
Accepted in ACM Journal on Emerging Technologies in Computing Systems (JETC), 2015

0

A Survey Of Architectural Techniques for Near-Threshold Computing

Sparsh Mittal, Oak Ridge National Laboratory

Energy efficiency has now become the primary obstacle in scaling the performance of all classes of com-
puting systems. Low-voltage computing and specifically, near-threshold voltage computing (NTC), which
involves operating the transistor very close to and yet above its threshold voltage, holds the promise of pro-
viding many-fold improvement in energy efficiency. However, use of NTC also presents several challenges
such as increased parametric variation, failure rate and performance loss etc. This paper surveys several re-
cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying
these techniques along several dimensions, we also highlight their similarities and differences. It is hoped
that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers
and inspire further research in this field.

Categories and Subject Descriptors: A.1 [General Literature ]: Introductory and Survey; H.3.4 [Systems
and Software]: Performance evaluation (efficiency and effectiveness); C.0 [Computer Systems Organi-
zation ]: System architectures

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Review, classification, near-threshold voltage computing (NT) (NTV)
(NTC), low-voltage, voltage scaling, cache, memory, reliability, hard-error

ACM Reference Format:
S. Mittal, ”A Survey Of Architectural Techniques for Near-Threshold Computing”, 20xx. ACM J. Emerg.
Technol. Comput. Syst. 0, 0, Article 0 ( 2015), 28 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Recent trends of process technology scaling have made ‘energy efficiency’ the first-
order design constraint in all computing systems ranging from portable embedded
systems to large-scale datacenters and supercomputers. The number of just mobile
systems has now exceeded the population of earth [Mittal 2014c], which makes their
total power consumption very large. Similarly, the electricity consumption of US data
centers has grown from 61 billion kWh (kilo watt hour) in 2006 [Mittal 2014a] to 91
billion kWh in 2013 and is likely to grow to 140 billion kWh in 2020 [NRDC 2013]. Just
the top two supercomputers in the November 2014 version of top500 list of supercom-
puters consume a total of 26 mega watts of power [Top500 2014], which is sufficient to
fulfill the demands of a city of several thousands residents. The increased power dis-
sipation, however, greatly increases the operational costs and complexity of these sys-
tems. The worldwide expenditure on enterprise power supply and cooling has reached
more than $30 billion [Patel and Ranganathan 2006]. Very large levels of power dissi-
pation cause reliability issues and necessitate advanced cooling techniques (e.g. liquid
cooling, submersion cooling etc.) which may be extremely costly and even infeasible

Author’s address:1 Bethel Valley Road, Future Technologies Group, Oak Ridge National Laboratory, Build-
ing 5100, MS-6173, Tennessee, USA 37830; email: mittals@ornl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1550-4832/2015/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:2 Sparsh Mittal

for most computing systems. While the number of transistors on a chip increase at an
exponential rate (e.g. 10 billion transistors on a recent chip [Oracle 2014], up from just
2.3K transistors on a processor in 1971), the effectiveness of power and thermal man-
agement solutions does not scale as well. These trends and requirements have forced
the designers to pursue aggressive energy optimization techniques.

Since supply voltage has strong influence on both static and dynamic energy, low-
voltage operation presents as an attractive avenue for achieving high energy efficiency.
Specifically, near-threshold voltage (NTV) operation, which involves scaling of supply
voltage very close to and yet above the threshold voltage (Vth) of transistor, has the
potential to provide 5-10× improvement in energy efficiency [Dreslinski et al. 2010;
Khare and Jain 2013]. While standard DVFS (dynamic voltage/frequency scaling) typ-
ically reduces the supply voltage to no lower than 70% of nominal voltage level, NTV
operation scales the voltage to nearly 25-35% of nominal level, which is close to Vth

[Miller et al. 2012b]. NTV operation aims to achieve a fine balance between perfor-
mance and energy efficiency, since lowering the voltage further (subthreshold oper-
ation) leads to extremely slow transistors with high fault rate, while increasing the
voltage diminishes the energy savings rapidly (refer Section 2 for more details). In
fact, at NTV, even small changes in voltage (e.g. 100-200mV) lead to large changes in
frequency (e.g. 400-800MHz) [Miller et al. 2012a]. These tradeoffs are also illustrated
in Figure 1. Given the tradeoff between performance, energy and reliability factors at
NTV [Khare and Jain 2013; Pu et al. 2010], it is clear that intelligent techniques are
absolutely essential to leverage the full potential of NTC and ensure its deployment in
mainstream processors.

L
o
g
a
ri

th
m

ic
 o

f 
d

e
la

y
 

 E
n

e
rg

y
/o

p
e
ra

ti
o
n

 

Super  

threshold 

 region 

Near  

threshold 

 region 

Sub  

threshold 

 region 

Vth 
Vnominal 

~10X 

~2X 

~50-100X 

~10X 

Supply voltage 

Fig. 1. Variation of energy and delay with supply voltage. Notice that sub-threshold region shows a steep
increase in delay and super-threshold region shows large reduction in energy saving. Near-threshold region
allows balancing these factors.

Contribution and article organization: In this paper, we survey several recent
techniques which utilize NTC and/or address challenges associated with it. Figure 2
shows the overall organization of this paper. We first discuss the motivation behind use
of NTC (Section 2.1) and highlight important trends and challenges that are worthy

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:3

of future investigation (Section 2.2). After this, we summarize some key ideas which
are common to many NTC techniques (Section 3 and Table I). We then discuss the
design and management approaches used for NTC (Section 4 and Table II). Further,
we organize the techniques based on their target system component (Section 5 and
Table III) and the objective (e.g. performance, energy efficiency) they seek to optimize
(Section 6 and Table IV).

Design and management 

approaches for NTC (§4)

NTC in various processor 

components (§5)

NTC for achieving various 

optimization objectives (§6)

Future outlook and 

conclusion (§7)

Background and 

motivation (§2)

Paper organization

Opportunities in using NTC (§2.1)

Obstacles in using NTC (§2.2)

Using heterogeneous cell caches (§4.1)

Using block-disabling approach (§4.3)
Using replication approach (§4.4)
Using error-correcting codes (§4.5)
Using additional structures (§4.6)
Using task-scheduling scheme (§4.7)

NTC in caches (§5.1)
NTC in processor core (§5.2)

Improving energy efficiency (§6.1)
Improving performance (§6.2)
Reducing voltage guard-bands (§6.3)

NTC in research processors/prototypes (§5.2)

Allowing additional cores/parallelism (§6.4)
Application-domain specific techniques (§6.5)

Architectural redesign for NTC (§4.2)

Key ideas of NTC 

techniques (§3)

Using NT-tolerant circuit designs(§4.8)

Fig. 2. Organization of the paper in different sections

In these sections, we classify the techniques on several important parameters to
underscore their similarities and differences. Note that the techniques presented in
these sections are tightly interconnected and although they have been discussed un-
der a single category, many techniques fall in multiple categories. Since different tech-
niques have been evaluated using different methodologies, we mainly focus on their
key insights and do not present their quantitative results. In this paper, we present
architecture and system-level techniques, in contrast with a few previous works which
review circuit/device-level low-voltage techniques [Dreslinski et al. 2010; Gupta et al.
2010]. Finally, Section 7 presents conclusion and future challenges. The aim of this
paper is to provide the researchers insights into working of NTC techniques and moti-
vate them to create breakthrough inventions for enabling their adoption in all classes
of computing systems. We hope that this paper will be useful for chip-designers, com-
puter architects, system developers and other researchers.

2. BACKGROUND AND MOTIVATION
In this section, we briefly discuss the opportunities and obstacles associated with NTC.

2.1. Scope for near-threshold computing
Pinckney et al. [2012] deduce optimal operating voltage under voltage-scaling sce-
nario and show that it lies in NTV region. They note that the energy saving provided

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:4 Sparsh Mittal

by voltage scaling allows aggressive task parallelization, however, the maximum en-
ergy saving achieved by such approach is limited due to several factors, such as ar-
chitectural overheads (e.g. coherence and memory energy), non-ideal parallelization
etc. They study the limit of voltage scaling efficiency and show that under realis-
tic architecture/technology/application scenarios (e.g. inter-core communication, par-
allelization efficiency, leakage power consumption etc.), optimal operating voltage lies
in near threshold region, which is approximately 200-400mV above the threshold volt-
age. They also show that this voltage range holds good across six process technology
generations and across transistor threshold voltage selection.

Near-threshold computing is a promising approach for a variety of reasons, as we
show below.

2.1.1. Varying usage pattern. To fulfill the demands of peak performance and service
level agreements (SLAs), computing resources are typically over-provisioned, how-
ever, the average utilization of these resources remains low [Ahuja et al. 2012; Mittal
2014a,b]. Moreover, applications or application phases with limited parallelism or com-
putational requirement do not utilize the processor resources fully [Mittal and Vetter
2015b]. Use of NTC in selected components or application phases can help in avoiding
such inefficiencies. For example, such techniques can allow trading off cache capacity
for performance [Ghasemi et al. 2011; Hijaz et al. 2013] or for energy or reliability
[Chishti et al. 2009; Gottscho et al. 2014; Wang et al. 2013]. In fact, the execution pro-
file of computing systems such as datacenters or battery-powered embedded systems
can be broadly divided in two types: a high-performance mode, relatively short in du-
ration where high or moderate voltage is used to service high computational demands
and a low-power mode that occupies larger fraction of execution time where reduced
computational demands allow use of low voltage for saving energy [Bortolotti et al.
2014; Maric et al. 2013a; Mittal 2014a].

2.1.2. Limited power budgets. Many computing systems such as body sensor network,
biomedical systems [Bortolotti et al. 2014] and wireless systems have a strict power
budget of milli-watts and even micro-watts [Mittal 2014c]. On the other end of spec-
trum, Exascale machines which will perform 1018 operations per second, have a power
budget of 20 mega-watts [Vetter and Mittal 2015]. Clearly, low-voltage operation is not
merely attractive, but even essential in most systems to meet their power budgets.

2.1.3. Limitation of other power management strategies. While low-voltage computing has
its own limitations (as discussed below), alternative power management strategies are
likely to be less effective or present even bigger challenges. Some techniques such as
use of specialized processors or non-volatile memory are likely to require significant
architectural redesign and investments [Mittal and Vetter 2015b]. Liquid/advanced
cooling strategies are clearly infeasible for portable systems (e.g. laptop or cell-phone)
and may be used only in remotely operated servers. Energy-aware task-scheduling
approaches, workload consolidation, data compression, etc. [Mittal 2014a] may be use-
ful only in limited domains and yet provide small energy savings. Compared to these,
voltage-scaling presents less complexity, and may be readily deployed in a wide range
of systems.

2.2. Challenges in using near-threshold computing
Despite its promises, use of near-threshold computing presents several challenges, as
we summarize below.

