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Abstract—The key goal in energy efficient buildings is to
reduce energy consumption of Heating, Ventilation, and Air-
Conditioning (HVAC) systems while maintaining a comfortable
temperature and humidity in the building. This paper proposes a
novel stochastic control approach for achieving joint performance
and power control of HVAC. We employ a constrained Stochastic
Linear Quadratic Control (¢cSLQC) by minimizing a quadratic
cost function with a disturbance assumed to be Gaussian. The
problem is formulated to minimize the expected cost subject
to a linear constraint and a probabilistic constraint. By using
cSLQC, the problem is reduced to a semidefinite optimization
problem, where the optimal control can be computed efficiently
by Semidefinite programming (SDP). Simulation results are
provided to demonstrate the effectiveness and power efficiency
by utilizing the proposed control approach.

I. INTRODUCTION

Buildings consume up to 40% of the energy produced in
the US [1]. Advanced sensors and controls have the potential
to reduce the energy consumption of buildings by 20-40%
[2], [3]. Heating, Ventilation and Air Conditioning (HVAC)
systems play a fundamental role in maintaining a comfortable
temperature environment in buildings and account for 50%
of building energy consumption [1]. Significant potential for
energy savings exist by optimally controlling HVAC systems
to reduce consumption while maintaining comfort constraints.
Typical building controls are set-point based, where zone-level
temperature measurement is used for taking control action to
keep the zone temperature in a comfortable range. To make
buildings more energy and cost efficient, intelligent predictive
automation can be used instead of conventional automation.
For instance, the predictive automation controllers can operate
the buildings passive thermal storage, based on predicted
future disturbances (e.g. weather forecast), by making use of
low cost energy sources [4]. The goal is to design an optimal
controller that can realize the temperature requirement and
minimize energy consumptions.
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The accuracy of the controller heavily depends on the
assumption that the sensor always provides exact tempera-
ture measurement. However, this assumption is not always
valid due the measurement error or real-world environment
noise. Consequently, an effective controller for HVAC systems
should incorporate time-dependent energy costs, bounds on the
control actions, noise from the sensors, as well as account for
system uncertainties, i.e., weather conditions and occupancy.
Compared with the deterministic control approaches, a key
advantage of stochastic control approaches is that a noise term
is considered in the model, which represents the unknown and
uncertain elements in the system.

Building climate control leads naturally to probabilistic con-
straints as current standards explicitly state, zone temperatures
should be kept within a comfort range with a predefined
probability [5], [6]. In order to address this issue and explicitly
account for system uncertainties, some efforts have been made
for studying a stochastic version of MPC (SMPC) including
probabilistic constraints. [7] employed stochastic MPC tech-
nique to compute the control strategy for a cost function which
was linear in the control variable for the thermal dynamics in a
linear state-space model, which described thermal energy and
temperatures. [8] proposed a tractable approximation method
for the problem. Both schemes in [7] and [8] considered
chance constraints and solved them by using affine disturbance
feedback.

In this paper, we consider the same building climate plant
in [9] which was validated and compared to simulations
with TRNSYS, a well known simulation tool for building
and HVAC systems [4]. We study a quadratic cost function
in terms of temperature errors and control inputs, which
is subject to several constraints on the room temperature
and control input. In particular, we only consider the case
where we assume that the disturbance is Gaussian and the
problem is formulated to minimize the expected cost subject
to a linear constraint on control input and a probabilistic
constraint on the state. The latter constraint can be reduced
to a hard constraint on control input exactly [10]. It should be
remarked that the power of this proposed control technique
could be extended to a more general norm-bounded case
with distribution unknown and the problem is formulated as a
min-max problem. By using the cSLQC approach proposed in



[10], [11], the optimal solutions of problems in both cases may
be solved via semidefinite programming exactly. Due to space
limit here, we only discuss the case with Gaussian disturbance.

The differences between our paper and previous works are:

o First, unlike [7] and [8], the chance constraint is sim-
plified to a hard constraint exactly without using affine
disturbance feedback.

