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Abstract—With increasing penetration of distributed gener-
ation (DG) in the distribution networks (DN), the secure and
optimal operation of DN has become an important concern.
In this paper, an iterative mixed integer quadratic constrained
quadratic programming model to optimize the operation of a
three phase unbalanced distribution system with high pene-
tration of Photovoltaic (PV) panels, DG and energy storage
(ES) is developed. The proposed model minimizes not only
the operating cost, including fuel cost and purchasing cost,
but also voltage deviations and power loss. The optimization
model is based on the linearized sensitivity coefficients between
state variables (e.g., node voltages) and control variables (e.g.,
real and reactive power injections of DG and ES). To avoid
slow convergence when close to the optimum, a golden search
method is introduced to control the step size and accelerate
the convergence. The proposed algorithm is demonstrated
on modified IEEE 13 nodes test feeders with multiple PV
panels, DG and ES. Numerical simulation results validate the
proposed algorithm. Various scenarios of system configuration
are studied and some critical findings are concluded.

Keywords-Voltage regulation, sensitivity coefficients, lin-
earization, distributed generation (DG), multiobjective opti-
mization, unbalanced distribution network.

NOMENCLATURE

The main symbols used in this paper are defined below.
Others will be defined as required in the text. A symbol with
4 in front of it stand for the change of it. A symbol with
(k) on the upper right position stands for its value of last
iteration.

A. Indices and Numbers

i Index of DGs, running from 1 to NG.
e Index of ESs, running from 1 to NE .
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j Index of buses, running from 1 to NJ .
t Index of time periods, running from 1 to NT .
m Index of energy blocks offered by DGs, running

from 1 to NI .

B. Variables

1) Binary Variables:
uit 1 if DG i is scheduled on during period t and

0 otherwise.
uCet 1 if ES e is scheduled charging during period t

and 0 otherwise.
uDet 1 if ES e is scheduled discharging during period

t and 0 otherwise.
2) Continuous Variables:

pit (m) Power output scheduled from the m-th block of
energy offer by DG i during period t. Limited
to pmax

i (m).
Pit Real power output scheduled from DG i during

period t.
Qit Reactive power output scheduled from DG i

during period t.
PC
et Charging power of ES e during period t.
PD
et Discharging power of ES e during period t.
Pet Net (discharging minus charging) power of ES

e during period t.
SOCet State of charge of ES e during period t.
|Vjt| Voltage magnitude of bus j during period t.
P In
t Purchased power from subtransmission grid dur-

ing period t.
PLoss
t Total network power loss during period t.

C. Constants

λit (m) Marginal cost of the m-th block of energy offer
by DG i during period t.

λInt (m) Purchasing price of energy from subtransmis-
sion grid during period t.

Pmax
i Maximum output of DG i.
Pmin
i Minimum output of DG i.
PC,max
e Maximum charging power of ES e.



PD,max
e Maximum discharging power of ES e.
SOCmax

et Maximum state of charge of ES e during period
t.

SOCmin
et Minimum state of charge of ES e during period

t.
η ES efficiency factor.
Ai Operating Cost of DG i at the point of Pmin

i .
Si Apparent power limit of DG i.
Se Apparent power limit of ES e.
tan(θ) Power factor.

I. INTRODUCTION

With increasing penetration of distributed energy re-
sources (e.g., wind turbines, PV panels, microturbines, fuel
cells, mini-hydro, battery storage, and so on) in the distri-
bution networks (DN), the traditional passive DNs without
any generation sources are gradually transforming into active
ones with both dispatchable and non-dispatchable generation
sources in the following decades[1], [2]. Correspondingly,
the usual “install and forget” principle will become infea-
sible as it could compromise operating efficiency. Within
this context, new control and operation strategies capable of
coordinating different types of distributed energy resources
(DERs) efficiently to achieve operational objectives are in
particular need of development [3].

