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Abstract—This paper presents a harmony search based paral-
lel optimization algorithm to minimize voltage deviations in three
phase unbalanced electrical distribution systems and to maximize
active power outputs of distributed energy resources (DR). The
main contribution is to reduce the adverse impacts on voltage
profile during a day as photovoltaics (PVs) output or electrical
vehicles (EVs) charging changes throughout a day. The IEEE 123-
bus distribution test system is modified by adding DRs and EVs
under different load profiles. The simulation results show that
by using parallel computing techniques, heuristic methods may
be used as an alternative optimization tool in electrical power
distribution systems operation.

I. INTRODUCTION

With the rapid introduction of several new technologies,
such as, plug-in hybrid vehicles and solar panels, power
distribution system operation is becoming more complex, and
efficient operation is becoming more critical. Distribution
systems need to be operated within tight voltage limits. Tradi-
tionally, this is achieved the help of tap changing transformers
and capacitors banks. However, the capacitor banks provide
less voltage regulation capability at lower voltages [1], and
providing capacitor banks that can vary with load is difficult
and expensive. The number of switching operations of capac-
itors is generally limited to 2-3 times a day. The number of
operations of traditional tap changing transformers is also a
constraint, since frequent tap changes reduce the lifetime of the
mechanical taps. The development of recent power electronic
assisted on load tap changers does allow extended lifetimes
[2].
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Loads in power distribution systems vary in a fairly pre-
dictable daily cycle. Daily peak values are generally faced at
night times after people return from work and start to use
household appliances. It has been observed that mean distance
range of driving, today’s EV technology presents is around
100 miles [3], hence EV’s will need to be charged nearly
everyday. Generally, the most suitable time for charging is
either nighttime at home or early morning at work. If most of
the EVs in the system will be charged at around the same time
of day, this will adversely affect the system voltage profile. It
has been observed that power losses and voltage deviations
are very high when charging is performed during the evening
peak 18h00, and 21h00 [4].

Similar to our previous studies [5], [6], this paper uses
inverter based DRs, and tap changing transformers for voltage
control in power distribution system. To simulate high loading
conditions, a sample system composed of randomly varying
electrical vehicles were added to all of the single phase buses
of the IEEE 123-bus distribution test system. Also, a total of
13 DRs were added and their reactive power capabilities used
for voltage control.

Since the loads or DR outputs in a power distribution
system can now change rapidly, optimization of the voltage
control problem should be solved as fast as possible. Numerical
methods must be used for solving these kind of problems,
however, these problems are non-convex and using derivative
information may lead to convergence problems. One approach
to finding solutions is to use population based derivative free
methods. By mimicking the behaviours from processes in real
life, such as, from genetics, these methods create an initial
random solution vector in the feasible solution space, and by
the help of operators, like mutation and crossover, candidate
solutions to the problem get closer to optimal solutions as
the number of iterations increase. Population based methods
are amenable to parallel processing to speed up computations.
With the introduction of multicore personal computers, access-
ing parallel programming sources is much easier compared
to a decade ago. This study uses Matlab’s parallel comput-
ing toolbox, and uses message passing functions to provide
in solving a harmony search based method. The nature of
harmony search [7] optimization algorithms are particularly
suitable to parallel computing, since they are based on the
perturbations to solution candidates in a population. Genetic



algorithms have been successfully parallelized [8] as well and
have been applied to several power systems problem such
as optimal facts location detection problem [9], generation
expansion planning [10], reliability evaluation of composite
power systems problem [11]. Still, there are relatively few
parallel harmony search applications in the literature (see [12]
for a scheduling application).

The paper is organized as follows. The next section briefly
discusses the model of the optimization problem. Section
III explains the solution algorithm and details the parallel
programming approach. The approach is then illustrated one
the modified IEEE 123-bus distribution test system and reports
on speedups by running the program using a different number
of processors.