« Second, we consider a stochastic quadratic cost function,
which is taken expectation with respect to Gaussian
disturbances. Moreover, the cost function includes both
quadratic forms of temperature errors and control input,
which means the optimal control is designed to find a
compromise between them.

o Third, the problems are formulated into semidefinite
optimization problems which may be solved through SDP
for the optimal solutions efficiently.

The rest of the paper is organized as follows: In section
II, the building climate model is described and presented.
In section III, we introduce the control techniques used in
this work and solve the problems. Section IV gives the
simulation results to show the performance of the methods
in controlling the building climate. Section V concludes the
work and discusses the future direction.

II. BUILDING CLIMATE PLANT

It is well known that the HVAC control can be approached
using Model Predictive Control (MPC) strategy. In this section,
we describe the model used in this work and formulate the
problem. The system model was proposed in [4] and employed
in [7]. We briefly describe the model in this section.

A. Building Model

Consider the following continuous-time Linear Time In-
variant (LTI) system based on the dynamics of the room
temperature, interior-wall surface temperature, and exterior-
wall core temperature:

h = Cil[(K]+K2)(t2—t1)+K5(t3—t1)+K3(51 —1)+uy,
+uc+ 6+ 8]

fh = C%[(Kl +K)(t —t)+ 6]

i3 = %[Ks(tl —13) + K4 (81 —13)]

where the parameters used in the above model are defined
as:

t) : room air temperature [°F]

t : interior-wall surface temperature [° F]
t3 : exterior-wall core temperature [° F]
uy, - heating power (> 0) [kW]

: cooling power (<L 0) [kW]

: outside air temperature [° F]

. solar radiation [kW]

. internal heat sources [kW]

S > F

C1=9356-10° kJ/°F | C; =2.970-10°  kJ/°F
C,=06.695-10>  kJ/°F | K| = 16.48 kW /° F
K>, =108.5 kW/°F | K3=5 kW /°F
K4 =30.5 kW /° F | Ks=23.04 kW /°F

The system states are the room air temperature ¢#;, interior
wall surface temperature #,, and exterior wall core temperature
t3. The control signals u;, and u, represent heating and cooling
power, and they can be combined as one variable u = uy, + u,
because heating and cooling are not simultaneous. For more
details about this model, please refer to [4], [7].

Define the state vector x, the control signal vector u, and
the environment stochastic disturbance vector @ as:

151 u 3]
x:= | n ,u::[uh],a):: &
13 ¢ &3

The continuous-time state-space model can then be de-
scribed compactly as:

x=Ax+Bau+C.0 (1)
where
&K +K+K+Ks) &(Ki+K) @
A — K +Kp _ (K1+Kr) 0
e G G
K 0 _ (Ks+Ky)
C3 G
1 1 K 1 1
C + [} C Cll C
B, = 0 , C. = 0 ey o (. @
K.
0 C—;‘ 0O O

Discretizing system (1) with period h; and applying a zero-
order-hold, one obtains:

X1 = Agxy + Baug + Cy oy 3)

where the parameters can be computed from the continuous-
time model, and x; = [l‘17k, Dk, l‘37k]T.

We assume the following constraints are imposed on the
temperatures during a day to satisfy the requirement:

68°F <1, < 80.6°F “)

Additionally, we also assume that the control input is
the critical actuator yielding its own working properties and
conditions. It is meaningful to set a reasonable bound for
the u;. Otherwise, it would cost a lot to build and drive the
actuator.

Therefore the control constraint is assumed to be written in
terms of u; as:

=50 <y <200 (5)

where u; > 0 means heating and the opposite means cooling.

From above constraints, we can observe that both the room
air temperature and control signal are constrained. In the next
section, the control problem is formulated.



B. Problem Formulation

We apply the cSLQC theory [10] to design the controller.
c¢SLQC is a tractable control technique that can deal with
stochastic discrete-time linear systems in the presence of
control and state constraints. This characteristic makes the
c¢SLQC well suited for building climate control.