Management and optimizing the operation of these ac-
tive DNs require a full three-phase AC-formulation of the
power flow equations, and various approaches have been
proposed for solving the distribution optimal power flow
(DOPF) problem in literature. Generally, these approaches
can be classified into two categories. In the first category,
the nonlinear optimization problem is directly solved using
nonlinear programming methods such as gradient search or
interior point methods [4]-[7]. It should be noted that the
solution time and convergence characteristic of nonlinear
programming in solving the DOPF problem may not satisfy
the stringent time constraints required by real-time controls.
In the second category, the nonlinear optimization problem is
addressed by iteratively solving the linearized problem [8]-
[13]. These linear programming based methods are generally
more efficient in term of solution time. Nevertheless, the
linearized problem is formulated based on the calculated
sensitivity coefficients. When the solution is close to the
optimum, the linearized sensitivities do not represent the
nonlinear system correctly. In this case, the solution may
hunt around the optimum and fail to converge.

Energy storage (ES) has been playing a more and more
important role in the optimal operation of active distribution
network and microgrids. By integrating ES into the operation
of distribution network, various potential benefits can be
gained, such as, active and reactive power flow control,
demand charge reduction, compensation of renewable en-
ergy variation, power loss minimization, price arbitrage in
energy market, voltage regulation, power factor correction,

network congestion alleviation and intentional/unintentional
islanding of portions of distribution network. To acquire
these benefits, a optimal coordination among DG, ES, PV
and possible demand response, as proposed in this paper, is
necessary. It should be noted that DG in this paper means
controllable distributed generation such as diesel generators,
fuel cell, microturbines, etc. PV generation is traditionally
controlled using maximum power point tracking (MPPT),
which only depends on the weather condition. For this
reason, PV is treated separately from DG. The optimal
scheduling of ES in mocrogrids with high penetration of
renewable energy sources has been studied in [14]-[16].
However, due to the limited generation capacity and the
proximity of load and generation in a microgrid, the net-
work model is not considered in the optimization model.
To include the network model of distribution system, a
multiobjective optimization problem that includes a three-
phase unbalanced distribution network model is proposed
and solved by Interior Point Optimizer (IPOPT) in [17]. A
similar nonlinear programming model for optimal integra-
tion of ES in smart grid are solved by genetic algorithm
in [18]. In order to handle the nonlinearity of distribution
network model and improve the efficiency of optimization,
an iterative linear or quadratic programming based method
is proposed in [19]-[20]. To calculate the sensitivity coef-
ficients more efficiently and accurately, a new linearization
method of distribution network is proposed in [21], where
various types of power injections (i.e. constant PQ, constant
impedance and constant current) are taken into account and
the accuracy of calculation is improved by removing the
assumption of constant PQ injections.

This paper is a direct extension of [19] and [20] with
improvements in multiple areas. An iterative mixed integer
quadratic constrained quadratic programming model to opti-
mize the operation of a three phase unbalanced distribution
system is proposed. The model minimizes not only the
operating cost, including fuel cost and purchasing cost, but
also additional performance indices, including voltage devi-
ations and power loss. The optimization model is based on
the linearized sensitivity coefficients between state variables
(e.g., node voltages) and control variables (e.g., real and
reactive power injections of DG and ES). The proposed
algorithm is demonstrated on the modified IEEE 13 nodes
test feeders with multiple PVs, DGs and ESs. Numerical
simulation results validate the proposed algorithm.

The main contributions of this paper are as follows.
1) A multiobjective optimization model is proposed to

optimize both the economic and performance indices
of the distribution network. The weighting coefficients
of each objective are determined by using the analyt-
ical hierarchy process (AHP) [22].

2) To include the constraints of the startup and shutdown
as well as the minimum output of DGs in the formu-
lation of optimization, additional integer variables are



introduced. The power factor limits of DGs are also
considered.

3) Various scenarios with different system configuration
are studied. The necessity of unbalanced controllable
sources for mitigating the imbalance of renewable
resources and load in three-phase distribution network
is demonstrated.

