingly	
  informed	
  by	
  scientific	
  evidence,	
  and	
  
policy	
  decisions	
  have	
  near-­‐instantaneous	
  impacts	
  in	
  the	
  marketplace.	
  	
  This	
  is	
  
scientific	
  evidence-­‐based	
  policy-­‐making,	
  and	
  it	
  is	
  here	
  to	
  stay.	
  
Increasingly	
  large-­‐scale	
  and	
  high-­‐performance	
  computing	
  provides	
  this	
  scientific	
  
evidence.	
  	
  Climate	
  science	
  is	
  perhaps	
  the	
  most	
  visible	
  of	
  these	
  areas,	
  where	
  scientific	
  
evidence	
  obtained	
  through	
  large-­‐scale	
  computing	
  directly	
  impacts	
  policy	
  decisions	
  
that	
  have	
  significant	
  economic	
  impact.	
  	
  In	
  short,	
  the	
  results	
  of	
  high-­‐performance	
  
codes	
  can	
  select	
  winners	
  and	
  losers	
  in	
  the	
  marketplace.	
  	
  This	
  creates	
  economic	
  
incentives	
  to	
  tamper	
  with,	
  or	
  at	
  least	
  cast	
  doubt	
  on,	
  high-­‐performance	
  codes.	
  

Trust	
  in	
  these	
  results	
  is	
  critical,	
  and	
  lack	
  of	
  trust	
  has	
  serious	
  consequences.	
  	
  A	
  recent	
  
peer-­‐reviewed	
  paper	
  in	
  the	
  Chinese	
  Science	
  Bulletin	
  casts	
  doubt	
  on	
  the	
  result	
  of	
  the	
  
world’s	
  sizable	
  investment	
  in	
  climate	
  modeling	
  and	
  prediction	
  by	
  challenging	
  the	
  
nature	
  of	
  the	
  computations	
  performed	
  [5].	
  	
  Another	
  study	
  tested	
  a	
  climate	
  code	
  on	
  
ten	
  different	
  architectures	
  and	
  found	
  significant	
  variation	
  for	
  different	
  compilers,	
  
parallel	
  libraries,	
  and	
  optimization	
  levels	
  [2].	
  	
  Answering	
  these	
  challenges	
  to	
  
reassure	
  policy	
  makers	
  and	
  the	
  public	
  is	
  a	
  serious	
  challenge.	
  	
  Proper	
  science	
  
depends	
  on	
  reproducibility,	
  a	
  quality	
  that	
  is	
  potentially	
  lacking	
  in	
  experiments	
  
performed	
  on	
  high-­‐performance	
  computers	
  [3,	
  4].	
  	
  This	
  is	
  a	
  weak	
  point	
  critics	
  can	
  
attack	
  to	
  undermine	
  scientific	
  results,	
  and	
  there	
  are	
  cases	
  critics	
  can	
  cite	
  to	
  show	
  the	
  
cost	
  of	
  computational	
  errors,	
  even	
  in	
  established	
  algorithms	
  [6].	
  



Fortunately	
  this	
  challenge	
  can	
  be	
  met	
  by	
  increasing	
  our	
  trust	
  in	
  the	
  codes	
  that	
  are	
  
run,	
  and	
  several	
  methods	
  hold	
  promise	
  to	
  do	
  just	
  this.	
  	
  Rigorous	
  verification	
  can	
  tell	
  
us	
  that	
  we	
  are	
  solving	
  the	
  problem	
  correctly;	
  static	
  analysis,	
  especially	
  of	
  the	
  
compiled	
  software,	
  can	
  tell	
  us	
  that	
  we	
  have	
  (or	
  have	
  not)	
  implemented	
  our	
  methods	
  
correctly;	
  and	
  symbolic	
  execution	
  can	
  give	
  us	
  a	
  much	
  higher	
  degree	
  of	
  confidence	
  in	
  
our	
  results	
  even	
  if	
  we	
  cannot	
  fully	
  analyze	
  the	
  programs	
  by	
  other	
  means.	
  

Not	
  listed	
  above	
  is	
  testing.	
  	
  While	
  testing	
  is	
  certainly	
  necessary	
  to	
  gain	
  assurance	
  
that	
  assumptions	
  made	
  during	
  design	
  are	
  true,	
  it	
  is	
  inadequate	
  to	
  demonstrate	
  
correctness	
  or	
  to	
  establish	
  trust.	
  	