1) Cost Function: We consider the problem where the
temperature #; is required to remain within certain bounds
of a constant in the presence of the disturbance vector d.
Moreover, we can assign setpoints for #1, #, and #3, but without
any other constraints on f, and #3. Thus, we can regulate the
output error e := x; — X, at time k, where x, is the setpoint
vector of x. We hope to minimize the error e to keep the
temperature ¢ close to the desired value. Meanwhile, we also
hope to use as less power as we can to save energy. Thus, our
objective is to find for the system (1) discretized, the M-control
sequence {ug, - ,up—1} , where u; :=u(t;), i=0,--- ,M; M
is an integer large enough, t; = iAT, where AT is the sam-
pling period; and corresponding state sequence {xo, - ,Xp—1}
and error sequence {eg, - ,ey—1} , that minimize the finite
horizon objective function:

Viv (e0,u, @) := 3 [(xy —x,) T P(xy — /)
N—1 N-1 (6)
+ k):l el Qey + k):o u” Ruy]

where P > 0, Q > 0 (i.e., semi-definite positive matrices), R >
0 (i.e., positive definite matrix), N is the prediction horizon,
and

x = b,
u o= [ud, . ul )T
® (@5 .. oy ] )

The differences between the cost function above and those
considered in [7] and [8] are that [7] used a linear cost function
in the control input and [8] assumed the disturbance was 0 in
the cost function which simplified the problem.

2) Constraints on the Temperature: In this paper, we
consider the case where the disturbance is assumed to be
Gaussian distribution.

Due to the unknown disturbances d;, the state x; is not ex-
actly known. It is more reasonable to utilize the soft constraints
on the state, i.e. we do not require constraints on the response
time to be satisfied at all time, but only with a predefined
probability. Hence, instead of using hard constraints on the
state or no constraint, we use the uncertain linear constraints
in a probabilistic sense [10]. Thus, similar as [7] and [8],
the constraint on x; can be described by the so-called chance
constraint as follows:

PIGx>g] < o ®)

The above constraint is non-convex and hard to resolve
directly. In the first case when the disturbance is Gaussian,
as shown in [7] and [8], the authors took u; as affine distur-
bance feedback to approximate and simplify this constraint.
However, if we do not assume any form of the control input,

we can still simplify the chance constraint to a hard constraint
exactly as already shown in [10].

Assume the ® are independent and normally distributed,
ie., @~ A (u,X), where £ > 0. Then, we have the following
theorem from [10].

Theorem 2.1: [10] Consider a linear system with the state
written as

x=Axg+Bu+Co 9)

Then, the constraint
plu<yg (10)
where p = BTG, g = g — GiAxg — G;Cu— I E%CTGZ- II2
&~ (1 — o;) implies the chance constraint (8).
Then, the problem corresponding to the first case can be
formulated as follows:
Problem 2.2: Find
u(xp) := arg ming EuVy

(11)
subject to (5), (10), and discretized version of (1).

where E, (o) denotes the expectation operator with respect to
the Gaussian disturbance ®.

In the next section, we employ the technique developed in
[10] to transform the problem to a semidefinite optimization
problems, where they can be solved efficiently.

III. CONTROL STRATEGIES

If there is no constraint, the optimization problem under
Gaussian disturbance can be solved by linear quadratic regu-
lator (LQR) through Bellman’s recursion. However, with con-
straints, this approach involves a huge amount of computation
to find the optimal solution. To find the optimal values for
each problem, we employ the SLQC to find the solution
by formulating the problems as semidefinite optimization
problems.

A. SDP Approach for Problem 2.2

In this section, we applied the technique in [10] to formulate
Problem 2.2 as a semidefinite optimization problem. Unlike
the MPC method, which is quadratic programming, the prob-
lem will be converted to an SDP optimization problem. An
obvious result about the cost function is given in the following
proposition.