II. OPTIMIZATION PROBLEM AND MODELING

Electrical power distribution systems operation generally
requires all the bus voltage magnitudes to be between 0.95 pu
and 1.05 pu. This paper takes advantage of DR’s reactive power
capabilities and changes the tap positions of the voltage reg-
ulators and on load tap changers. The objective function aims
to maximize active power output of the DRs and minimize the
voltage deviations from 1.0 pu. Constraints in the objective
function are the reactive power injection/absorption, and tap
positions of the regulators. Loads are assumed to be constant
for a given hour, and the optimization problem is solved for
that specific hour of the day. Note that the current state of
charge of EVs are not considered in this model. A detailed
mathematical representation of the optimization problem for
voltage control problem is given below:

minimize
X

NPDRi∑
i=1

−PDRi
+

N∑
i=1

||Vi − 1||

subject to 0.95 ≤ Vi ≤ 1.05

PDRi

2 +QDRi

2 ≤ SDRi

2

Tmin ≤ Ti ≤ Tmax

In the above optimization expression PDR and QDR repre-
sent the active power and reactive power output of the inverter
based DR respectively and SDR is the apparent power. Vi is the
voltage magnitude of the ith bus in the system. Tmin, Ti and
Tmax represent the minimum possible tap position, actual tap
position and maximum possible tap position of the regulator,
respectively.

A. Daily Load Profiles

An artificially created, 24 hour daily load profile for all the
buses in the system is given in Figure 1. In the simulations,
it is assumed that single phase buses in the power distribution
system includes EVs and charging occurs in residential areas,
hence most of the EVs will be charged afterwork hours. There
will be some amount of unused EVs, remaining time of days.
By taking these points into consideration, a hourly percentage
of EVs on a single phase bus is given in Figure 2. On each
single phase bus, this curve varies by a random perturbations
(a deviation of 0.05 is used). For simulating purposes, it is
assumed none of the available cars are fully charged at a
specific hour and all available EVs at a specific hour are
charging.

Fig. 1. Daily load curve percentage for all buses in the system

Fig. 2. Daily EV availibility curve

III. HARMONY SEARCH ALGORITHM FOR VOLTAGE
CONTROL

The harmony search algorithm for the optimization above
can be summarized as follows:

Choose a harmony memory size (HMS), harmony memory
consideration rate (HMCR), and a pitch adjusting rate (PAR).
Then create initial solution candidates, form a matrix HM and
compute the objective function values as shown in Figure (3).
Note that to obtain the objective function values, the open
source simulation software OpenDSS [13], [14] is used.

Fig. 3. Initialization process of the harmony memory

Next a new solution candidate vector is created by per-
forming these algorithmic operations: Algorithm 1.

The value of objective function of the new solution can-
didate vector is computed. To determine whether this new
candidate solution vector will be in the solution candidate
matrix, the value of the objective function of the new solution
candidate vector is compared with the worst objective function
of the solution candidate matrix. If it is smaller, then the
corresponding row of the solution candidate matrix is replaced
with the new solution candidate vector. If it is larger, then
the candidate is discarded. This process continues until a
predefined stopping criterion is met.



Create a random number R1

if R1 < HMCR then
Generate a random solution candidate vector
else

for each column in HM do
Randomly pick an element
Create a random number R2

if R2 < PAR then
HM(i, j) = HM(i, j)∓

for PDR, PDRimax × 0.01

for QDR, QDRimax × 0.01

for T, 1
end

end
end

end
Algorithm 1: New solution candidate vector

A. Parallel Harmony Search Algorithm

Since genetic algorithms were among the first population
based derivative free algorithms, they not surprisingly were
among the firstly parallelized. Four different approaches have
been used to parallelize them. These approaches are: a single
population master slave, multi population, fine-grained and
hierarchical hybrids [8]. These same ideas may also be applied
to most of the other population based derivative free algo-
rithms. Of these four, the multiple population based approach
is typically the most efficient one and what is adopted here. A
brief explanation of this approach is as follows: the harmony
search optimization module is run on each available processor
with the best solution candidates are sent to the neighbouring
processor every N iterations. The processors also send their
best results to the first processor in every M iterations. This
process is depicted in Figure 4. The harmony search opti-
mization module running on each processor consists of sub-
populations whose number of elements is HMS divided by
the number of processors. Note the the number of elements in
the sub-population is rounded to the closest integer. Then best
of these results is broadcast to all of the processors, so all of
the running algorithms can modify their results every M and
N iterations. The rate of N, called the migration rate, together
with M, determines the speed of convergence.