  Often	
  for	
  the	
  kinds	
  of	
  codes	
  being	
  run	
  there	
  is	
  no	
  
oracle	
  to	
  determine	
  if	
  a	
  test	
  passed	
  or	
  failed	
  (what	
  is	
  the	
  true	
  amount	
  of	
  warming	
  
we	
  can	
  expect	
  in	
  twenty	
  years?),	
  and	
  large-­‐scale	
  testing	
  of	
  complete	
  codes	
  even	
  
when	
  there	
  are	
  known	
  data	
  points	
  is	
  often	
  impractical	
  because	
  of	
  the	
  computational	
  
cost	
  of	
  running	
  the	
  codes.	
  

These	
  methods	
  –	
  verification,	
  static	
  analysis,	
  and	
  symbolic	
  execution	
  –	
  all	
  require	
  
significant	
  expertise	
  to	
  apply	
  and	
  bring	
  their	
  own	
  challenges.	
  	
  Consider	
  static	
  
analysis	
  of	
  compiled	
  software.	
  	
  This	
  is	
  a	
  very	
  powerful	
  tool	
  that	
  allows	
  us	
  to	
  take	
  
into	
  account	
  compiler-­‐introduced	
  errors	
  and	
  optimizations	
  that	
  were	
  not	
  present	
  in	
  
the	
  original	
  source	
  and	
  has	
  the	
  potential	
  to	
  answer	
  the	
  challenges	
  posed	
  in	
  [2].	
  	
  
Many	
  of	
  the	
  issues	
  limiting	
  the	
  full	
  application	
  of	
  the	
  above	
  methods	
  are	
  amenable	
  
to	
  machine	
  learning	
  (ML)	
  [7]	
  solutions.	
  Specifically,	
  several	
  of	
  these	
  challenges	
  can	
  
be	
  formulated	
  as	
  a	
  distinction	
  among	
  several	
  possible	
  outputs	
  based	
  on	
  many	
  
inputs.	
  Moreover,	
  the	
  relations	
  between	
  said	
  inputs	
  and	
  outputs	
  are	
  either	
  
uncertain	
  or	
  too	
  complex	
  to	
  encode	
  in	
  a	
  straightforward	
  manner,	
  but	
  are	
  amenable	
  
to	
  expert	
  analysis	
  and	
  decision	
  making,	
  which	
  suggests	
  the	
  application	
  of	
  machine	
  
learning.	
  Although	
  these	
  problems	
  can	
  consist	
  of	
  very	
  high-­‐dimensional	
  input	
  
spaces,	
  there	
  is	
  repeated	
  structure	
  across	
  examples,	
  shared	
  structure	
  across	
  tasks,	
  
and	
  the	
  availability	
  of	
  (or	
  the	
  ability	
  to	
  generate)	
  large	
  example	
  sets	
  over	
  which	
  to	
  
discover	
  said	
  structure	
  through	
  advanced	
  ML	
  methods	
  [8,9].	
  These	
  problems	
  are	
  
thus	
  addressable	
  in	
  new	
  ways	
  thanks	
  to	
  advances	
  in	
  large-­‐scale	
  machine	
  learning.	
  

We	
  propose	
  a	
  research	
  program	
  of	
  combining	
  machine	
  learning	
  techniques	
  with	
  
rigorous	
  software	
  analysis	
  to	
  achieve	
  both	
  repeatability	
  and	
  trust	
  in	
  scientific	
  
computing.	
  	
  We	
  can	
  break	
  static	
  analysis	
  of	
  compiled	
  software	
  into	
  common	
  stages:	
  
disassembly,	
  generation	
  of	
  an	
  internal	
  representation,	
  and	
  computation	
  of	
  
functionality.	
  	
  Throughout	
  this	
  process	
  theorem	
  provers,	
  model	
  checkers,	
  
satisfiability-­‐modulo-­‐theorems	
  (SMT)	
  solvers,	
  and	
  term	
  rewriters	
  are	
  employed	
  to	
  
effectively	
  reason	
  about	
  program	
  semantics.	
  	
  Each	
  of	
  these	
  stages	
  has	
  associated	
  
challenges	
  that	
  can	
  be	
  addressed	
  through	
  machine	
  learning.	
  

• Disassembly	
  contains	
  computed	
  jumps	
  and	
  mixed	
  data	
  and	
  code.	
  	
  
Determining	
  what	
  is	
  code	
  and	
  what	
  is	
  not	
  often	
  relies	
  on	
  heuristics.	
  	