The rest of this paper is organized as follows. In Section
II, the mixed integer quadratic constrained programming
(MIQCP) formulation for multiobjective optimization prob-
lem is presented. In Section III, the proposed model is
validated on modified IEEE 13 nodes test feeders. Various
scenarios of system configuration are studied and some
critical findings are identified. Section IV summarizes the
paper and presents conclusions.

II. METHODOLOGY AND FORMULATION

In this section, the MIQCP formulation for the optimal
distribution of active DN is presented. The objective function
and constraints are introduced separately. Then, an iterative
optimization procedure with golden search method is illus-
trated.

A. Problem Definition

In the context of active DN, both dispatchable and undis-
patchable generation as well as ES are integrated into the
network. The DN is also connected to an external subtrans-
mission grid characterized by a given day-ahead hourly cost
of energy exchange known for a time window of 24 hours.
Under this assumption, the operation objective of active DN
aims to minimize a virtual cost associated with the system
operating cost and performance. The virtual cost includes:
1) cost of energy from DGs; 2) cost of purchasing energy
from subtransmission grid; 3) voltage deviation; and 4) total
network loss. The four objectives are combined into a single
objective function by appropriate weighting. The objective
function is

min4x WF

{
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) +Aiuit

]

+

NT∑
t=1

NG∑
i=1

Sit (uit, ui,t−1)

}

+WP

(
NT∑
t=1

λInt P In
t

)

+WV

NT∑
t=1

NJ∑
j=1

(|Vjt| − 1)
2


+WL

(
NT∑
t=1

PLoss
t

)
(1)

where 4x = [4Pit, 4Qit, 4Pet, 4Qet] is the control
variable vector, 4x =

[
4PDER, 4QDER

]
is the control

variable vector, NG is the number of DERs and NB is the
number of nodes. Specifically, the first and second line is
the energy cost of DGs (including DG start-up cost); the
third line is the energy purchasing cost from subtransmission
grid; the fourth line is the voltage deviation; and the last
line is the total network loss. It should be noted that the
voltage magnitude is in per-unit form, thus the target of
voltage magnitude is 1 as shown in the fourth line of (1). All
terms are in mixed-integer linear or quadratic form except
the startup cost of DGs, which can be recast into mixed-
integer linear form as in [23]. The weighting coefficients
WF , WP , WV and WL can be determined by using the an-
alytical hierarchy process (AHP) [22]. First of all, a pairwise
comparison is done between the objectives. By this way, the
relative importance of each factor in comparison with all
other factors will be defined by the decision-maker, who
may have difference preferences from network to network.
Then, a matrix is built based on these comparisons. Finally,
the weighting coefficients are calculated based on the matrix.

B. Constraints

The objective function must be minimized subject to a
number of constraints. For simplicity, these constraints are
grouped into constraints of DGs, constraints of ESs and
network constraints.

1) Constraints of DG: It should be noted that DGs are
assumed to be three-phase balanced sources. The constraints
associated with DGs include the following:

Pit =

NI∑
m=1

pit(m) + uitP
min
i ∀i, ∀t (2)

0 ≤ pit(m) ≤ pmax
i (m) ∀i, ∀t, ∀m (3)

Pit ≤ Pmax
i uit ∀i, ∀t (4)

NI∑
m=1

pmax
i (m) + Pmin

i = Pmax
i ∀i, ∀t (5)

−tan(θ)Pit ≤ Qit ≤ tan(θ)Pit ∀i, ∀t, ∀p, ∀w (6)

(Pit)
2
+ (Qit)

2 ≤ S2
i ∀i, ∀t (7)

pit(m) = p
(k)
it (m) +4pit(m) ∀i, ∀t, ∀m (8)

Qit = Q
(k)
it +4Qit ∀i, ∀t (9)

Pit = P
(k)
it +4Pit ∀i, ∀t (10)

Constraints (2) and (3) approximate the energy cost of
DGs by blocks and (4) enforces the output of DG to be zero
if it is not committed. The power factor and capacity limit
is ensured by (6) and (7). Since the optimization problem
takes advantage of the sensitivity coefficients calculated by
linearizing the system under the operating point of last



iteration, the control variables are actually the deviations of
active and reactive power of DGs and ES from their current
operating points. This relationship is ensured by (8) - (10).