Fig. 4. Parallel Harmony Search

IV. TESTS AND RESULTS

The IEEE 123-bus distribution system [15], single line di-
agram of which is given in Fig. 5, was used in the simulations.
The following modifications were made to the original IEEE
123 Bus Distribution Test System. All together 13 DRs were
added to the buses, with the given location, phase, apparent
power, maximum and minimum active power, and maximum
and minimum reactive power output information in Table I.
The locations of the DRs are same as those of [16], however
apparent power magnitudes are modified. There are totally 7
regulators in the system and they located at buses 150 (phase
A), 9 (phase A), 25 (phase A,C), 160 (3 phase).

Fig. 5. IEEE 123 Test System

TABLE I. DRS ADDED TO IEEE 123 BUS DISTRIBUTION TEST
SYSTEM

Bus No
#
of
phases

Smax (MVA)

A. Power
Output
(max./min.)
(kW)

R. Power
Output
(max./min.)
(kVAr)

14 1 300 150/0 259.81/-259.81
27 1 300 150/0 259.81/-259.81
39 1 150 75/0 129.90/-129.90
49 3 600 300/0 519.61/-519.61
66 1 300 150/0 259.81/-259.81
75 1 120 60/0 103.92/-103.92
85 1 120 60/0 103.92/-103.92
86 3 1500 750/0 1299.00/-1299.00
107 1 120 60/0 103.92/-103.92

It is assumed in the simulations that each single phase load
has EV charging capability and at each single phase bus the
number available of EVs for charging are Ploadi

4 . Also, the
test system is assumed to include 4 EV charging stations,
locations of which are buses 22, 42, 88, and 102, each with a
capacity of maximum 500 EVs. All the EVs in the system are
assumed to require 3.3 kW for charging 1 hour and the total
time needed for them to be charged to reach a full state of
charge (SOC) is 6 hours. Note that in the simulations, since the
main aim of the paper is to show the efficiency of the parallel
programming, the main consideration is the number available
cars at a specific time for charging. Hence, their SOC status
was not investigated.

The algorithm was run on a computer with 16 GB RAM,
2.27 GHz, 2 Intel Xeon CPU processors each composed of 6



cores. Matlab’s parallel computing toolbox [17], which allows
message passing type of communications, was used in the sim-
ulations. The message passing functions: labSend, labReceive
and labBroadcast were used for point to point communication
purposes. In the simulations, the parameters of harmony search
algorithm are selected as follows: HMCR = 0.9, PAR = 0.3
and HMS was chosen as the total number of elements in all
sub-populations.

Two test cases are simulated:

• Case 1 simulated the charging, and voltage regulation
at 8 am, where the penetration level of EVs were not
high (from daily availability curve it may be seen that
the available EVs for charging are approximately 15%
of all EVs.)

• Case 2 simulated the charging and voltage regulation
at 10 pm, where the penetration level of EVs was high
(from daily availability curve it may be seen that the
available EVs for charging are approximately 85% of
all EVs.)

Both in Case 1 and Case 2, initial voltage profiles of the buses
were found when all DRs active and reactive power outputs,
and tap positions of the regulators were set to nominal value.
This is illustrated for 8 am in Figure 6, and for 10 pm in
Figure 7 and all phase voltage profiles with respect to the
physical locations of buses in the test system are shown. Note
that in these figures and following all figures, blue represents
the distribution system network, green represents bus voltage
magnitudes that are in between 0.95 and 1.05 pu, and red
represents the bus voltage magnitudes that are out of that range.
As can be seen in the figures, the loading conditions at 10
pm are heavier compared to the conditions at 8 am and as a
result more bus voltage magnitudes at 10 pm fall outside of
the desired range.

Fig. 6. Phases a, b, c, voltage profiles versus physical locations graph at 8
am (No DR output, all taps set to nominal)

After performing optimization for Case 1 and Case 2, the
obtained bus voltage magnitudes are shown in Figure 8 and
Figure 9, respectively. As can be seen from the figures, the
post optimization bus voltage magnitudes are in the secure
operation range for both Case 1 and Case 2.

Fig. 7. Phases a, b, c, voltage profiles versus physical locations graph at 10
pm (No DR output, all taps set to nominal)

Fig. 8. Phases a, b, c, voltage profiles versus physical locations graph at 8
am (post optimization bus voltage magnitudes)

Fig. 9. Phases a, b, c, voltage profiles versus physical locations graph at 10
pm (post optimization bus voltage magnitudes)

Minimum and maximum bus voltage magnitudes of all
phases, mean value of bus voltage magnitudes of all phases,
and their standard deviations for post optimization values at 8
am and 10 pm are given in Table II.