2.2.1. Increased vulnerability to parametric variation. Reduction in voltage aggravates the
effect of process, voltage and temperature (PVT) variation [Karpuzcu et al. 2012] and
NTC techniques must account for these effects (see Table IV). PVT variation leads

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:5

to within-die and die-to-die differences in several crucial transistor parameters such
as threshold voltage and effective gate length. The increased non-determinism has
negative effect on yield, performance, power and thermal management. Reduction in
voltage makes the cells more susceptible to soft errors since the charge required to flip
the value is also reduced [Mittal and Vetter 2015a]. These faults need to be detected
using post-manufacturing and boot time tests, BIST (built-in self-tests), using error-
correcting code (ECC) or similar schemes, which incur time and cost overheads.

2.2.2. Higher vulnerability of memory structures. Low-voltage operation affects memory
structures more than the logic elements [Bacha and Teodorescu 2014; Dreslinski et al.
2013; Roberts et al. 2008]. This is due to the fact that the memory structures are op-
timized for area and have lower voltage margins which can be more easily violated at
low-voltage due to parametric variations. Thus, SRAM structures show a steep rise in
failure rate at low-voltage and hence, they also limit the extent of voltage-scaling in
the processor. To avoid this, different voltage islands can be used for logic and memory
[Dreslinkski et al. 2007; Khare and Jain 2013], which allows operating core at lower
voltage and cache at higher voltage for achieving both reliability and energy saving.
This, however, requires use of voltage-level converters, which consume chip area, have
only suboptimal power efficiency and may require hundreds of cycles to change the
voltage [Karpuzcu et al. 2013; Miller et al. 2012a].

2.2.3. Challenges in multicore processors. For multi/many-core processors, parametric
variation may manifest as core-to-core (C2C) variation and these effects are exacer-
bated by low-voltage operation. This may render conventional core/application un-
aware management policies (e.g. cache replacement, scheduling etc.) ineffective. Sim-
ilarly, variation-induced timing errors in a pipeline are mitigated by flush-rollback
process and its overhead in a SIMD (single instruction multiple data) pipeline may be
much larger than that in a scalar pipeline [Krimer et al. 2010].

2.2.4. Limitation of error-correcting codes. Due to the latency optimized design of first-
level caches, use of ECC in them may lead to large performance loss [Hijaz et al. 2013]
and hence, special approaches are required for using ECC in them [Duwe et al. 2015].
Also, the superlinear increase in failure rate on lowering the voltage [Dreslinski et al.
2010] may surpass the correction and even detection capability of existing ECC in
lower-level caches. To avoid this, stronger ECCs may need to be used which incur
significant hardware and runtime overheads (refer Table II).

2.2.5. Limitation of block disabling schemes. When faults surpass the correction capability
of ECC logic, designers typically resort to disabling the faulty structures to continue
execution (see Table II). Disabling the structures (e.g. cache blocks), however, leads to
rapid capacity degradation and yet, only provides a short-term solution. Also, block
disabling increases costly off-chip accesses and requires careful management of dirty
data. Further, by virtue of leaving a cache with variable associativity, it affects the
performance predictability.

The granularity at which blocks are disabled has a crucial impact on performance,
e.g. coarse-grain disabling requires smaller metadata overhead (e.g. fault-map) but
degrades capacity quickly and opposite is true for fine-grain disabling. Further, mod-
ern processors feature multi-megabyte last level caches and hence, testing millions
of blocks/subblocks at different voltages repeatedly during runtime or at each reboot
becomes extremely cumbersome.

2.2.6. Overhead of NT-tolerant components. Compared to conventional circuit designs
(e.g. 6T SRAM), use of NT-tolerant circuits such as 8T [Chang et al. 2005], 10T [Cal-
houn and Chandrakasan 2006] or Schmitt trigger (ST) based SRAM [Kulkarni et al.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:6 Sparsh Mittal

2007] can lead to magnitude order reduction in failure probability [Ghasemi et al.
2011]. For this reason, these cells have been used in commercial processors, for ex-
ample, Intel’s 45nm Nehalem processor uses 8T SRAM cells in L1 cache [Kumar and
Hinton 2009]. However, these cells incur significant area overhead (e.g. 100% for ST
SRAM) and consume higher access latency and leakage power [Pu et al. 2010]. Since
caches already occupy between 25% to 50% of chip area in modern processors [Mittal
2014b], increasing their area further may require reduction in area budget for cores.
Conversely, for fixed cache area, use of higher sized cells decreases the cache capacity.
To offset area overhead of NT-tolerant cells, some techniques use heterogeneous (e.g.
6T and 8T) cache designs (refer Table II) and activate only NT-tolerant (e.g. 8T) cells
in low-voltage mode which also degrades their capacity. Clearly, in either case, use of
NT-tolerant components may reduce the maximum supportable cores on a chip.

2.2.7. Redesign and careful evaluation required at NTV. Due to unique challenges presented
at NTV, partial retrofitting of existing cache management schemes or evaluation ap-
proaches for NTV is likely to be insufficient. For example, Hijaz and Khan [2014]
note that due to increased latency and reduced capacity at NTV, a cache management
scheme (e.g. for placement, movement and replication of data) that is optimized for
nominal voltage may not perform optimally at NTV. This is due to the fact that the
reduced capacity affects replication decisions and presents a tradeoff between energy
loss due to increased off-chip accesses and energy saving due to NTV operation.

Similarly, Pu et al. [2010] note that research works on NTC may overlook crucial
assumptions and due to this, the claims of energy reduction obtained by these works
may be over-estimations. For example, blindly comparing results across different tech-
nology generations or using non-standard definition of threshold voltage can lead to
exaggerated energy saving claims. Also, NTV operation leads to severe throughput
degradation which may not be easily offset by deep pipelining and parallelism, since
the number of parallel units required increase sharply at low-voltage. This, however,
demands additional area which increases layout complexity and yield loss. The max-
imum performance improvement achievable is also limited by Amdahl’s law. Further,
assuming that the supply voltage and energy of memory can scale as well as that of
standard logic cells can lead to inaccurate claims. Furthermore, the temperature be-
havior of circuits at NTV is totally different from that at nominal voltage and failing
to separately characterize the temperature behavior at different voltages can lead to
oversight.

Thus, a careful design is definitely required to balance the advantages and disadvan-
tages of low-voltage operation. This paper surveys many intelligent techniques which
aim to fulfill this need.

3. KEY IDEAS OF NEAR-THRESHOLD COMPUTING TECHNIQUES
While different NTC techniques vary in their scope and features, several essential
ideas are common to them. In this section, we review these key ideas to provide in-
sights to the reader and show their use in NTC techniques in Sections 4, 5 and 6.
Table I summarizes these ideas; we now discuss them.

(1) Since regular (i.e. 6T) and NT-tolerant (e.g. 8T) cells have different performance
and reliability characteristics, heterogeneous-cell caches migrate data between
regular and NT-tolerant ways [Maric et al. 2012, 2013a] or access those ways se-
quentially (instead of ‘in parallel’) [Dreslinski et al. 2008; Maric et al. 2012] to
achieve different performance, energy and reliability tradeoffs.

(2) The blocks which show faults due to NTV operation are disabled. The disabling
can be done at fine-granularity instead of coarse-granularity, e.g. on a fault in a
cache word, only that word needs to be disabled instead of disabling the entire

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:7

Table I. Some key strategies used in near-threshold computing techniques

Classification References
Strategies for managing heterogeneous-cell caches

Using in-cache data movement [Maric et al. 2012, 2013a]
Phased access of cache ways [Dreslinski et al. 2008; Maric et al. 2012]

Strategies for improving reliability
Disabling at fine-granularity [Abella et al. 2009; BanaiyanMofrad et al. 2013; Chishti et al.

2009; Choi et al. 2011; Mahmood and Kim 2011; Wilkerson et al.
2008]

Pairing not-completely faulty blocks [BanaiyanMofrad et al. 2011, 2013; Wilkerson et al. 2008]
Storing error-correction information
in cache itself

[Chishti et al. 2009; Wilkerson et al. 2008]

Address remapping [Abella et al. 2009; BanaiyanMofrad et al. 2013; Choi et al.
2011]

Providing higher protection to X over Y due to higher criticality of X
Dirty data over clean data [Chakraborty et al. 2010; Khan et al. 2013]
Higher-order bits over lower-order
bits

[Chang et al. 2011]

Control operations over data opera-
tions

[Karpuzcu et al. 2014]

Strategies for selecting suitable voltage
Using dynamic voltage adjustment [Bacha and Teodorescu 2013, 2014; Gottscho et al. 2014]
Using multiple voltage domains [Dreslinkski et al. 2007; Miller et al. 2012a; Silvano et al. 2014]

In different voltage regions, ...
Using different ECCs [Maric et al. 2013b; Miller et al. 2010]
Activating different blocks [Bortolotti et al. 2014; Ghasemi et al. 2011]
Making different number of data
copies

[Yalcin et al. 2014b]

For lines with different number of failures, ...
Using different ECCs [Alameldeen et al. 2011]
Using combination of ECC and block
disabling

[Hijaz et al. 2013; Zhang et al. 2012]

cache block [Abella et al. 2009; BanaiyanMofrad et al. 2013; Chishti et al. 2009;
Choi et al. 2011; Mahmood and Kim 2011; Wilkerson et al. 2008]. Then, multiple
blocks which do not have errors in the same position can be paired to achieve a
single working block [BanaiyanMofrad et al. 2011, 2013; Wilkerson et al. 2008].
Also, partially faulty or non-faulty blocks can be used to store error-correction in-
formation for faulty blocks [Chishti et al. 2009; Wilkerson et al. 2008], or address
remapping can be used to avoid accesses to faulty ways [Abella et al. 2009; Ba-
naiyanMofrad et al. 2013; Choi et al. 2011].

(3) Different types of data or operations have different criticality. For example, dirty
data are more critical than clean data since an error in clean data of cache can be
corrected by fetching them from main memory, but an error in dirty data cannot
be corrected as this is the only copy of the data in the memory hierarchy. Based on
this, more critical portions can be allocated to memory or core with higher reliabil-
ity (refer Table I).

(4) Some techniques dynamically adjust the voltage value to find just the right volt-
age which strikes a balance between energy saving and low error rate [Bacha and
Teodorescu 2013, 2014; Gottscho et al. 2014]. Other techniques use multiple volt-
age domains for different cores, or for memory cells and logic, to suit their require-
ments [Dreslinkski et al. 2007; Miller et al. 2012a; Silvano et al. 2014].

(5) With decreasing voltage, the failure rate increases and hence, higher error-
protection is required at lower voltage regions. To achieve this, stronger ECC
[Maric et al. 2013b; Miller et al. 2010] or higher number of redundant data copies
[Yalcin et al. 2014b] may be used at low-voltage. Also, in low-voltage regions, only

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:8 Sparsh Mittal

NT-tolerant cells may be kept activated and normal cells may be deactivated [Bor-
tolotti et al. 2014; Ghasemi et al. 2011] to avoid high error-rate.

(6) Under voltage-scaling, different cache lines show different number of failures. To
achieve a balance between correction-overhead and error-rate, stronger ECC may
be used for lines with larger number of failures and weaker ECC may be used for
lines with few failures and line disabling may be used for lines that show higher
number of failures than that can be corrected [Alameldeen et al. 2011]. Alterna-
tively, lines with many failures may be disabled and those with few failures may
be corrected by ECC [Hijaz et al. 2013; Zhang et al. 2012] or lines showing even a
single failure may be disabled to avoid ECC overhead [Hijaz et al. 2013].