2) Constraints of Energy Storage: ESs are assumed to
be three-phase unbalanced sources here, but the three-
phase charging/discharging power can be easily enforced
to be equal by adding additional equality constraints. The
constraints associated with ESs include the following:

0 ≤ PC
et ≤ PC,max

e uCet ∀e, ∀t (11)

0 ≤ PD
et ≤ PD,max

e uDet ∀e, ∀t (12)

uCet + uDet ≤ 1 ∀e, ∀t (13)

SOCet = SOCe,t−1 + PC
etη − PD

et

1

η
∀e, ∀t (14)

SOCmin
et ≤ SOCet ≤ SOCmax

et ∀e, ∀t (15)

Pet = PD
et − PC

et ∀e, ∀t (16)

(Pet)
2
+ (Qet)

2 ≤ S2
e ∀e, ∀t (17)

PC
et = P

C,(k)
et +4PC

et ∀e, ∀t (18)

PD
et = P

D,(k)
et +4PD

et ∀e, ∀t (19)

Qet = Q
(k)
et +4Qet ∀e, ∀t (20)

4Pet = 4PD
et −4PC

et ∀e, ∀t (21)

Constraint (11) and (12) are the maximum charg-
ing/discharging power of ESs. These two states are mutually
exclusive, which is ensured by (13). The state of charge
(SOC) limits are enforced by (14) and (15). The net power
(discharging minus charging) of ESs is represented by (16)
and the capacity limit id ensured by (17) . Similar to
constraints of DGs, the control variables are the deviations
for active and reactive power of ESs, which is ensured by
(18) - (21).

3) Network Constraints: In this paper, a three-phase un-
balanced DN is taken into account. The voltage magnitudes
of each phase at each node are constrained by (22). The
state variables are represented as the sum of its values in the
previous iteration and the changes in the current iteration as
in (22) - (25). In (26) - (28), the changes of state variables
(voltage magnitude, purchased power and network loss) are
expressed as a linear function of the changes of control
variables (real and reactive power of DGs and ESs). In
particular, KP

jit and KQ
jit are the sensitivity of real and

reactive power output of DG i at time t to the voltage
magnitude of bus j; HP

it and HQ
it are the sensitivity of

real and reactive power output of DG i at time t to the
total purchasing power at time t; and LP

it and LQ
it are the

sensitivity of real and reactive power output of DG i at time
t to the total network loss at time t. The calculation of these
sensitivity coefficients is based on the method in [21] due
to its efficiency and accuracy.

0.95 ≤ |Vjt| ≤ 1.05 ∀ j, ∀ t (22)

|Vjt| = |Vjt|(k) +4|Vjt| ∀ j, ∀ t (23)

P In
t = P

In,(k)
t +4P In

t ∀ t (24)

PLoss
t = P

Loss,(k)
t +4PLoss

t ∀ t (25)

4|Vjt| =

3NG∑
i=1

(
KP

jit4Pit +KQ
jit4Qit

)
+

NE∑
e=1

(
KP

jet4Pet +KQ
jet4Qet

)
∀j, t(26)

4P In
t =

3NG∑
i=1

(
HP

it4Pit +HQ
it4Qit

)
+

NE∑
e=1

(
HP

et4Pet +HQ
et4Qet

)
∀t (27)

4PLoss
t =

3NG∑
i=1

(
LP
it4Pit + LQ

it4Qit

)
+

NE∑
e=1

(
LQ
et4Pet + LQ

et4Qet

)
∀t (28)