Proposition 3.1: The cost function (6) can be written as:

2a’ e + el Aeg +2b"u+u"Bu+2¢" @
(12)

VN (eOau7 0)) =

+ o'Co+2u"Do+1

for vectors a,b,c and matrices A,B,C,D with appropriate
dimensions, and where B > 0,C >0

Proof: The original system can be written in terms of
error dynamics, at time k,

ek :Ak,1€0+ﬁk,1u+ck,]w+Lk,]



where L;_| :Asflx,fx, and from (1), x;, @y are 3 x 1 and

uy is a scalar so that

Ay = AL
B = [AY B, By 03, (v_p)
G = A 'c Ca 03,3(n—)] (13)

Then, after some manipulations, the error state term in cost
function becomes:

TXT X TXT i =
eo Ak*l QAk_le() =+ 2@0 Ak*] Q(Bk_lu + Ck_la))
+uT]~3,{71 QA](, -+ wTC,Z, 1 Qck,1 ()
+211TB]{_ 1 Q(N?k,l o+ 2L,{_1 Q(Ak, 1€0
Jrf;k_lll + Ck—l ) JrL]{,l OLi_4

T
e Qe =

(14)

Thus, we reach the formula of the cost function stated above
with

A=Y Al 0A,

™=

N
B =diag(R,--- ,R)+ Y B[ 0B,
k=1

N N
C=)Y C ,0C1, D=Y B[ ,0C,
k=1 =1
N N
c= (Y Cl0A i |eo+ ) Ci 0L
=1 =1

i I
I
I

N
Al QL 1=Y L] 0L
k=1

N
BleA“) eo+ Y B{_ QL1 (15)
k=1

k=1

|

Similarly as [10], let h=c—D’B~'b and F = B~!/2D, then

by eliminating the constant terms and take u=B~'/2y—B~'b,
the cost function above can be further reduced to be:

V (€0,y,w) =y y+2h"w+2y"Fo+ o’ Co (16)
Taking the expectation of the above cost, we have
Vy (e0,y, @) =y y+2h" u+2y"Fu +trace(CT)  (17)

Again, taking away constant terms, the cost to be minimized
is Vi (eo,y,w) = y'y + 2y Fu. Then, the problem 2.2 is
equivalent to find u(xq) := arg miny Vy. This problem can be
solved through SDP to obtain the optimal solution, as shown
in the next theorem.

Theorem 3.2: Problem 2.2 may be solved by the following
semidefinite optimization problem:

minimize z
subject to (5),(10)
Iy y+Fu

>
y +uTFT 2+ (Fu) Fu 20

in decision variables y and z.

(18)

Proof: The proof is given below by following the tech-
nique in Theorem 3 in [10].
First, note the minimization of Vy (eo,y, W) can be rewritten
as

minimize 7
subject to z—y'y—2y"Fu >0 19)
The constraint (19) can be further written as
z—y'y—2y"Fu— (Fu)" Fu + (Fu) Fu >0
T
2+ (Fu) " Fu— (y+Fu)" (y+Fu) >0 (20)

Then, by Schur complement lemma, (20) can be formulated
as (18). Moreover, note that (5) and (10) are linear constraints
on the control input, which can be added without increasing
the complexity type. Thus, we obtain the statement. [ ]

B. Chance Constraints on the Performance

Another interesting requirement is the performance guaran-
tee. The work in [10] has demonstrated that the probability

P(Vy (eg,u,0) >v) <€

may be implied by a convex quadratic constraint, which can be
added to either problem without raising the complexity type.

C. Hpysteresis band

It should be noted that the AC continues to cool the building
for a few minutes even after it is turned off because of the
dynamics of the heat pump. Specifically, it takes a while for
the evaporator that cools the air to warm up, and so it keeps
cooling the air for some time after the heat pump is turned off
[12]. Therefore, there exists a “delay” in the system model.
For the purpose of approximating the real energy consumption
of HVAC, we have to consider a 0.5°F hysteresis band (k =
0.5°F) in the control scheme.