4. DESIGN AND MANAGEMENT APPROACHES FOR NEAR-THRESHOLD COMPUTING
In this section, we discuss several techniques for designing and managing the pro-
cessor under near-threshold operation regime. Table II provides an overview of these
techniques, we now discuss them briefly.

Table II. A classification based on design and management approaches

Classification References
Design features

Cache with heteroge-
neous cells

[Bortolotti et al. 2014; Chang et al. 2011; Dreslinski et al. 2008; Ghasemi et al.
2011; Khan et al. 2013; Maric et al. 2012, 2013a,b]

Cache with only NT-
tolerant cells

[Dreslinski et al. 2013; Hijaz and Khan 2014; Khare and Jain 2013; Kumar and
Hinton 2009]

NT-tolerant cells in
tag array

[BanaiyanMofrad et al. 2011, 2013; Duwe et al. 2015; Ferrerón et al. 2014;
Ladas et al. 2010; Miller et al. 2010]

Management/optimization approaches
Disabling faulty or
other specific cells

[Abella et al. 2009; Alameldeen et al. 2011; BanaiyanMofrad et al. 2011, 2013;
Choi et al. 2011; Ferrerón et al. 2014; Ghasemi et al. 2011; Gottscho et al. 2014;
Hijaz and Khan 2014; Hijaz et al. 2013; Khan et al. 2013; Krimer et al. 2010;
Ladas et al. 2010; Mahmood and Kim 2011; Maric et al. 2012, 2013a; Miller
et al. 2010; Roberts et al. 2008; Wilkerson et al. 2008; Zhang et al. 2012]

Use of replication [Ashraf et al. 2014; BanaiyanMofrad et al. 2011, 2013; Chakraborty et al. 2010;
Ferrerón et al. 2014; Han et al. 2013; Kim et al. 2012; Krimer et al. 2010; Seo
et al. 2012; Yalcin et al. 2014b]

Use of error-
correcting codes

[Alameldeen et al. 2011; Bacha and Teodorescu 2013, 2014; Chishti et al. 2009;
Duwe et al. 2015; Hijaz et al. 2013; Khan et al. 2013; Kim et al. 2012; Maric
et al. 2013b; Miller et al. 2010; Yalcin et al. 2014a,b; Zhang et al. 2012]

Use of filter/victim
cache or fault-buffer

[Dreslinski et al. 2008; Ladas et al. 2010; Mahmood and Kim 2011; Maric et al.
2013a]

Architectural re-
design

[Ansari et al. 2011; Dreslinkski et al. 2007]

Application-to-core
scheduling schemes

[Cho and Mahlke 2012; Karpuzcu et al. 2014, 2013]

4.1. Using heterogeneous cell caches
Several researchers use both conventional (e.g. 6T) and NT-tolerant cells (refer Section
2.2.6) for designing cache/memory to bring the best of both together. We now discuss
some of these techniques. Note that since the tag array consumes much less area than
the data array, many research works, which use ECC, replication or block-disabling
based approaches for improving reliability of data array, assume that tag array is de-
signed using NT-tolerant cells (see Table II).

Maric et al. [2012] present a heterogeneous SRAM cache designed using both 6T
and 10T transistors. For example, an 8-way cache can be designed using all 6T cells,
or with five 6T and two 10T ways or with seven 6T and one 10T ways, for exercising

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:9

different area-capacity tradeoffs. This is shown in Figure 3. For heterogeneous caches,
they consider different cache access schemes. In ‘parallel’ scheme, all ways are accessed
in parallel and in ‘sequential’ scheme, first 6T ways are accessed and in case of miss in
6T ways, the 10T ways are accessed. The ‘swap’ scheme works as the ‘sequential’ one,
except that on a hit in 10T ways, the data is swapped with the LRU line in the 6T ways.
This scheme aims to bring hot data in 6T ways to serve most hits from those ways. For
applications with limited locality, swap mechanism can lead to large number of data
movement operations. To avoid this, they propose an adaptive technique which tracks
the hits across both 6T and 10T ways and uses this to activate/deactivate the swap
operations. They show that their technique provides better performance and energy
efficiency than other three schemes mentioned above.

6T 6T 6T 6T 6T 6T 6T

6T 6T 6T 6T 6T 6T 6T 6T

6T 6T 6T 6T 6T 10T 10T

10T

(8+0) configuration (baseline)

(5+2) configuration (iso-area)

(7+1) configuration (iso-capacity)

(a)

(b)

(c)

Fig. 3. Different possible heterogeneous-cell cache configurations [Maric et al. 2012]: (a) an eight-way cache
with only 6T cells. (b) a cache with five 6T ways and two 10T way having nearly same area as (a). (c) a cache
with seven 6T ways and one 10T way, having same capacity as (a).

Maric et al. [2013a] present a cache design where large and energy-hungry (strong)
SRAM cells are replaced with energy-efficient and smaller (weak) SRAM cells in cer-
tain cache sets. For heterogeneous-cell cache used by Maric et al. [2012], they change
6TS and 10TS cells with 6TW and 10TW cells, where subscripts S and W refer to
strong and weak cells, respectively. To maintain same reliability levels despite poten-
tially faulty cache lines, these sets are enhanced with extra cache lines in an additional
structure such as victim cache. By virtue of this, the number of fault-free lines in each
set becomes same as that in baseline, and thus, their technique provides strong timing
guarantees required for worst-case execution time (WCET) estimation. Further, use of
weaker cells helps in achieving significant energy saving.

Maric et al. [2013b] present a cache architecture which aims to achieve low energy
and high reliability. Assuming the 6T+10T heterogeneous-cell cache used by Maric
et al. [2012] as the baseline, they propose replacing energy-hungry 10T cells with
smaller and more energy-efficient 8T cells. Depending on different workload require-
ments, the cache can work in two modes, viz. high-performance (HP) and ultra-low
energy (ULE), where HP and ULE are characterized by high/moderate and near-
threshold voltages, respectively. Compared to a baseline with no error-coding, they
propose using SECDED (single error correction and double error detection) in ULE
mode and no error-coding in HP mode (i.e. turning off SECDED), since 8T cells are
less reliable than 10T cells at near-threshold voltages which demands provision of
stronger reliability. This is illustrated in Figure 4. Thus, by intelligently adapting the
error-codes, their technique guarantees same performance and reliability levels as the
baseline while saving energy by virtue of using energy-efficient 8T cells.

Ghasemi et al. [2011] present a low-voltage LLC (last level cache) architecture that
exploits the DVFS characteristics of workloads to achieve both high performance and
low minimum supply voltage. They note that under DVFS scheme, when the load level
is higher, the processor spends a large fraction of its runtime in high frequency/voltage
states. They design an LLC with a spectrum of cell sizes. At low voltages, only large

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:10 Sparsh Mittal

cells are used to achieve low failure rates, which provides energy saving and the per-
formance penalty of having reduced LLC capacity is small since the processor runs at
lower frequencies at lower voltages. To achieve high performance, voltage is changed
to be high enough such that failure rate of even small cells is in acceptable range,
which provides sufficient LLC capacity. With decreasing operating voltage, subsets of
cells are disabled in order of size beginning with the smallest cell (refer Figure 4).
Thus, without using large cells for entire LLC, their technique facilitates low voltage
operation by using dynamic adaptation.

Higher 

voltage 

Lower 

voltage 
Use ECC

Disable 

ECC

Keep single 

copy

Keep two 

copies

Keep three 

copies

Use only NT-

tolerant cells

Use both 

regular and 

NT-tolerant 

cells

Maric et al. [2013b],

Miller et al. [2010]

Bortolotti et al. [2014],

Ghasemi et al. [2011]

Yalcin et 

al. [2014b]

Voltage reduces,

error rate increases,

higher protection 

required

Fig. 4. Steps taken in different voltage regions by different techniques. With decreasing voltage, error rate
increases and hence, progressively higher error protection needs to be employed.

Bortolotti et al. [2014] present an ultra-low power multicore architecture for eHealth
monitoring system which requires collecting biomedical signals using highly parallel
computations at low voltage. They note that the memory requirement of the monitor-
ing system varies significantly in different phases. In sensing phase, which constitute
the larger fraction of overall time, memory needs to be just sufficient for storing the
sampled data while larger memory is required in compression phase for computation
and temporary storage. They propose a hybrid memory architecture consisting of 6T
and 8T SRAM banks. In the sensing phase, voltage is switched to 600mV. For provid-
ing reliable operation, only 8T banks are activated and 6T banks remain idle in data-
retentive mode (refer Figure 4). In compression phase, voltage is switched to 1.2V and
both 6T and 8T banks are activated to provide higher performance.

Khan et al. [2013] present a heterogeneous-cell cache architecture which provides
energy advantage of low-voltage operation along with performance benefits of large
cache. The two types of cells used show different robustness to failures at low-voltages
and hence, they are used differently. Only clean data are stored in non-robust cells
which are protected using simple error-detection mechanisms, since in case of an er-
ror, the correct data can be obtained from lower-level cache or memory. Dirty data are
stored only in robust cells (refer Figure 10 in Section 6.5) and the replacement policy
is modified to ensure this. The write misses are allocated to robust lines, and read
misses are allocated to non-robust lines. The energy saving provided by low-voltage
operation enables utilization of more active cores, which makes the lowest-voltage op-
erating point the one having the highest performance.

4.2. Architectural redesign for NTC
Dreslinkski et al. [2007] note that due to different activity factors and leakage rates
for memory cells and logic, operating them in same voltage region leads to suboptimal
energy efficiency. Hence, they propose to operate them in different voltage domains.
They explore cluster organization where K slower cores are connected to same faster

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:11

cache, which serves these K cores by running K times faster than the cores. This is
achieved by assigning suitable Vdd and Vth to cores and caches. With rising value of
K, cache contention and access energy increase, although due to increasing sharing
between cores, communication overhead is also reduced. Due to this tradeoff, a value
of K = 2 (i.e. 2 cores per cluster) is found to provide highest energy efficiency for multi-
threaded benchmarks. They also explore the effect of separately clustering instruction
and data (I and D) L1 caches on different applications. They observe that since I-cache
has high access rate and low miss rate, keeping a per-core private I-cache provides
larger energy savings. By comparison, due to lower access rate, higher miss rate, and
larger data sharing, D-cache is more suited for clustering.

Ansari et al. [2011] propose a technique which works by reconfiguring its internal
organization to tolerate large number of SRAM errors that arise in NTV region. Their
technique partitions the cache to multiple autonomous islands with various sizes that
function correctly without borrowing redundancy from each other. Each island is a
group of physical cache word-lines that includes spare word lines divided into multiple
redundancy units. These spare units are used to achieve fault-free operation of other
wordlines in the same group. They use a clustering algorithm which partitions the
cache to least number of islands such that number of spare lines required for ensuring
fault-free operation is minimized, since spare lines do not contribute to useful cache
capacity. By virtue of not rigidly binding data and redundancy (unlike other techniques
such as [Wilkerson et al. 2008]), their technique reduces the overhead of redundancy.
In high performance mode, their technique is disabled to avoid losing cache capacity.
They show that their fault-tolerant architecture allows the cache to operate at very
low voltages.

