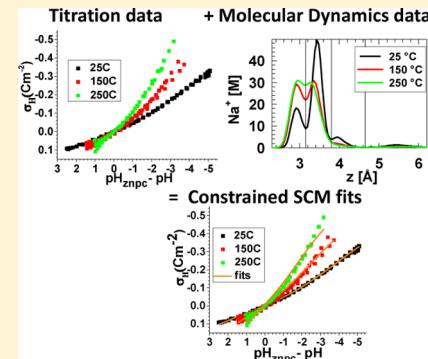


Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF₃SO₃ Media to 250 °C

Michael L. Machesky,^{*,†} Milan Předota,[‡] Moira K. Ridley,[§] and David J. Wesolowski^{||}

[†]Illinois State Water Survey, University of Illinois, 2204 Griffith Drive, Champaign, Illinois 61820-7495, United States


[‡]Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic

[§]Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, United States

^{||}Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, United States

Supporting Information

ABSTRACT: A comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF₃SO₃⁻) electrolyte media from 25 to 250 °C. Rb⁺ primarily occupies the innermost tetradsite binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (−0.1 and −0.2 C/m²) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitance values and intrinsic Rb⁺ binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na⁺ results in a more complex inner-sphere distribution, which shifts from bidentate to tetradsite binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. In particular, the CMD axial density profiles for Rb⁺ and Na⁺ reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.

1. INTRODUCTION

In situ spectroscopic and X-ray scattering techniques and computational methods are being used increasingly to precisely reveal the adsorption structures at aqueous mineral–water interfaces.¹ However, these in situ methods are still rather costly, both in time and resources, such that probing a wide range of relevant physiochemical conditions (e.g., pH, solution compositions, and temperature) is difficult. Surface complexation models (SCMs), in which chemical equilibrium expressions describing solution species binding to surface functional groups are modulated by electrostatic effects,^{2,3} can fill this niche, given that they are able to make maximum possible use of the molecular level data provided by spectroscopy, scattering, and computation to help constrain model parameters.

Considerable progress has been made in this regard. The first wave of SCMs matured in the 1970s and combined chemical reactions based primarily on solution-phase analogs with electrostatic terms from classical electrical double layer (EDL) theory.^{4–7} These models can successfully describe bulk adsorption data, but it was soon realized that a given set of model parameters was not unique. That is, a different yet equally plausible parameter set could describe a given set of adsorption data equally well.⁸ Furthermore, the derived

parameters were in general found to be invalid outside the narrow range of conditions at which the parameters were determined. Although relevant spectroscopic studies also began to appear in the 1970s, it was not until the mid-1980s that in situ spectroscopic techniques, such as FTIR⁹ and synchrotron-based X-ray methods,¹⁰ began to provide the detailed information most useful for constraining SCM parameters. Corresponding computational studies were slower to appear, but by the mid-1990s, computational speed was adequate and available enough for progress to be made.^{11,12}

SCMs have also evolved to better utilize molecular scale information. The extended triple layer model (ETLM) of Sverjensky and Fukushi¹³ is able to incorporate inner-sphere oxyanion adsorption structures observed spectroscopically. Crystal face specific detail in combination with bond valence theory was used to develop the MUSIC model of surface protonation,¹⁴ which made it possible to estimate and hence constrain relevant intrinsic surface protonation constants within SCMs. Bond valence theory was also incorporated into the charge distribution (CD) concept, whereby adsorbed charge is

Received: March 24, 2015

Revised: May 28, 2015

distributed at the interface according to adsorbate structure.¹⁵ These concepts are combined in the CD-MUSIC model, which represents the current state-of-the art SCM, as it has proven capable of incorporating the widest variety of molecular scale information.¹⁶

Here, we utilize a comprehensive set of molecular scale information, primarily from classical molecular dynamics (CMD) simulations, that spans a wide range of charge and temperature to help constrain CD-MUSIC model parameters describing rutile titration data collected in RbCl, NaCl, and NaCF₃SO₃ [CF₃SO₃⁻ = triflate (Tr)] electrolyte media from 25 to 250 °C. Although some of these data have been described before with various SCMs, including CD-MUSIC,¹⁷ the present set of CMD and titration data constitute the most compatible and complete sets of molecular and macroscopic information currently available to help constrain SCMs. Consequently, we endeavored to formulate CD-MUSIC SCMs for the RbCl-rutile and combined NaCl-NaTr-rutile systems that are as molecularly consistent as possible. Although a perfect correspondence between the CMD and CD-MUSIC results was not expected, CD-MUSIC was able to incorporate many of the CMD results while also providing good fits to the macroscopic titration data. Moreover, the discrepancies noted suggest CD-MUSIC could be improved by incorporating charge-dependence into the CD or Stern-layer capacitance values.