C. Iterative Optimization Procedure with Golden Search
Method

The formulated optimization problem (1-28) is then
solved by means of a MIQP algorithm in order to find the
improvement direction 4x of the control variable vector
x = [Pit, Qit, Pet, Qet]. For each iteration, the current
values of the control variables are modified by 4x and the
new direction is calculated based on the updated sensitivity
coefficients at current operating condition. This iterative
procedure continues until the objective function or the
control variables do not change significantly between two
consecutive iterations or a maximum number of iterations is
reached. In addition, a nonlinear one dimensional optimiza-
tion problem is solved by the golden search method to de-
termine the optimal step size ξ of the control variables when
an oscillation is detected [8], [20]. Then, the improvement
direction 4x(k+1) is modified by ξ4x(k+1). In this way,
the hunting around the solution is avoided and convergence
accelerates. The iterative optimization procedure with golden
search method is shown is Fig. 1.
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Figure 1: Iterative optimization procedure with golden
search method
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Figure 2: Modified IEEE 13 nodes test feeder

III. CASE STUDIES

A. Test System Data

The proposed iterative optimization procedure is demon-
strated on a modified IEEE 13 nodes test feeder as shown in
Fig. 2 [24]. All together 3 PVs, 2 DGs and 2 ESs were added
to the system. The location, phase and capacity information
is shown in Table I. The DGs are assumed to be have three
phase balanced output, while the ESs are assumed to be
three-phase unbalanced sources here, but the three-phase
charging/discharging power can be easily enforced to be
equal by adding additional equality constraints.

The analysis is conducted for a 24-hour scheduling hori-
zon and each time interval is set to be one hour. The
load profile for the 24 hours is obtained by scaling the

Table I: PVs, DGs, and ESs added to the IEEE 13 Node
Test Feeder

Bus No. Component Phases Capacity
684 PV a and c 300 kW (per phase)
646 PV b and c 300 kW (per phase)
675 PV a, b and c 300 kW (per phase)
633 DG a, b and c 360 kW (three-phase total)
692 DG a, b and c 180 kW (three-phase total)
634 ES a, b and c 100kW/200kWh (per phase)
671 ES a, b and c 100kW/200kWh (per phase)

Table II: Load scaling factors and day-ahead market prices

Hour
Load

Scaling
Factor

Price
(ct/kWh) Hour

Load
Scaling
Factor

Price
(ct/kWh)

1 0.7640 8.65 13 1.1640 26.82
2 0.7596 8.11 14 1.1461 27.35
3 0.7775 8.25 15 1.1775 13.81
4 0.7640 8.10 16 1.1910 17.31
5 0.7865 8.14 17 1.1461 16.42
6 0.8315 8.13 18 1.1371 9.83
7 0.8989 8.34 19 1.1236 8.63
8 1.0921 9.35 20 1.1461 8.87
9 1.1416 12.0 21 1.1685 8.35

10 1.1685 9.19 22 1.1146 16.44
11 1.2000 12.3 23 0.9888 16.19
12 1.1640 20.7 24 0.8270 8.87

original load data. The scaling factors are calculated based
on the load profile in [25] and shown in II. The load
types (e.g., constant power, constant impedance and constant
current) are not changed. The day-ahead market price of
subtransmission grid is also shown in II. The parameters for
the DGs are shown in Table III. For simplicity, the quadratic
cost curves are converted into three-piece piece-wise linear
cost curves. Minimum up and down time as well as the
ramping rates are neglected.

The PV model is from [26]. The solar irradiance and
temperature data is measured data from [27]. The battery
efficiency is assumed to be 0.9. All numerical simulations
are coded in MATLAB and solved using the MIQP solver
CPLEX 12.2. With a pre-specified duality gap of 0.1%, the
running time of each case is about 90 seconds on a 2.66
GHz Windows-based PC with 4 G bytes of RAM.

B. Effect of Weighting Factors

As mentioned above, the weighting coefficients of each
term in the objective function are determined by using AHP.