4.3. Using block disabling approach
Hijaz et al. [2013] propose a technique which works by exercising a tradeoff between
latency and capacity of L1 caches under different error rates (due to voltage-scaling).
They note that in case of high error rates, incurring extra latency to recover and utilize
the additional L1 cache capacity is worthwhile, while in case of low error rates, it is
better to avoid incurring the latency overhead of error correction for gaining additional
L1 cache capacity. Based on this, they propose a private L1 cache design which works
in two modes, viz. “correction and disable”, where single-bit errors are corrected and
multi-bit errors lead to disabling of cache line and “line disable” where a cache line
with either single or multi-bit errors is disabled. This is illustrated in Figure 5. The
first mode incurs additional hit latency to recover cache capacity and second mode
optimizes hit latency at the cost of cache capacity. For each application, the per-core
L1 cache operates in either of these two modes based on the L1 eviction rate and the
average memory latency, such that overall performance is maximized. They show that
their adaptive technique performs better than using either mode alone.

Wilkerson et al. [2008] propose two techniques to enable cache operation at ultra-low
voltages. Their first technique, called word-disable, disables 32-bit words that contain
one or more defective bits. By combining non-failing words in two consecutive ways,
one logical line is formed and the position of failing/non-failing words is stored in the
tag. Their second technique, called bit-fix, uses a quarter of the cache ways to store
both the location and correct value of defective bits in other ways. The limitation of
these techniques is that they reduce the cache size and associativity by 50% and 25%,
respectively. Also, they suffer large performance loss with increasing failure rate.

Abella et al. [2009] note that disabling faulty storage in cache causes core-to-core
variation and performance unpredictability since the application performance may
vary depending on the faulty bit location and the core to which it is scheduled. In-
stead of disabling full cache lines, their technique disables only faulty subblocks (e.g.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:12 Sparsh Mittal

Multi-bit 
failure 

Single-bit 
failure

Use ECC

Disable 

such lines

Hijaz et al. [2013],

Zhang et al. [2012]

Alameldeen et 

al. [2011]

Increasing 

number 

of bit-failures

Use strong 

ECC

Use simple 

(fast) ECC

Many-bit 
failure 

Disable 

such lines

Hijaz et 

al. [2013] 

Disable 

such lines

Fig. 5. Steps taken in different techniques for lines with different number of failures. Note that the tech-
nique of Hijaz et al. [2013] operates in two modes where two different types of actions are taken, as shown
in this figure.

one cache block has four subblocks). To ensure that applications are affected by the
faulty subblocks in a similar manner regardless of the location of such failures, their
technique uses dynamic address remapping. For this, addresses are remapped dynam-
ically in round-robin fashion which ensures that each address is mapped to different
cache regions over different time periods. They show that their technique provides
better performance and smaller performance variability compared to other techniques
(e.g. [Wilkerson et al. 2008]).

Choi et al. [2011] note that in subblock disabling technique [Abella et al. 2009], ac-
cesses to disabled faulty subblocks lead to misses which harm performance. To avoid
this, they propose a technique which aims to match cache access behavior and error
patterns. While a cache block resides in L1 cache, their technique records its access
pattern at word-granularity. When it is evicted from L1 to L2 cache, the access pattern
is written to L2 cache. Later, when cache block is fetched from L2 to L1 cache, the
access pattern is also fetched. At this time, the error pattern of candidate cache block
locations is compared with access pattern of fetched data to select the most compatible
cache resource, such that the words that were accessed are stored in non-faulty loca-
tions. To increase the chances of matching, they also remap data words within cache
line. In the best case where both access and error are always matched, their technique
can almost completely alleviate the performance loss due to low voltage operation.

4.4. Using replication approach
Chakraborty et al. [2010] present a technique which ensures reliable cache operation
under low-voltage by maintaining multiple copies of every data item. Their technique
maintains 2 copies of clean data and 3 copies of dirty data in the same set, as shown
in Figure 6. On access to clean data both copies are accessed and compared. A mis-
match indicates error and in this case, a correct value is retrieved from lower level
cache/memory. On access to dirty data, all 3 values are accessed and compared and
correct value is obtained using majority voting, since probability of error in all 3 copies
is negligible. Compared to boot time detection, the dynamic detection of errors as used
by their technique has greater effectiveness since the SRAM errors depend on many
runtime factors such as temperature, access frequency, position of hotspots etc. Main-
taining multiple copies of data, however, significantly degrades the cache capacity and
hence, their technique is useful only for those applications whose working sets are
much smaller than the cache size, such as embedded applications. Also, accessing and
comparing multiple copies on each access leads to wastage of energy.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:13

X X X X X X X X Initial state (X = invalid)

b b e e f f g g

After compulsory misses to b, e, f, g

b b e e f f e X

After write to e

Made 2 copies each of b, e, f, g

Evicted g and made 3 copies of e. 

b b e e f f e f

After write to f

Made 3 copies of f. 

Fig. 6. An illustration of working of technique of Chakraborty et al. [2010]. The technique of Yalcin et al.
[2014b] also keeps multiple copies, but the number of copies maintained is determined by voltage value and
not whether it is clean or dirty, as used in Chakraborty et al. [2010].

Yalcin et al. [2014b] present a flexible cache architecture which uses replication to
provide different degree of fault-tolerance depending on different fault rates. To in-
crease the error correction capability of replication schemes, each cache line is divided
into multiple partitions at desired granularity (e.g. word, byte etc.) which are protected
by parity. At nominal voltage, only a single copy of each data-item is kept. When Vdd

is medium-low, two copies of data are kept. On a read access, parity-protected parti-
tions of both copies are compared. In case of mismatch, the parity of each partition is
computed and the partition with correct parity is taken as the useful data. At near-
threshold voltage, their technique maintains 3 copies of each data to tolerate higher
fault-rates. This is illustrated in Figure 4. On a read access, bitwise majority voting
is used to obtain the correct data. If parity of this data is incorrect, the parities of
all three partitions are checked and the partition with correct parity is taken as the
useful data. If even triplicating data leads to uncorrectable partition in the cache line,
they use partition-fix mechanism which is similar to bit-fix mechanism by Wilkerson
et al. [2008]. In this mechanism, a quarter of cache ways are used to store locations
and correct values of defective partitions.

4.5. Using error-correcting codes
Miller et al. [2010] use turbo product code to allow NTV operation of cache while trad-
ing off some cache capacity to store ECC information. A product code is an ECC com-
posed of multiple short codes that make up a long code, for example, by arranging data
in a 2D matrix, short code words are computed from data in each column and each row.
A product code is called a turbo product code if iterative decoding of long code word is
done by arranging short code decoders in a cycle; row and column decoders work sep-
arately but iteratively exchange their intermediate results. Thus, the orthogonal data
layout allows each bit to receive protection in both its column and row. Their technique
leverages the power of iterative decoding to achieve strong correction ability with only
small latency. The error correction information is stored in different way of the same
set where data are stored. To account for parametric variation, their technique classi-
fies the cache lines based on their vulnerability and to increase cache capacity, their
technique does not allocate protection for fully functional or unrecoverable lines. Also,
the protection is disabled in error-free high voltage operation and is enabled only in
low-voltage region (refer Figure 4). Compared to a conventional ECC, their technique
incurs much smaller area overhead for storing ECC and also provides larger energy
savings.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:14 Sparsh Mittal

Alameldeen et al. [2011] note that probability of multi-bit errors in a cache line is
much smaller than that of zero/single-bit errors. Based on this, they present a tech-
nique which uses variable-strength ECC to achieve a balance between protection pro-
vided and overhead incurred by ECC. For lines with zero or one failures, a simple and
fast ECC is used and for lines with multi-bit failures, strong ECC is used which incurs
additional latency and area. Only few lines need such protection, which keeps the over-
head of strong ECC small. To determine which lines will exhibit multi-bit failures, they
use a dynamic cache characterization mechanism which classifies the cache lines dur-
ing the first transition to low-voltage mode and allocates additional ECC bits for lines
that exhibit multi-bit failures. They show that their technique provides lower ECC-
overhead than fixed-strength ECC schemes for comparable protection. By combining
their technique with a scheme which disables cache lines showing larger number of
errors than that can be corrected (refer Figure 5), they achieve even further energy
saving.

Zhang et al. [2012] show that at low-voltage, 64B cache lines typically contain only
one hard faulty cell and the probability of finding multiple faulty cells is small. Based
on this, they propose using DECTED (double error correction, triple error detection)
code which allows providing correction for one-bit hard error and one-bit soft error. A
cache line containing multiple faulty cells is disabled. This is illustrated in Figure 5.
Since cache lines with multiple faulty cells are expected to be small in number, their
technique maintains cache capacity even at low supply voltage, while also addressing
both hard and soft errors.

Duwe et al. [2015] present a technique to mitigate the overhead of strong ECC
schemes for enabling reliable low-voltage operation. They use a fast mechanism to
predict ECC information and the strong error correction scheme itself is employed in
parallel to verify the correctness of the predicted values. The predicted ECC values
are fed to subsequent pipeline stages. When the value predicted is same as the output
of strong error correction, the latency of strong error correction is hidden. In case of
misprediction, dependent instructions are flushed and restarted using the right out-
put. By virtue of having high accuracy and fast prediction, their technique reduces L1
cache latency which also translates to energy saving.

4.6. Using additional structures
Dreslinski et al. [2008] evaluate a filter cache [Kin et al. 1997] designed with NT-
tolerant SRAM and show that such a design reduces the energy of conventional filter
cache (refer Figure 7). In high performance mode, however, such design leads to per-
formance loss since filter cache’s effectiveness to capture data locality is limited due to
its small size. To avoid this, filter cache needs to be flushed and then bypassed, which
incurs significant overhead. They present a cache architecture for providing large en-
ergy saving in low-power mode and minimal runtime overhead in high performance
mode. One cache way is designed using NT-tolerant (e.g. 8T) SRAM while others are
designed using standard SRAM cells. On a cache access, only NT-tolerant way is ac-
cessed; remaining ways are accessed only if there is a miss in the NT-tolerant way. If
there is a hit in remaining ways, the data are swapped with that in NT-tolerant way to
ensure that MRU (most recently used) data always resides in NT-tolerant way. Thus,
the NT-tolerant way acts as a shield for other ways. If the miss-rate in NT-tolerant way
exceeds a threshold, then cache is dynamically reconfigured such that all ways are ac-
cessed in parallel. The advantage of this architecture is that unlike filter cache, it uses
NT-tolerant ways even in high-performance mode and does not require flushing.

Mahmood and Kim [2011] present fault-buffer based technique for achieving reliable
low-voltage operation in L1 caches. Their technique identifies and disables faulty cache
locations at word level (32 bits). These faulty words are instead allocated in a small

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:15

IL1 

cache

CPU

D 

filter

I 

filter

DL1 

cache

IL1 

cache

CPU

DL1 

cache
FBAFBA

Use of filter cache

(Dreslinski et al. [2008])

Use of fault-buffer array (FBA)

(Mahmood and Kim [2011])

Fig. 7. An illustration of filter cache used by Dreslinski et al. [2008] and fault-buffer array used by Mah-
mood and Kim [2011].

fully-associative fault buffer array (refer Figure 7). To minimize the overhead of fault-
buffer, their technique adapts the size of fault-buffer based on its hit rate, such that
when hit rate is higher than a threshold, the size is reduced and vice versa. Also,
the fault-buffer is divided into multiple banks and only one bank is activated on each
access to reduce the delay and dynamic energy overhead.