2. COMPUTATIONAL AND EXPERIMENTAL METHODS

Most of the computational and titration results presented and discussed here were generated with methods that have been described previously. Accordingly, only brief method summaries and relevant literature citations are provided here.

2.1. Classical Molecular Dynamics (CMD) Simulations. We used the same interaction models of the (110) rutile surface, SPC/E water, and ions as in our previous work.¹⁸⁻²¹ The relaxed surface structure and flexible surface groups within fixed bond lengths and flexible bond angles with ab initio determined parameters and partial charges described the rutile (110) surface. The interactions among Ti and O surface atoms were found to be properly described by the Matsui and Akaogi potential,²² and interactions between surface oxygen and aqueous species were described by assigning SPC/E Lennard-Jones parameters to the surface oxygen atoms. The interactions between oxygens of water and Ti atoms were fit to DFT data and then to a Lennard-Jones potential. Lorentz-Berthelot combining rules were used for the interactions between Ti atoms and ions. The cations were either Rb⁺ or Na⁺, and the anion was Cl⁻ for all simulations. Our starting surface configuration was the neutral, "nonhydroxylated" (110) surface of rutile wherein water molecules are physisorbed atop each under-coordinated surface Ti atom, and bridging oxygen atoms are unprotonated. Each of the two opposing surfaces constraining the aqueous layer had lateral dimensions of 35.508 × 38.981 Å, and the separation between the two surfaces was about 50–60 Å, adjusted to yield the desired pressure.

The neutral surfaces were fully nonhydroxylated, that is, with water molecules physisorbed atop surface Ti atoms, while the negatively charged surfaces with a surface charge density of -0.104 C/m^2 were prepared by addition of 18 terminal hydroxyls and the -0.208 C/m^2 surfaces were prepared by addition of 36 terminal hydroxyls. The positive $+0.104 \text{ C/m}^2$ surfaces were prepared by protonation of 18 bridging oxygens

to form bridging hydroxyls. With 144 terminal sites and 144 bridging sites, the surfaces remained predominately nonhydroxylated under these charge conditions. The charged surface species (hydroxylated terminal or protonated bridging sites) were set at the beginning of the simulation according to the desired surface charge density and along with SPC/E water did not undergo any proton-exchange reactions. The partial charges of surface atoms were obtained with the same approach as used in our previous studies of hydroxylated and nonhydroxylated surfaces,¹⁸⁻²¹ and the resulting values are given in Table 1. The simulated systems were always charge

Table 1. Surface Atoms and Their Charges at the Surface Charge Densities (σ , C/m^2) Used in the CMD Simulations

atom	charges at various surface charge densities			
	$\sigma = -0.208$	$\sigma = -0.104$	$\sigma = 0$	$\sigma = +0.104$
surface Ti(V) and Ti(VI)	2.121	2.137	2.196	2.175
terminal hydroxyl O	-0.974	-0.956		
terminal hydroxyl H	0.394	0.412		
unprotonated bridging O	-1.053	-1.037	-1.098	-0.997
protonated bridging O				-0.944
bridging H				0.475