Table III: Parameters of DGs

Unit Type
Min.
Power
(kW)

Max.
Power
(kW)

Startup
Cost
($)

Operating Cost ($)
(a+ bP + cP 2)

a b c
Diesel
(DG 1) 90 360 6 0.6500 0.0152 0.00052

Microturbine
(DG 2) 60 180 3 0.2000 0.0198 0.00026



Table IV: Evaluation of solutions of single objective optimization and multiobjective optimization

Single Objective Optimization Solutions Multiobjective
Optimization SolutionOptimizing Voltage Optimizing Loss Optimizing Fuel Cost Optimizing Purchasing Cost

Voltage Deviation (pu) 0.4506 0.8468 0.8188 0.9989 0.8066
Loss (kW) 2277.04 1705.93 2213.45 2017.70 2027.88

Fuel Cost ($) 907.06 2257.53 62.41 2269.21 302.99
Purchasing Cost ($) 10411.34 9523.48 11149.92 9271.99 10392.18

Table V: Pairwise comparisons of the objective terms

Fuel
Cost of

DGs

Purchasing
Cost

Voltage
Devia-

tion

Network
Loss

Fuel Cost of DGs 1 2 1/3 3
Purchasing Cost 1/2 1 1/5 2

Voltage Deviation 3 5 1 10
Network Loss 1/3 1/2 1/10 1

The pairwise comparisons of these terms are shown in Table
V. This pairwise comparison matrix is fed into the AHP
and the weighting coefficients of each term are calculated
as: WF =0.2084, WP =0.1171, WV =0.6116, and WL=0.0629.
It should be noted that the system operator can change
the pairwise comparison matrix according to the system
configuration and their preference.

In order to show the benefit of multiobjective optimiza-
tion, both single objective optimization problems and mul-
tiobjective optimization problem are solved. The solutions,
i.e., real and reactive power of DGs and ESs are evaluated by
calculating the corresponding terms, i.e., voltage deviation,
total network loss, fuel cost and purchasing cost. The results
are shown in Table IV. As can be seen, when the problem
is formulated as a single objective optimization, the targeted
terms are always optimized to the best (as shown in red)
compared to that of other solutions (the rest in the same
row). By multiobjective optimization, none of these terms
are their optimal, but a comprise is reached among all
terms. Specifically, the new solution for voltage deviation
and fuel cost are second best among the listed solutions;
while network loss and purchasing cost are third best a-
mong the available solutions. This is because the weighting
coefficients of voltage deviation (WF ) and fuel cost (WF )
are much larger than those of purchasing cost (WP ) and
network loss (WL). Nevertheless, all of these solutions are
Pareto optimal, i.e., one cannot improve one term without
sacrificing another.

To show the effect of weighting coefficients, the distribu-
tion density of voltages corresponding to all nodes for the
whole period is shown in Fig. 3 In particular, 3a refers to
the base multiobjective case in Table IV; 3b refers to the
base case with WV multiplied by 100, which means the
distribution system operator prefers better voltage profiles
than other terms, whilst 3c refers to the single objective
optimization minimizing only voltage deviation. As can be
seen, as the weighting coefficient WF becomes bigger, the

Table VI: Voltage deviations with different weighting coef-
ficients

Cases Base case
Base case

with
WV × 100

Single
objective case

Voltage
Deviation

(pu)
0.8066 0.5282 0.4506

distribution of voltages gets closer to 1 p.u. and the fat
tails are reduced, which means the voltage profiles are
getting better. Particularly, the voltage profiles are signif-
icantly improved by single objective optimization, which
only optimizes the voltage deviations. The voltage diviations
for these three cases are calculated and shown in Table VI.
It shows clearly that the voltage deviation decreases when
the weighting coefficient on voltage deviation increases.

C. Real Power Coordination of DGs, ESs and Subtransmis-
sion Grid

The relationship between day-ahead market price and
real power output of DGs and ES 1 solved by the base
multiobjective case is shown in 4. ES 1 at node 634,
includes three batteries, battery 1 is connected to phase
A; battery 2 is connected to phase B; and battery 3 is
connected to phase C. These three batteries are operated
independently. When the market price is high, both DG1
and DG 2 increase power output and all batteries discharge
real power. Correspondingly, when the market price is low,
DGs decrease power output and batteries charge.