4.7. Using task-scheduling scheme
Karpuzcu et al. [2013] note that in a manycore system, use of multiple on-chip voltage
domains is energy inefficient. This is because use of multiple voltage domains requires
on-chip voltage regulators which have low energy efficiency and consume significant
amount of area. Also, NTC exacerbates parametric variations and hence, fine-grained
domains demand higher guardband margins. Hence, they propose using a single volt-
age domain and multiple frequency domains. The cores are organized in clusters to
exploit systematic component of process variation and each cluster can potentially use
a single frequency domain. They also propose a scheduling scheme which assigns jobs
to the cores to maximize performance per watt. They show that using their approach,
a chip with single voltage domain can provide higher performance per watt than one
with multiple voltage domains.

4.8. Using NT-tolerant circuit designs
As discussed in Section 2.2.6, traditional circuit designs are susceptible to higher pro-
cess variation and failure rate at low-voltages. To address this, several NT-tolerant
circuit designs have been proposed which reduce the failure rates of the circuit. We
now discuss a few NT-tolerant circuit designs.

The scaling of MOSFET has led to increased short channel effects which harm its
performance as a switch. To avoid this effect, circuit-designs with improved gate-
control of channel, such as double-gate MOSFET have been explored. Double-gate
MOSFET has reduced junction capacitance and the overlap capacitance dominates
its drain capacitance [Goel et al. 2009]. An underlap between source/drain can be used
to reduce this overlap capacitance. Of these, underlap on the source side degrades
the ON-current and makes the device susceptible to process variation. By compari-
son, the drain-underlap design reduces the static power consumption and propagation
delay and steepens the switching slope of MOSFET [Patil and Qureshi 2011]. Thus,
due to these features, drain-underlap design has been considered promising for near-
threshold voltage operation. The limitation of this design, however, is that the require-
ment of extra fabrication steps and reduced ability to work as a pass-gate transistor
[Goel et al. 2009; Patil and Qureshi 2011].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:16 Sparsh Mittal

An 8T SRAM cell [Chang et al. 2005] adds two-transistor read stack to the conven-
tional 6T SRAM cell. The word line of original 6T cell is used only for write operations
and a second read wordline is connected to the read stack. This eliminates cell dis-
turbance on a read access. This also allows improving for writeability which improves
yield and performance at NTV operating region [Chang et al. 2005; Kumar and Hinton
2009].

5. NEAR-THRESHOLD COMPUTING IN VARIOUS PROCESSOR COMPONENTS
Different system components have different properties and hence, use of NTC in them
presents different constraints and optimization opportunities. To underscore this, in
Table III we classify the research works based on the processor component where NTC
is used. In this table, we also classify the works based on whether they have been
evaluated on real-processor or simulator to provide insights. We now discuss several
of these works.

Table III. A classification based on processor component where NTC is used

Classification References
Processor component

Cache [Abella et al. 2009, 2010; Alameldeen et al. 2011; Ansari et al. 2011; Bacha
and Teodorescu 2014; BanaiyanMofrad et al. 2011, 2013; Bortolotti et al. 2014;
Chakraborty et al. 2010; Chishti et al. 2009; Choi et al. 2011; Dreslinkski et al. 2007;
Dreslinski et al. 2008; Duwe et al. 2015; Ferrerón et al. 2014; Ghasemi et al. 2011;
Gottscho et al. 2014; Han et al. 2013; Hijaz and Khan 2014; Hijaz et al. 2013; Khan
et al. 2013; Khare and Jain 2013; Kumar and Hinton 2009; Ladas et al. 2010; Mah-
mood and Kim 2011; Maric et al. 2012, 2013a,b; Miller et al. 2010; Roberts et al.
2008; Wang et al. 2013; Wilkerson et al. 2008; Yalcin et al. 2014a,b; Zhang et al.
2012]

Core [Abella et al. 2010; Dreslinkski et al. 2007; Dreslinski et al. 2013; Miller et al.
2012a,?; Wang et al. 2013]

Evaluation platform
Real processor [Bacha and Teodorescu 2013, 2014; Cho and Mahlke 2012; Miller et al. 2012]
Simulator nearly all others

5.1. NTC in caches
Chishti et al. [2009] propose a technique which trades-off cache capacity to enable
hard/soft-error resilience at lower voltages. At high voltage, only conventional ECC is
used and the entire cache is used for storing data. At low voltage, some cache ways
are used for storing additional ECC information for other cache ways, at a granularity
finer than the cache line, which allows larger number of errors to be corrected in each
line with lower latency and complexity. This is illustrated in Figure 8. For achieving
this, their technique divides a cache line into multiple segments and corrects errors
on a per-segment basis. The number of ways used for ECC are dynamically adapted
on the basis of the target minimum supply voltage, which influences the desired re-
liability level. Depending on whether performance is relatively independent of cache
size in low-voltage mode, their technique can exercise a tradeoff between cache size or
reliability.

Kim et al. [2012] note that there exists a tradeoff between LLC cell size, its area and
reliability, since large cells offer higher reliability but also increase the cache area.
They present an approach to jointly optimize LLC cell size, strength of ECC and num-
ber of redundant cells to minimize total SRAM area while meeting the minimum-
voltage and yield targets. For this, they study the change in SRAM cell failure proba-
bility as the size of its transistors is varied. Then, using ECC and/or redundancy, they
apply the necessary amount of fault tolerance to achieve a target minimum Vdd (supply

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:17

Data 
way 0

Data 
way 1

Data 
way 2

Data 
way 3

Data 
way 4

Data 
way 5

Data 
way 6

Data 
way 7

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

Data 
way 0

ECC 
way 0

Data 
way 1

ECC 
way 1

Data 
way 2

ECC 
way 2

Data 
way 3

ECC 
way 3

At high 

voltage

At low 

voltage

Fig. 8. An illustration of the technique of Chishti et al. [2009] where, at high voltage, the entire cache is
used for storing data, but at low voltage, some cache ways are used for storing additional ECC information
for other ways.

voltage) for the given cell failure probability which is determined by the cell size. They
show that compared to using either redundant cells or ECC, use of both schemes allows
finer adjustment of overall cache failure probability which, in turn, allows achieving
smaller area for a given target minimum Vdd.

5.2. NTC in processor core
Miller et al. [2012a] present a technique to mitigate the effect of process variation and
application imbalance in voltage-scaled chips. Their technique provisions two power
supply rails for the chip, which are set at different low voltages and can be assigned to
a core to change its frequency. Depending on the power constraint, their technique de-
cides how many cores can be assigned to higher voltage at the same time. They present
two implementations of their technique. The first implementation aims to mitigate
the effect of core-to-core frequency variation to achieve performance homogeneity. For
this, their technique schedules slower cores to higher voltages for longer time and vice
versa to achieve nearly same per-core frequency across all cores over a finite interval.
The second implementation aims to reduce workload imbalance which is caused due
to characteristics of multithreaded applications, such as uneven distribution of work
between threads etc. For this, their technique uses hints provided by synchronization
libraries to determine high-priority threads and the cores running such threads are
assigned more time on high-voltage rail compared to the cores running low-priority
threads. Thus, by avoiding idling of threads at synchronization points, their technique
improves resource utilization and performance.

Abella et al. [2010] present a technique to reduce supply voltage while keeping oper-
ating frequency high. They note that for SRAM arrays, write operations lie at the crit-
ical path at low supply voltage since their latency grows exponentially with decreasing
voltage. To increase operating frequency by overriding SRAM write delay constraints,
at low voltage, their technique interrupts write operations before bitcells reach a read-
able state. Since SRAM structures are rarely read immediately after being written, this
approach allows the bitcells to stabilize and reach a readable state after several cycles.
The improvement in frequency obtained offsets the stall introduced due to avoiding
an immediate read after write (IRAW) operation. They also present several strategies
to avoid IRAW for different SRAM blocks of an in-order core. For register file, issu-
ing of those instructions can be delayed whose source registers have not stabilized.
For instruction queue, issuing of those instructions can be avoided that have recently
been allocated. For cache, the read operations can be delayed. For branch predictor and
return stack buffers, no strategy is used since an IRAW violation only affects perfor-
mance and not correctness.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:18 Sparsh Mittal

5.3. NTC in research processors/prototypes
Khare and Jain [2013] discuss Intel’s NTV research processor, code-named ‘Clare-
mont’. The caches are designed using 10T bitcells which allows the processor to achieve
lower voltage compared to that achieved by using 8T bitcells. Core voltage and perfor-
mance can be scaled from 1.2V and 915MHz down to 280mV and 3MHz, which reduces
total power consumption from 737mW to 2mW. Logic and memory structures func-
tion in independent voltage domains and the minimum voltage achieved in them are
280mV and 550mV, respectively. Minimum energy consumption is achieved at NTV re-
gion (at 0.45V), which provides 4.7× energy efficiency improvement compared to that
at maximum voltage.

Dreslinski et al. [2013] discuss a 3D processor named Centip3De which uses NTC
to save energy and offset limited power dissipation capabilities of 3D design. The pro-
cessor has two stacked dies with 64 ARM M3 near-threshold cores, organized in 16
four-core clusters, each connected to 1KB I-cache and 8KB D-cache. Caches are de-
signed using 8T SRAM for reliability. Caches and cores operate in different voltage
domains and each cache operates at 4× the core frequency and communicates with
the cores in a round-robin fashion. The cores running the latency-critical threads can
be boosted by 2, 4 or 8× in frequency by connecting them to a higher voltage while
disabling remaining cores in the cluster to mitigate the higher power consumption.

Carter et al. [2013] describe Runnemede, a research architecture which seeks to
achieve very high energy efficiency. Runnemede uses several techniques to save energy
at all layers of computing stack, e.g. fine-grained power and clock management, near-
threshold operation, separate execution units for runtime and application code and
other approaches for reducing energy in memory and on-chip network. Runnemede
ensures resilience towards errors arising due to parametric variation at low voltages.
Also, due to its operation at low clock rates, large number of cores are required to
achieve high performance which is accomplished using hardware-software co-design
approaches.

6. NEAR-THRESHOLD COMPUTING FOR ACHIEVING VARIOUS OPTIMIZATION OBJECTIVES
Near-threshold computing can be used for optimizing a variety of system metrics. To
highlight this, in Table IV we classify the works based on the study and optimization
objective of a technique. Note that while a technique improving performance may also
provide energy saving, in Table IV, we list a technique in a category for which the
technique has been actually evaluated. We now review many of these techniques.