Practically, we use this hysteresis band to represent the delay
of the cooling system for example. In order to cool the room
to reach the setting temperature, i.e. x,, we need to turn off
the cooling unit k°F before reaching x,. This also helps save
energy consumption as shown in Sec. IV-B2.

IV. SIMULATION RESULTS

A. Description of the experimental setup

In this section, we present simulation results which demon-
strate validity of the SLQC method in the above problems.
The system model is described in Section II. As mentioned
before, this model was proposed in [4] and employed in [7].
The desired temperature or reference temperature of the room
is set as 22°C =71.6°F. The temperature is sampled every 10
minutes, and we plot #; and the control input for each method
during a period of 10 days in the sequel. The disturbances
corresponding to different states are shown in Fig. 1.
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Fig. 1. Disturbance to the building climate system.

B. Summary of the results

1) The Disturbance Distribution is Gaussian: First, we plot
the trend of #; using LQR control in Fig. 2, and using SDP
through (18) in Fig. 3. It is obvious that both LQR and cSLQC
techniques can keep room temperature ¢ in the desired range
and close to the reference temperature. Notice that the control
input is also bounded below by —50, which is as desired.

To evaluate the control performance for both of the con-
trollers, we compare the room temperature ¢; with and without
enabling the controller as shown in Fig. 2 and Fig. 4.

Simulation results show that without the controller, the tem-
perature will depart far away from the reference temperature.

To further illustrate the difference in energy saving between

the two control principles, we compute the total input energy,
i.e. the energy cost in all the 10 days denoted by | u |2 (2-
norm) for both methods.
For LQR controller, || u ||= 1665.3; while for ¢SLQC, ||
u ||2=1268.3, which show that the proposed cSLQC technique
achieves a more efficient control policy which contributes to
reducing energy consumption.

2) Control with hysteresis band: As discussed in Sec.III-C,
here we incorporate the proposed cSLQC with a 0.5°F hystere-
sis band to approximate the real working condition of HVAC
as well as pursuing more energy efficiency. In the stage of the
experiments we set the control signal to be zero as long as
the temperature #; reaches the hysteresis band. Basically, we
compare the energy consumption, thereby the energy cost, of
the three control strategies running for 10 days and 30 days
separately. It should be remarked that the disturbance is not
exactly the same value for each day. In stead, the disturbance
follows the same distribution, while the values may not be
equal for different days.

The results shown in Fig. 5 and Fig. 6 clearly indicate that
both our controllers outperform the current LQR controller in
terms of both energy use and violations of the thermal comfort
range. It can be seen from Fig. 5 that the ¢cSLQC controller
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Fig. 2. Room temperature #; comparison with/without control using LQR.
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Fig. 3. Room temperature #; and control power in 10 days using cSLQC in
Theorem 3.2.

never breaks the desired comfort band constraints, while the
LQR controller tends to have violations of the lower bound
on the temperature.

Moreover, the temperature variations are smaller with
¢SLQC, which is a more favorable behavior in terms of
comfort. The improvements in energy saving for both short-
term and long-term can be explained by Fig. 6, where the
hysteresis effect is also considered.

V. CONCLUSION

This study presents an investigation of constrained quadratic
control of room temperature on a dynamic building climate
model. In this paper, we propose a cSLQC controller for
HVAC systems, aiming at reducing the energy required to
maintain indoor thermal comfort. The constrained SLQC ap-
proach is employed to solve stochastic optimization problems
with chance constraints by SDP.

The mechanism to account for the probabilistic nature of
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the disturbances affecting the comfort indicators is simplified
to a hard constraint exactly without using affine disturbance
feedback. Moreover, we consider a stochastic quadratic cost
function, which is taken expectation with respect to Gaussian
disturbances in this paper. An upcoming paper which deals
with more general non-Gaussian noise (maximization over the
bounded set of disturbances) is under preparation.

In this paper, it is assumed that all the probabilistic con-
straints and stochastic disturbance are only associated with
states which are three different temperatures in the model. A
more practical consideration is towards the generalization of
the control scheme to the case of whole buildings, which leads
to increased complexity for both the models and the costs.
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