D. Reactive Power of DGs and ESs

The relationship between voltage at node 634 phase A
and reactive power output of battery 1 in ES 1 and battery
4 in ES2 solved by the base multiobjective case as shown
in 5. ES 2 at node 671 include three batteries, battery 4 is
connected to phase A; battery 5 is connected to phase B; and
battery 6 is connected to phase C. So, both battery 1 and
4 are connected to phase A. As can be seen, both batteries
generate reactive power to support the voltage at node 634
phase A. In addition, battery 1 is more sensitive than battery
4, this is because battery 1 is closer to node 634 than battery
4.

E. Effect of Different System Configurations

In order to identify the importance of resources with three-
phase independent output, we constructed three additional
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(c) Single objective case (only minimizing voltage deviations)

Figure 3: Distribution density of voltages for all nodes and
all periods
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DGs and ESs
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Figure 5: Voltage at Node 634 phase A and reactive power
output of battery 1and 4

scenarios with different system configurations. Scenario 1
only has PV integrated and all DGs and ESs are disabled;
scenario2 has PV and DGs with three-phase balanced output;
scenario 3 has PVs, DGs and ESs, but the ESs are enforced
to be three-phase balanced sources by adding additional
constraints; and scenario 4 is the base multiobjective case
in Table IV. Fig. 6a shows significant overvoltage and
undervoltage issues arise when large scale unbalanced PV is
integrated. In Fig. 6b, the voltage issues cannot be eliminated
by adding three-phase balanced DGs, which indicates the
imbalance of voltages among three phases. In 6c adding
three-phase balanced ESs cannot improve the voltage profile
either. Finally, by adding ESs with three-phase independent
output, the voltage profiles are significantly improved as
shown in Fig. 3a. To be more clear, the voltage diviations for
these four scenarios are calculated and shown in Table VII.
As can be seen, the voltage deviation increases when more
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(c) Scenario 3: PV, DGs and balanced ESs

Figure 6: Distribution density of voltages for scenarios with
different system configurations

Table VII: Voltage deviations with different system config-
urations

Cases
Scenario
1: Only

PV

Scenatio
2: PV and

DG

Scenatio 3:
PV, DG and

phase
balanced

ESs

Scenatio 4:
PV, DG and

phase
independent

ESs
Voltage

Deviation
(pu)

0.9684 1.0125 1.0494 0.8066

phase balanced resources such as DG and ES are integrated
into the system, while significantly decreases when phase
independent ESs are added. This means that to eliminate
the imbalance of voltages in this three-phase unbalanced
distribution network, it is necessary to have controllable
sources with three-phase independent output capability.

IV. CONCLUSIONS

In this paper, an iterative MIQCP model to optimize the
operation of a three phase unbalanced distribution system
with high penetration of PV, DG and energy storage (ES)
is proposed. Four objectives including fuel cost, purchasing
cost, voltage deviations and network power loss are com-
bined into a single objective function by assigning weight-
ing coefficients, which are determined by AHP. Numerical
simulations on a modified IEEE 13 nodes test feeder show
the effectiveness of the proposed model. The benefits of
multiobjective optimization are demonstrated and the effects
of weighting coefficients are validated. In addition, the
necessity of unbalanced controllable sources for mitigating
the imbalance of renewable resources and load in three-
phase distribution network is demonstrated.

Noted that the uncertainty associated with renewable DG
is not considered in this paper. However, the optimization
model proposed in this paper can be easily extended into a
two-stage stochastic optimization model, in which uncertain-
ty of renewable will be considered as various scenarios and
compensated by the battery charging/discharging power for
each scenario in the lower stage. The startup and shutdown
decision of DG as well as the battery charging/discharging
decision will be decided in the higher stage and kept the
same across all scenarios in the lower stage. To handle the
dimensionality issue with large systems, scenario reduction
technique can be used to reduce the number of scenarios
while preserves the credibility of the reduced scenario set
[28]. Case studies on larger systems considering uncertainty
associated with renewable DG will be studied in the future
work.
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