6.1. Improving energy efficiency
Silvano et al. [2014] present a technique to ensure performance guarantee of super-
threshold voltage computing (STC) in the NTC region. Their technique works by com-
puting the clock frequency at NTC for sustaining STC performance. Using this, the
lowest possible Vdd for sustaining this frequency is computed for each core. Based on
these, their power management scheme forms voltage island domains and allocates
their NTC voltages. Use of such a multiple-voltage single-frequency scheme helps in
mitigating the effect of within-die variations on performance and power and providing
an iso-frequency view of the manycore platform. To further improve the performance,
they use a multiple-voltage multiple-frequency scheme which allocates multiple fre-
quencies within a single voltage island depending on the process variation induced
heterogeneity at threshold voltage within the chip. This leads to a heterogeneous NTC
manycore which can provide even larger performance than STC design. They show
that compared to a 16-core STC chip, a 128-core NTC chip using their technique can
provide significant energy savings.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:19

Table IV. A classification based on study/optimization objective

Classification References
Energy efficiency [Alameldeen et al. 2011; Ansari et al. 2011; Ashraf et al. 2014; Bacha and Teodor-

escu 2013, 2014; BanaiyanMofrad et al. 2011, 2013; Bortolotti et al. 2014; Carter
et al. 2013; Chakraborty et al. 2010; Chang et al. 2011; Chishti et al. 2009; Dres-
linkski et al. 2007; Dreslinski et al. 2008, 2013; Duwe et al. 2015; Ferrerón et al.
2014; Gottscho et al. 2014; Haghbayan et al. 2014; Han et al. 2013; Karpuzcu et al.
2013; Krimer et al. 2010; Mahmood and Kim 2011; Maric et al. 2013a; Miller et al.
2010, 2012; Roberts et al. 2008; Silvano et al. 2014; Wilkerson et al. 2008; Yalcin
et al. 2014a; Zhang et al. 2012]

Performance [Abella et al. 2009, 2010; Cho and Mahlke 2012; Duwe et al. 2015; Ferrerón et al.
2014; Haghbayan et al. 2014; Hijaz et al. 2013; Khan et al. 2013; Ladas et al. 2010;
Miller et al. 2012a,b; Pinckney et al. 2012]

Reducing voltage
guardbands

[Bacha and Teodorescu 2013, 2014; Gottscho et al. 2014; Karpuzcu et al. 2013;
Miller et al. 2012]

Allowing or acti-
vating extra core
or parallelism

[Carter et al. 2013; Dreslinkski et al. 2007; Ferrerón et al. 2014; Karpuzcu et al.
2014; Khan et al. 2013; Krimer et al. 2010; Pinckney et al. 2012; Silvano et al.
2014]

Providing per-
formance pre-
dictability

[Abella et al. 2009; Ghasemi et al. 2011; Maric et al. 2013a]

Accounting for
parametric varia-
tion

[Abella et al. 2009; Ansari et al. 2011; Ashraf et al. 2014; Carter et al. 2013; Chang
et al. 2011; Ferrerón et al. 2014; Ghasemi et al. 2011; Gottscho et al. 2014; Han
et al. 2013; Karpuzcu et al. 2014, 2013; Krimer et al. 2010; Miller et al. 2012a,
2010, 2012,b; Pinckney et al. 2012; Seo et al. 2012; Silvano et al. 2014]

Application-
domain specific
techniques

[Chakraborty et al. 2010; Chang et al. 2011; Karpuzcu et al. 2014]

BanaiyanMofrad et al. [2011] present a technique that uses a defect map to config-
ure cache architecture to achieve energy saving using voltage scaling. Their technique
uses replication of faulty blocks to tolerate faults in them and aims to minimize the
number of lines used for replication while tolerating maximum number of defects. For
a faulty subblock (called host), their technique uses the fault map to find another faulty
block in same or another set, which does not have any faulty subblock in the same po-
sition as the host (refer Figure 9). If such a block is not found, their technique finds
another faulty set (called target) that does not have a faulty block in the same position
as host set and replicates all faulty blocks of host set to target set. Correct value is
reconstructed from a combination of two blocks. The host and target sets are chosen
from different banks, and hence, they can be accessed in parallel which reduces the ac-
cess latency. BanaiyanMofrad et al. [2013] also extend their technique to large shared
NUCA (non-uniform cache access) LLC architectures with distributed banks. For such
architectures, their technique attempts to minimize cache access latency and network
traffic by preferentially searching target block from LLC banks in adjacent tiles. They
show that their techniques improve energy efficiency with modest performance loss
and minimize cache capacity loss in presence of failures.

6.2. Improving performance
Miller et al. [2012b] propose a technique to address within-core variation that arises
due to delay variation in functional units at low voltages. Delay variation reduces the
core frequency since the frequency of a core is dictated by the critical path delay of
the slowest functional unit. Their technique allows the slow units to operate at half
the main clock frequency, which moves such units out of critical path and allows the
core frequency to be raised significantly. On the CMP (chip multiprocessor) level, the
effect of applying this technique on the slowest core is significant increase in CMP

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:20 Sparsh Mittal

X X

X

X

X X

(a) No conflict since faulty subblocks

are at different positions

Block 1

Block 2

Block 1

Block 2

(b) Conflict since faulty subblocks

are at same positions

Fig. 9. For two blocks, if the faulty subblocks are at different positions, they are said to be conflict-free and
hence, can be used to provide redundancy [BanaiyanMofrad et al. 2011]. But if the faulty subblocks are at
the same position, they conflict and hence, such blocks cannot be paired for providing redundancy.

clock frequency and throughput which offsets small loss in performance of individual
cores.

Cho and Mahlke [2012] present a technique to recover the performance of multi-
threaded programs in NTC paradigm. They statically analyze the target application
and instrument dynamic monitoring and priority management code into the program.
Their technique assigns the cores to fast mode at runtime based on the priority set by
the instrumented code, such that the core which is more likely to be included in criti-
cal path has more chances of getting accelerated. This helps in minimizing the waiting
time on synchronization operations, which improves the performance.

6.3. Reducing voltage guardbands
Modern processors use voltage guardbands to avoid errors which can negate the en-
ergy saving obtained by using low voltages. To reduce the voltage margins, voltage
speculation is used which works by gradually lowering supply voltage while keeping
the processor frequency constant to save power without harming performance. Voltage
speculation, however, requires additional hardware to correct timing errors caused
due to aggressive speculation. Bacha and Teodorescu [2013] propose a technique for
dynamically reducing voltage margins and lowering Vdd by directly using the feed-
back from ECC-protected blocks. They note that as Vdd is lowered, correctable errors
in ECC-protected functional unit happen before uncorrectable errors. Hence, during
voltage speculation, occurrence of correctable errors can be used as an indicator for ap-
proaching unsafe operating level. Based on this, their firmware-based technique uses
the type and rate of runtime correctable errors to determine the lowest safe voltage
point at which each core can operate. By adapting Vdd to each core’s safe operating
level, their technique accounts for core-to-core variation. Overall, their technique se-
lects voltage level to keep the processor operating close but above the safety margin to
achieve correct operation while saving large amount of energy.

To avoid the runtime overhead of firmware-based technique, Bacha and Teodor-
escu [2014] present a hardware-based technique for guiding voltage speculation in
low-voltage processors. They note that correctable errors observed on lowering the Vdd

occur consistently in the same cache lines, which happens since the cells in these lines
are more vulnerable to low voltage than others due to process variation. They also
observe that the spread between the Vdd at which an error is seen in a sensitive line
and the voltage at which system crashes is 4× larger at low Vdd compared to that at
nominal Vdd. This provides a wide margin of safe operating voltage and allows more
aggressive speculation than is possible in the nominal Vdd region. Their technique uses
a hardware ECC monitor which continuously tracks the known sensitive cache lines.
Based on the feedback from ECC monitor, a voltage control system adapts Vdd in steps
of 5mV. They also show that their hardware-based approach provides larger energy
saving than the firmware-based approach used in Bacha and Teodorescu [2013].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:21

Gottscho et al. [2014] observe that in presence of process variation, SRAM bits that
fail at some supply voltage also fail at all lower voltages. This property allows the use
of a compressible fault-map such that multiple supply voltages can be used with little
additional overhead compared to a single voltage fault-map. Based on this, their tech-
niques use global voltage-scaling of SRAM data array along with power gating of indi-
vidual faulty blocks to reduce cache power. Their static technique uses the knowledge
of faulty blocks obtained using BIST to choose the optimal cache voltage at boot time
to achieve a minimum of 99% fault-free blocks. Since the static technique misses the
opportunity to dynamically adapt the cache Vdd in response to the workload behavior,
they also propose a dynamic technique which adaptively trades off capacity to achieve
even further energy saving. When the number of misses become high at low voltage,
their technique raises Vdd to increase the count of functional blocks (and hence the
capacity), which lowers the miss-count and performance loss. Similarly, when number
of misses become low, the Vdd is reduced to opportunistically save energy.

6.4. Allowing additional cores/parallelism
The energy saving provided by NTC can allow activating more cores under same power
budget. We now discuss several techniques which use this insight for improving per-
formance.

Ferrerón et al. [2014] note that in a processor with inclusive cache hierarchy, where
faults occur in shared LLC due to voltage-scaling, disabling an LLC block which is
actively used in first-level private caches may lead to performance loss. To address
this, they propose two techniques which utilize coherence schemes to save energy us-
ing block disabling while maintaining the performance. The first technique works on
the observation that in a directory-based coherence protocol, blocks present in private
levels only have to be tracked in tag array and maintaining their replica in data ar-
ray of shared LLC is not required. Based on this, the first technique turns on the tags
of faulty blocks to ensure directory inclusion. From perspective of first-level private
cache, this restores the associativity of shared LLC and hence, the block in private
cache need not be invalidated. The coherence protocol is adapted so that access to a
faulty block is addressed as a cache miss using off-chip access. Since the increase in
off-chip misses due to block disabling in this technique can offset the energy saving
obtained due to low voltage operation, they also present a second technique. This tech-
nique avoids off-chip access when one or more copies of faulty blocks exist in private
caches which happens in case of parallel workloads. Using directory information, repli-
cated blocks can be tracked and whenever an L1 request arrives to a faulty LLC block,
it is forwarded to another L1 which is a sharer of the requested block. The data ob-
tained is supplied to requesting L1 using cache-to-cache transfer. They also show that
their energy saving technique allows more cores to be activated within same power
budget which leads to performance improvement.

Krimer et al. [2010] present a stream processor family that uses massive paral-
lelization and NTV operation of circuits and interconnect. They note that in a stream
processor, wide SIMD along with a large number of ALUs (arithmetic logic units) ex-
acerbate the timing variability problem at low-voltage. Also, due to random nature of
these variations, the delay in parallel functional units becomes different. They propose
two techniques to tolerate such delay variations. Their first technique, which aims to
tolerate input-dependent and dynamic variations, allows all functional units to exe-
cute same instruction, but parallel pipelines are allowed to go mutually out of sync
so that delay variations can be tolerated independently by each of them. By using ex-
tra queues and micro-barriers, timing violations are rebalanced within each pipeline.
Their second technique aims to tolerate static variations which causes delay or leakage
variations between ALUs. In this technique, shared pipeline components are replicated

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:22 Sparsh Mittal

and the components which do not meet specifications are disabled. This provides fine-
grained spatial redundancy which allows the processor to achieve reliable low-voltage
operation. They show that their processor performs more than 1 Giga-Operations per
second (1GOP/s) with less than 1mW total power consumption.