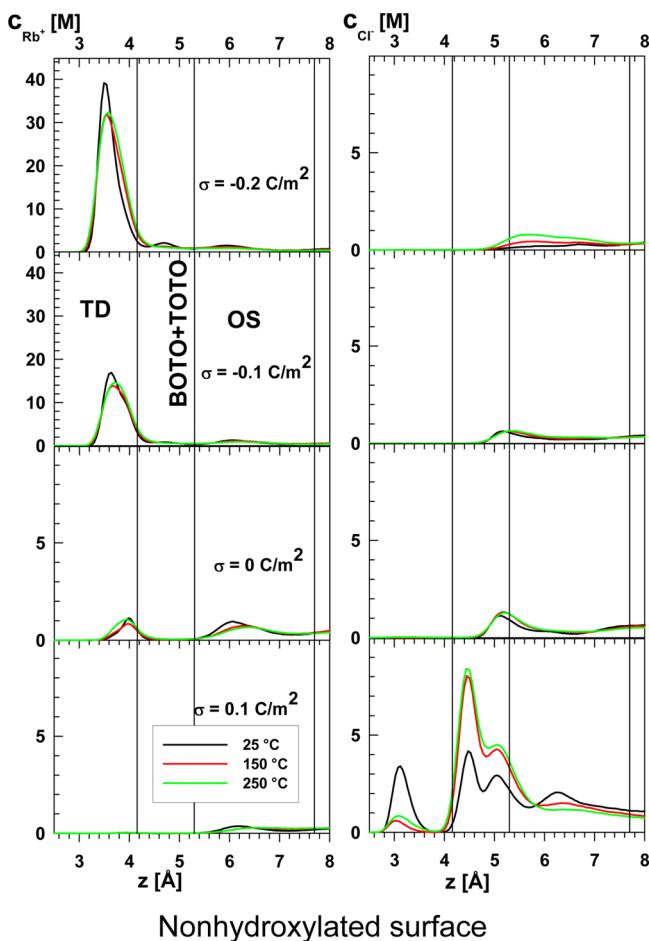
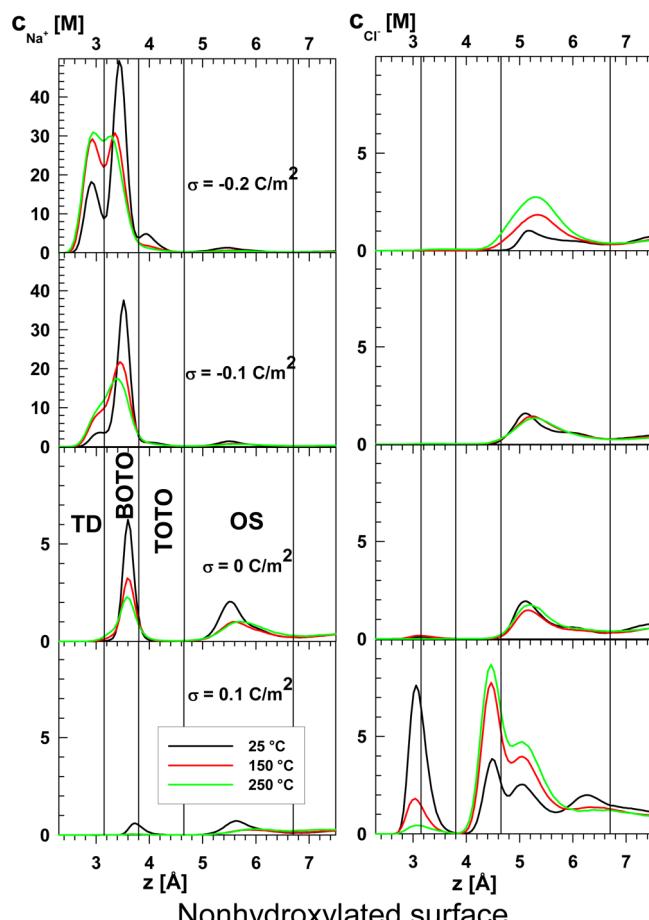

neutral, with the surface charge compensated by adjusting the numbers of ions in the simulation box as given in Table 2. The

Table 2. Number of Ions in the Simulation Box Necessary To Compensate the Surface Charge Densities (C/m^2) and Surface Charge (e) Used in the CMD Simulations

surface charge density (C/m^2)	surface charge to compensate (e)	no. of ions	
		Rb ⁺ or Na ⁺	Cl ⁻
-0.2	-36	48 (Rb ⁺) 51 (Na ⁺)	12 (Rb ⁺) 15 (Na ⁺)
-0.1	-18	30	12
0.0	0	18	18
+0.1	18	12	30


bulk concentration of ions in the central region of the slab was approximately 0.3 M, whereas concentrations near the interface were much higher (Figures 1 and 2). Simulations were conducted at 25, 150, and 250 °C with corresponding pressures of 1, 4.76, and 39.8 bar (i.e., ambient pressure at 25 °C and liquid-vapor coexistence pressures at high temperatures). These conditions overlapped those of the experimental rutile powder titrations summarized next.