  This	
  
area	
  is	
  ripe	
  for	
  application	
  of	
  ML	
  techniques.	
  	
  Direct	
  observation	
  of	
  the	
  
execution	
  of	
  similarly	
  constructed	
  programs	
  yields	
  the	
  classifier	
  for	
  code	
  vs.	
  
data	
  needed	
  to	
  inform	
  machine	
  learning	
  models.	
  



• Generation	
  of	
  an	
  internal	
  representation	
  may	
  involve	
  annotating	
  code	
  with	
  
partial	
  results,	
  such	
  as	
  reachability	
  analysis,	
  and	
  re-­‐structuring	
  the	
  code	
  for	
  
easier	
  analysis.	
  	
  For	
  example,	
  loops	
  among	
  parts	
  of	
  the	
  program	
  may	
  be	
  
detected	
  in	
  this	
  stage	
  and	
  the	
  program	
  transformed	
  to	
  identify	
  the	
  loop	
  
condition	
  and	
  body.	
  	
  Because	
  loops	
  may	
  contain	
  other	
  loops	
  or	
  arbitrarily	
  
complex	
  code,	
  this	
  transformation	
  is	
  not	
  optimal	
  and	
  can	
  result	
  in	
  code	
  that	
  
is	
  very	
  difficult	
  to	
  analyze	
  –	
  whereas	
  the	
  discovery	
  of	
  the	
  correct	
  minimal	
  
loop	
  predicate	
  and	
  properly-­‐structured	
  body	
  could	
  make	
  loop	
  analysis	
  much	
  
simpler.	
  	
  This	
  is	
  an	
  optimization	
  choice	
  among	
  multiple	
  competing	
  solutions	
  
and,	
  again,	
  is	
  directly	
  amenable	
  to	
  a	
  ML	
  approach.	
  

• Computation	
  of	
  functionality	
  typically	
  relies	
  on	
  term	
  rewriting,	
  model	
  
checking,	
  SMT	
  solvers,	
  etc.	
  	
  Here	
  we	
  consider	
  just	
  term	
  rewriting	
  –	
  which	
  is	
  
likely	
  common	
  across	
  all	
  approaches.	
  	
  The	
  system	
  must	
  choose	
  and	
  apply	
  
rewrite	
  rules	
  in	
  some	
  order	
  to	
  simplify	
  expressions	
  or	
  prove	
  theorems.	
  	
  Some	
  
of	
  these	
  results	
  will	
  recur	
  in	
  the	
  program,	
  and	
  should	
  be	
  captured,	
  and	
  some	
  
will	
  not.	
  	
  Some	
  orderings	
  of	
  rules	
  will	
  terminate	
  with	
  a	
  useful	
  result,	
  and	
  
some	
  will	
  either	
  fail	
  to	
  terminate	
  or	
  do	
  so	
  without	
  generating	
  useful	
  
information.	
  	
  Heuristics	
  are	
  often	
  employed	
  to	
  address	
  this.	
  	
  Here	
  again	
  we	
  
have	
  an	
  optimization	
  problem	
  suitable	
  for	
  applying	
  ML.	
  

The	
  application	
  of	
  ML	
  techniques	
  yields	
  additional	
  benefits	
  beyond	
  simply	
  making	
  
these	
  methods	
  more	
  tractable.	
  	
  By	
  establishing	
  a	
  program	
  that	
  combines	
  ML	
  
techniques	
  with	
  rigorous	
  software	
  analysis,	
  we	
  open	
  new	
  avenues	
  for	
  performance	
  
optimization	
  and	
  the	
  discovery	
  of	
  under-­‐exploited	
  parallelism.	
  	
  Introducing	
  ML	
  
techniques	
  into	
  term	
  rewriting	
  promises	
  to	
  yield	
  dividends	
  in	
  computer	
  algebra	
  
systems	
  and	
  theorem	
  provers.	
  

Establishing	
  trust	
  in	
  computational	
  results	
  is	
  an	
  important	
  and	
  worthy	
  goal.	
  	
  This	
  
can	
  be	
  achieved	
  –	
  in	
  part	
  –	
  by	
  rigorous	
  software	
  analysis	
  methods.	
  	
  A	
  research	
  
program	
  is	
  needed	
  that	
  addresses	
  the	
  challenges	
  to	
  full-­‐scale	
  application	
  of	
  rigorous	
  
methods	
  by	
  employing	
  ML	
  techniques	
  where	
  approximations	
  and	
  heuristics	
  are	
  
used	
  today.	
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