6.5. Application-domain specific techniques
Karpuzcu et al. [2014] note that power saving provided by NTC allows more cores to
be used in computation within the same power budget, however, the limited paral-
lelism present in applications presents an obstacle to it. Towards this, they propose
a technique suited for RMS (recognition, mining and synthesis) applications. These
applications comply with weak-scaling whereby the problem size expands naturally
as the application scales to utilize more cores. Also, these applications show inherent
fault-tolerance and by expanding the problem size, the output quality can be increased.
However, increasing problem size requires lowering Vdd, which also increases the vul-
nerability to variations. These factors introduce a tradeoff between number of cores
used and output quality degradation due to variation-induced errors and their tech-
nique uses problem size as the knob to strike a right balance between these factors.
Parametric variation also induces reliability differences between cores and since RMS
applications can tolerate faults in data-intensive program phases but not in control-
intensive phases, their technique reserves reliable cores for control phases and uses
error-prone cores for data-intensive phases (refer Figure 10).

Less reliable, 

e.g. 6T SRAM

Dirty 

data

Clean

data

High-order

bits

Low-order

bits

Increasing 

criticality

Control

operations

Data

operations

More reliable, 

e.g. 10T SRAM

Mapping

Chakraborty et 

al. [2010], Khan 

et al. 2013],

Chang et 

al. [2011]
Karpuzcu et 

al. [2014]

Fig. 10. Depending on their criticality, dirty or clean data, higher or lower-order bits and control or data
operations are allocated to more reliable or less reliable memory/cores.

Chang et al. [2011] present a hybrid memory architecture to tradeoff output quality
to save energy in video applications by allowing more aggressive voltage scaling. They
note that the human visual system is primarily sensitive to higher order bits of lu-
minance pixels in video data. Based on this, their technique stores higher order luma
bits in robust 8T bitcells and lower order bits in conventional 6T bitcells (refer Figure
10). Under voltage scaling, the important luma bits stored in 8T bitcells remain un-
affected and any fault in less important 6T bitcells has little effect on output quality.
They show that under iso-area condition, their hybrid memory architecture provides
larger energy saving compared to a 6T bitcell-only memory.

7. FUTURE CHALLENGES AND CONCLUSION
Despite the potential of low-voltage computing, performance loss and reliability issues
caused by it restrict its use to low-power systems only. We believe that these challenges
need to be simultaneously addressed at different levels of system stack. At device-level,
novel cell designs are required that provide better balance between area, performance
and NT-tolerance. At microarchitecture level, use of performance optimization schemes

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:23

such as cache miss rate reduction, novel cache organization, use of high-density mem-
ory technologies (e.g. embedded DRAM), etc. can allow use of NTC for even high-end
computing systems. Exploiting inherent resilience of applications to faults can allow
aggressive voltage-scaling without compromising with reliability [Chai et al. 2014].
Similarly, compiler and OS techniques can be leveraged to further enhance applica-
tion resilience by using approaches such as profiling, instruction scheduling, altering
processor component occupancy and memory layout, etc. [Lee and Shrivastava 2009].

Given the tall energy efficiency targets of future systems, it is clear that no single
technique can bridge the energy efficiency gap between existing and future systems. In
the near future, synergistic integration of NTC with other energy saving approaches,
such as data compression, thermal-management for temperature reduction etc. will be
extremely important and pose a major challenge for researchers.

Most of the existing NTC techniques have been proposed in context of CPUs. As
GPUs contend to become the first class citizens of a power-limited computing world,
their competitiveness vis-à-vis other computing systems such as FPGA and CPU will
crucially depend on their energy efficiency [Mittal and Vetter 2015b]. Porting existing
NTC techniques to GPUs and even designing novel techniques for GPUs will be vital
research problems for the designers.

In this paper, we synthesized the techniques proposed for using low-voltage comput-
ing and specifically near-threshold voltage computing. We classified the techniques on
several key features to provide a bird’s eye view of the research field. We concluded
this paper with a brief mention of some challenges that lie ahead in this field. We be-
lieve that this survey will provide valuable insights to researchers into potential and
tradeoffs of NTC and motivate them to further improve the efficacy and adoption of
NTC techniques across all computation platforms.

REFERENCES

Jaume Abella, Javier Carretero, Pedro Chaparro, Xavier Vera, and Antonio González.
2009. Low Vccmin fault-tolerant cache with highly predictable performance. In In-
ternational Symposium on Microarchitecture. 111–121.

Jaume Abella, Pedro Chaparro, Xavier Vera, Javier Carretero, and Antonio González.
2010. High-Performance Low-Vcc In-Order Core. In International Symposium on
High Performance Computer Architecture (HPCA). 1–11.

Vishal Ahuja, Dipak Ghosal, and Matthew Farrens. 2012. Minimizing the Data Trans-
fer Time Using Multicore End-System Aware Flow Bifurcation. In IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid). 595–602.

Alaa R Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson, and
Shih-Lien Lu. 2011. Energy-efficient cache design using variable-strength error-
correcting codes. In International Symposium onComputer Architecture (ISCA). 461–
471.

Amin Ansari, Shuguang Feng, Shantanu Gupta, and Scott Mahlke. 2011. Archipelago:
A polymorphic cache design for enabling robust near-threshold operation. In Inter-
national Symposium on High Performance Computer Architecture (HPCA). 539–550.

Rizwan A Ashraf, Ahmad Alzahrani, and Ronald F DeMara. 2014. Extending Modular
Redundancy to NTV: Costs and Limits of Resiliency at Reduced Supply Voltage.
Second Workshop on Near-threshold Computing (WNTC) (2014).

Anys Bacha and Radu Teodorescu. 2013. Dynamic reduction of voltage margins by
leveraging on-chip ECC in Itanium II processors. In International Symposium on
Computer Architecture. 297–307.

Anys Bacha and Radu Teodorescu. 2014. Using ECC Feedback to Guide Voltage Specu-
lation in Low-Voltage Processors. In International Symposium on Microarchitecture

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:24 Sparsh Mittal

(MICRO). 306–318.
Abbas BanaiyanMofrad, Houman Homayoun, and Nikil Dutt. 2011. FFT-cache: A flexi-

ble fault-tolerant cache architecture for ultra low voltage operation. In International
conference on Compilers, architectures and synthesis for embedded systems. 95–104.

Abbas BanaiyanMofrad, Houam Homayoun, Vasileios Kontorinis, Dean Tullsen, and
Nikil Dutt. 2013. REMEDIATE: a scalable fault-tolerant architecture for low-power
NUCA cache in tiled CMPs. In International Green Computing Conference (IGCC).
1–10.

Daniele Bortolotti, Andrea Bartolini, Christian Weis, Davide Rossi, and Luca Benini.
2014. Hybrid memory architecture for voltage scaling in ultra-low power multi-core
biomedical processors. In Design, Automation and Test in Europe Conference and
Exhibition (DATE). 1–6.

BH Calhoun and A Chandrakasan. 2006. A 256kb Sub-threshold SRAM in 65nm
CMOS. In Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical
Papers. IEEE International. IEEE, 2592–2601.

Nicholas P Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat, Howard David,
Dave Dunning, Joshua Fryman, Ivan Ganev, Roger A Golliver, Rob Knauerhase, and
others. 2013. Runnemede: An architecture for ubiquitous high-performance com-
puting. In International Symposium on High Performance Computer Architecture.
198–209.

Sek Chai, David Zhang, Jingwen Leng, and Vijay Janapa Reddi. 2014. Lightweight
Detection and Recovery Mechanisms to Extend Algorithm Resiliency in Noisy Com-
putation. Second Workshop on Near-threshold Computing (WNTC) (2014).

Arup Chakraborty, Houman Homayoun, Amin Khajeh, Nikil Dutt, Ahmed Eltawil,
and Fadi Kurdahi. 2010. E< MC2: less energy through multi-copy cache. In Inter-
national conference on Compilers, architectures and synthesis for embedded systems.
237–246.

Ik Joon Chang, Debabrata Mohapatra, and Kaushik Roy. 2011. A priority-based 6T/8T
hybrid SRAM architecture for aggressive voltage scaling in video applications. Cir-
cuits and Systems for Video Technology, IEEE Transactions on 21, 2 (2011), 101–112.

Leland Chang, David M Fried, Jack Hergenrother, Jeffrey W Sleight, Robert H Den-
nard, Robert K Montoye, Lidija Sekaric, Sharee J McNab, Anna W Topol, Char-
lotte D Adams, and others. 2005. Stable SRAM cell design for the 32 nm node and
beyond. In VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on.
IEEE, 128–129.

Zeshan Chishti, Alaa R Alameldeen, Chris Wilkerson, Wei Wu, and Shih-Lien Lu.
2009. Improving cache lifetime reliability at ultra-low voltages. In International
Symposium on Microarchitecture. 89–99.

Hyoun Kyu Cho and Scott Mahlke. 2012. Dynamic acceleration of multithreaded pro-
gram critical paths in near-threshold systems. In International Symposium on Mi-
croarchitecture Workshops (MICROW). 63–67.

Young Geun Choi, Sungjoo Yoo, Sunggu Lee, and Jung Ho Ahn. 2011. Matching cache
access behavior and bit error pattern for high performance low Vcc L1 cache. In
Design Automation Conference. 978–983.

Ronald G Dreslinkski, Bo Zhai, Trevor Mudge, David Blaauw, and Dennis Sylvester.
2007. An energy efficient parallel architecture using near threshold operation. In
International Conference on Parallel Architecture and Compilation Techniques. 175–
188.

Ronald G Dreslinski, Gregory K Chen, Trevor Mudge, David Blaauw, Dennis
Sylvester, and Krisztian Flautner. 2008. Reconfigurable energy efficient near
threshold cache architectures. In International Symposium on Microarchitecture.
459–470.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:25

Ronald G Dreslinski, Nurrachman Liu, Michael Wieckowski, Gregory Chen, Dennis
Sylvester, David Blaauw, Trevor Mudge, David Fick, Bharan Giridhar, Gyouho Kim,
and others. 2013. Centip3De: A 64-Core, 3D stacked near-threshold system. IEEE
Micro 2 (2013), 8–16.

Ronald G Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and
Trevor Mudge. 2010. Near-threshold computing: Reclaiming Moore’s law through
energy efficient integrated circuits. Proc. IEEE 98, 2 (2010), 253–266.

Henry Duwe, Xun Jian, and Rakesh Kumar. 2015. Correction prediction:
Reducing error correction latency for on-chip memories. In International
Symposium on High Performance Computer Architecture (HPCA). 463–475.
DOI:http://dx.doi.org/10.1109/HPCA.2015.7056055

Alexandra Ferrerón, Dario Suarez-Gracia, Jesús Alastruey-Benedé, Teresa Monreal,
and Victor Viñals. 2014. Block disabling characterization and improvements in
CMPs operating at ultra-low voltages. In International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). IEEE, 238–245.

Hamid Reza Ghasemi, Stark C Draper, and Nam Sung Kim. 2011. Low-voltage on-chip
cache architecture using heterogeneous cell sizes for high-performance processors.
In International Symposium on High Performance Computer Architecture (HPCA).
38–49.