TABLE II. IEEE 123 BUS DISTRIBUTION TEST SYSTEM, BUS
VOLTAGE MAGNITUDES

Phase Min Max Mean Std. Dev. Time
A 0.9636 1.0387 0.9997 0.0204 10 pm
B 0.9626 1.0375 0.9997 0.0113 10 pm
C 0.9675 1.0375 1.0016 0.0119 10 pm
A 0.9876 1.0131 1.0002 0.0070 8 am
B 0.9905 1.0125 0.9979 0.0038 8 am
C 0.9846 1.0130 0.9966 0.0072 8 am

Active power outputs of the DRs and Tap positions are
given in Tables III and IV for 8 am and 10 pm, respectively.

TABLE III. POST-OPTIMIZATION DR OUTPUTS

Bus No/
Phase

A. Power
Output
(kW)
8 am

R. Power
Output
(kVAr)
8 am

A. Power
Output
(kW)
10 pm

R. Power
Output
(kVAr)
10 pm

14/A 147.83 -195.51 149.38 248.60
27/A 147.98 194.04 149.16 218.01
39/B 73.94 7.39 73.66 -93.80
49/A 299.44 148.27 296.12 506.31
49/B 298.75 -81.91 299.14 -373.52
49/C 298.09 -24.38 298.89 98.23
66/C 149.39 -7.26 147.85 197.11
75/C 59.59 27.75 59.81 16.40
85/C 58.25 59.27 58.48 -58.61
86/A 747.55 -52.68 749.85 1075.77
86/B 748.70 -254.19 749.80 -102.71
86/C 748.80 -141.91 748.89 858.73

107/B 59.60 -19.03 59.55 87.17

TABLE IV. POST-OPTIMIZATION TAP POSITIONS

Tap No/
Phase

Tap position
8 am

Tap position
10 pm

150/A 2 6
9/A 0 -3
25/A 1 1
25/C 4 -2

160/A 2 -8
160/B 0 0
160/C 0 3

Figure 10 shows the relative speedup of the solution times
with respect to the number of processing units for Case 1 and
Case 2. Note that these values are obtained when N is set 100,
and M is set to 500. Speedup is found by using the following
formula:

Relative speedup (n,p) =
Solution time with 1 processor
Solution time with p processors

(1)

The optimization problem is solved by using a single
processor in 3813 seconds for Case 1, and 4022 seconds
for Case 2. The fastest solution times was obtained in 640
seconds by using 4 processors for Case 1 and 978 seconds
by using 5 processors for Case 2. From the figure, it is seen
that speed increase almost linearly up to 4 processors for Case
1 and up to 5 processors for Case 2, and then either they
decrease or level off. This behaivour is mainly because of the
communication overhead between the processors. One other
point to be discussed is the super-linear behaivour of Case
1 going from 3 to 4 processors. Parallel algorithms are not
expected to exceed linear speedup line shown in the figure
generally due to Amdahl’s Law [18]. However, due to the na-
ture of the evolutionary algorithms super-linear speedups may
at times be obtained. The reasons for this behavior can stem
from implementation, numerical artefact or physical system
characteristics [19]. The nature of the evolutionary algorithms

are based on population based searches over a search space.
Since the population is split in sub-populations, the parallel
algorithm may find the solution faster while searching a larger
search space, with more physical resources, and this may lead
to super-linear speedups.

Fig. 10. Speedup graphic

V. CONCLUSION

The voltage deviation minimization problem is solved to-
gether with maximizing DR active power output by analyzing
two cases in an unbalanced electrical distribution system. A
Harmony search algorithm is used and faster solutions were
obtained by implementing parallel computation. The IEEE
123-bus distribution test system was modified to for these two
test cases: a) a lightly loaded system with a low level of EV
charging at 8 am. b) a heavier loaded system with a higher level
EV charging at 10 pm. Simulation results show that harmony
search based parallel computing approach was successful in
finding near optimal solutions, and parallelization improved
computation time by a factor of 5.96 for Case 1 and 4.11
for Case 2. With the development of multicore computers,
application of parallel programming techniques is becoming
much easier, and the disadvantage of longer computation times
of population methods may be overcome by using this type
of algorithm. The authors think that with more computational
sources even better speedups may be obtained and these type
of parallel algorithms may be attractive in the near future.
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