Ashish Goel, Sumeet Gupta, Aditya Bansal, Meng Hsueh Chiang, and Kaushik Roy.
2009. Double-gate MOSFETs with aymmetric drain underlap: A device-circuit
co-design and optimization perspective for SRAM. In Device Research Conference.
IEEE, 57–58.

Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau, and Puneet Gupta.
2014. Power/capacity scaling: energy savings with simple fault-tolerant caches. In
Design Automation Conference. 1–6.

Sumeet Kumar Gupta, Arijit Raychowdhury, and Kaushik Roy. 2010. Digital com-
putation in subthreshold region for ultralow-power operation: A device–circuit–
architecture codesign perspective. Proc. IEEE 98, 2 (2010), 160–190.

Mohammad-Hashem Haghbayan, Amir-Mohammad Rahmani, Awet Yemane
Weldezion, Pasi Liljeberg, Juha Plosila, Axel Jantsch, and Hannu Tenhunen.
2014. Dark silicon aware power management for manycore systems under dynamic
workloads. In International Conference on Computer Design (ICCD). 509–512.

Yinhe Han, Ying Wang, Huawei Li, and Xiaowei Li. 2013. Enabling Near-Threshold
Voltage (NTV) operation in Multi-VDD cache for power reduction. In International
Symposium on Circuits and Systems (ISCAS). 337–340.

Farrukh Hijaz and Omer Khan. 2014. Rethinking Last-Level Cache Management
for Multicores Operating at Near-Threshold Voltages. Second workshop on Near-
threshold Computing (WNTC) (2014).

Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2013. A private level-1 cache ar-
chitecture to exploit the latency and capacity tradeoffs in multicores operating at
near-threshold voltages. In International Conference on Computer Design (ICCD).
85–92.

Ulya R Karpuzcu, Ismail Akturk, and Nam Sung Kim. 2014. Accordion: Toward Soft
Near-Threshold Voltage Computing. In International Symposium on High Perfor-
mance Computer Architecture. 72–83.

Ulya R Karpuzcu, Krishna B Kolluru, Nam Sung Kim, and Josep Torrellas. 2012.
VARIUS-NTV: A microarchitectural model to capture the increased sensitivity of
manycores to process variations at near-threshold voltages. In International Confer-
ence on Dependable Systems and Networks (DSN). 1–11.

Ulya R Karpuzcu, Abhishek Sinkar, Nam Sung Kim, and Josep Torrellas. 2013. Ener-
gySmart: Toward energy-efficient manycores for near-threshold computing. In Inter-

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:26 Sparsh Mittal

national Symposium on High Performance Computer Architecture. 542–553.
Samira M Khan, Alaa R Alameldeen, Chris Wilkerson, Jaydeep Kulkarni, and

Daniel A Jimenez. 2013. Improving multi-core performance using mixed-cell cache
architecture. In International Symposium on High Performance Computer Architec-
ture. 119–130.

Surhud Khare and Shailendra Jain. 2013. Prospects of Near-Threshold Voltage Design
for Green Computing. In International Conference on VLSI Design. 120–124.

Nam Sung Kim, Stark C Draper, Shi-Ting Zhou, Sumeet Katariya, Hamid Reza
Ghasemi, and Taejoon Park. 2012. Analyzing the impact of joint optimization of
cell size, redundancy, and ECC on low-voltage SRAM array total area. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 20, 12 (2012), 2333–2337.

J. Kin, M. Gupta, and W.H. Mangione-Smith. 1997. The filter cache: an energy efficient
memory structure. In International symposium on Microarchitecture (MICRO). 184–
193.

Evgeni Krimer, Robert Pawlowski, Mattan Erez, and Patrick Chiang. 2010. Sync-
tium: a near-threshold stream processor for energy-constrained parallel applica-
tions. Computer Architecture Letters 9, 1 (2010), 21–24.

Jaydeep P Kulkarni, Keejong Kim, and Kaushik Roy. 2007. A 160 mV robust schmitt
trigger based subthreshold SRAM. Solid-State Circuits, IEEE Journal of 42, 10
(2007), 2303–2313.

R. Kumar and G. Hinton. 2009. A family of 45nm IA processors. In ISSCC. 58–59.
Nikolas Ladas, Yiannakis Sazeides, and Veerle Desmet. 2010. Performance-effective

operation below Vcc-min. In International Symposium on Performance Analysis of
Systems & Software (ISPASS). 223–234.

Jongeun Lee and Aviral Shrivastava. 2009. A compiler optimization to reduce soft
errors in register files. In ACM Sigplan Notices, Vol. 44. 41–49.

Tayyeb Mahmood and Soontae Kim. 2011. Realizing near-true voltage scaling in
variation-sensitive L1 caches via fault buffers. In International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems (CASES). 85–94.

Bojan Maric, Jaume Abella, and Mateo Valero. 2012. ADAM: An efficient data manage-
ment mechanism for hybrid high and ultra-low voltage operation caches. In Great
Lakes symposium on VLSI. 245–250.

Bojan Maric, Jaume Abella, and Mateo Valero. 2013a. APPLE: Adaptive performance-
predictable low-energy caches for reliable hybrid voltage operation. In Design Au-
tomation Conference (DAC). 1–8.

Bojan Maric, Jaume Abella, and Mateo Valero. 2013b. Efficient cache architectures for
reliable hybrid voltage operation using EDC codes. In Design, Automation and Test
in Europe. 917–920.

Timothy N Miller, Xiang Pan, Renji Thomas, Naser Sedaghati, and Radu Teodorescu.
2012a. Booster: Reactive core acceleration for mitigating the effects of process vari-
ation and application imbalance in low-voltage chips. In International Symposium
on High Performance Computer Architecture (HPCA). 1–12.

Timothy N Miller, Renji Thomas, James Dinan, Bruce Adcock, and Radu Teodorescu.
2010. Parichute: Generalized turbocode-based error correction for near-threshold
caches. In IEEE/ACM International Symposium on Microarchitecture. 351–362.

Timothy N Miller, Renji Thomas, Xiang Pan, and Radu Teodorescu. 2012. VRSync:
characterizing and eliminating synchronization-induced voltage emergencies in
many-core processors. In International Symposium on Computer Architecture. 249–
260.

Timothy N Miller, Renji Thomas, and Radu Teodorescu. 2012b. Mitigating the effects
of process variation in ultra-low voltage chip multiprocessors using dual supply volt-
ages and half-speed units. Computer Architecture Letters 11, 2 (2012), 45–48.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



A Survey Of Architectural Techniques for Near-Threshold Computing 0:27

Sparsh Mittal. 2014a. Power Management Techniques for Data Centers: A Survey.
Technical Report ORNL/TM-2014/381. Oak Ridge National Laboratory, USA.

Sparsh Mittal. 2014b. A Survey of Architectural Techniques For Improving Cache
Power Efficiency. Elsevier Sustainable Computing: Informatics and Systems 4, 1
(2014), 33–43.

Sparsh Mittal. 2014c. A survey of techniques for improving energy efficiency in em-
bedded computing systems. International Journal of Computer Aided Engineering
and Technology 6, 4 (2014), 440–459.

Sparsh Mittal and Jeffrey Vetter. 2015a. A Survey of Techniques for Modeling and
Improving Reliability of Computing Systems. IEEE Transactions on Parallel and
Distributed Systems (TPDS) (2015).

Sparsh Mittal and Jeffrey S Vetter. 2015b. A Survey of Methods for Analyzing and
Improving GPU Energy Efficiency. Comput. Surveys 47, 2 (2015), 19:1–19:23.

NRDC. 2013. http://www.nrdc.org/energy/data-center-efficiency-assessment.asp.
(2013).

Oracle. 2014. http://www.enterprisetech.com/2014/08/13/
oracle-cranks-cores-32-sparc-m7-chip/. (2014).

C Patel and Parthasarathy Ranganathan. 2006. Enterprise power and cooling. ASP-
LOS tutorial (2006).

Ganesh C Patil and S Qureshi. 2011. Asymmetric Drain Underlap Schottky Barrier
SOI MOSFET for Low-Power High Performance Nanoscale CMOS Circuits. In IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 43–48.

Nathaniel Pinckney, Korey Sewell, Ronald G Dreslinski, David Fick, Trevor Mudge,
Dennis Sylvester, and David Blaauw. 2012. Assessing the performance limits of par-
allelized near-threshold computing. In Design Automation Conference. 1147–1152.

Yu Pu, Xin Zhang, Jim Huang, Atsushi Muramatsu, Masahiro Nomura, Koji Hirairi,
Hidehiro Takata, Taro Sakurabayashi, Shinji Miyano, Makoto Takamiya, and oth-
ers. 2010. Misleading energy and performance claims in sub/near threshold digital
systems. In International Conference on Computer-Aided Design. 625–631.

David Roberts, Nam Sung Kim, and Trevor Mudge. 2008. On-chip cache device scaling
limits and effective fault repair techniques in future nanoscale technology. Micro-
processors and Microsystems 32, 5 (2008), 244–253.

Sangwon Seo, Ronald G Dreslinski, Mark Woh, Yongjun Park, Chaitali Charkrabari,
Scott Mahlke, David Blaauw, and Trevor Mudge. 2012. Process variation in near-
threshold wide SIMD architectures. In Design Automation Conference. 980–987.

Cristina Silvano, Gianluca Palermo, Sotirios Xydis, and Ioannis Stamelakos. 2014.
Voltage island management in near threshold manycore architectures to mitigate
dark silicon. In Design, Automation & Test in Europe. 1–6.

Top500. 2014. http://www.top500.org/list/2014/11/. (2014).
J Vetter and Sparsh Mittal. 2015. Opportunities for Nonvolatile Memory Systems in

Extreme-Scale High Performance Computing. Computing in Science and Engineer-
ing 17, 2 (2015), 73 – 82.

Hao Wang, Abhishek A Sinkar, and Nam Sung Kim. 2013. Improving platform energy-
chip area trade-off in near-threshold computing environment. In International Con-
ference on Computer-Aided Design (ICCAD). 318–325.

Chris Wilkerson, Hongliang Gao, Alaa R Alameldeen, Zeshan Chishti, Muhammad
Khellah, and Shih-Lien Lu. 2008. Trading off cache capacity for reliability to enable
low voltage operation. In International Symposium on Computer Architecture. 203–
214.

Gulay Yalcin, Emrah Islek, Oyku Tozlu, Pedro Reviriego, Adrian Cristal, Osman S
Unsal, and Oguz Ergin. 2014a. Exploiting a fast and simple ECC for scaling supply
voltage in level-1 caches. In International On-Line Testing Symposium (IOLTS). 1–

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.



0:28 Sparsh Mittal

6.
Gulay Yalcin, Azam Seyedi, Osman S Unsal, and Adrian Cristal. 2014b. Flexicache:

Highly Reliable and Low Power Cache under Supply Voltage Scaling. In High Per-
formance Computing. Springer, 173–190.

Meilin Zhang, Vladimir Stojanovic, and Paul Ampadu. 2012. Reliable ultra-low-voltage
cache design for many-core systems. IEEE Transactions on Circuits and Systems II:
Express Briefs 59, 12 (2012), 858–862.

Received March 2015; revised August 2015; accepted September 2015

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2015.