2.2. Rutile Titrations. Two separate batches of TIOXIDE rutile powder were used for the titrations. The N₂-BET surface area of batch 1 rutile was approximately 17 m^2/g , and that of batch 2 was approximately 14 m^2/g . Both batches underwent hydrothermal pretreatment before use²³ and thereafter exhibited indistinguishable point of zero net proton charge values (pH_{znpC}) between 25 and 250 °C. Titrations at 25 °C and some at 50 °C were conducted with a glass-electrode autotitrator system, while some titrations at 50 °C and all titrations at 100, 150, 200, and 250 °C were conducted in stirred hydrogen-electrode concentration cells.²³⁻²⁵ Briefly, 1–1.5 g samples of rutile powder, dominated by the (110) crystal face, were suspended in 40–50 mL of acidic solutions (pH 163

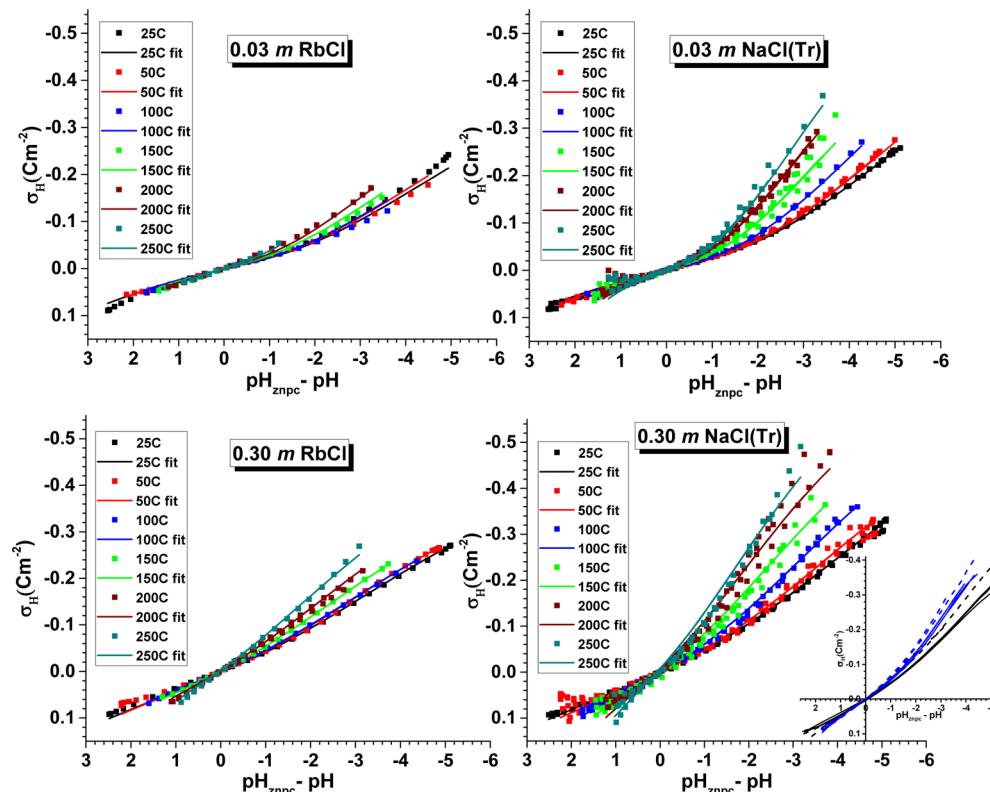
Nonhydroxylated surface

Figure 1. Axial density profiles of Rb^+ (left) and Cl^- (right) for RbCl solutions at the nonhydroxylated rutile (110) surface, as a function of temperature and surface charge density. z (\AA) represents the distance above the $\text{Ti}-\text{O}$ surface plane.

Nonhydroxylated surface

Figure 2. Axial density profiles of Na^+ (left) and Cl^- (right) for NaCl solutions at the nonhydroxylated rutile (110) surface, as a function of temperature and surface charge density. z (\AA) represents distance above the $\text{Ti}-\text{O}$ surface plane.

164 ~ 2.7) of various but precisely known compositions: (1) 0.03,
165 0.3, or 1.0 m NaCl ; (2) 0.03 or 0.3 m NaTr ; or (3) 0.03 or 0.3
166 m RbCl . Titrations were then conducted at pH 7.5–11 by
167 adding 15–40 aliquots of the base titrant (NaOH or RbOH in
168 the respective electrolyte media). From mass and charge
169 balance considerations, the solution excess or deficit of protons
170 is known at each measured pH value, and this excess or deficit
171 can be expressed in terms of net proton charge per unit surface
172 area of rutile (C/m^2).

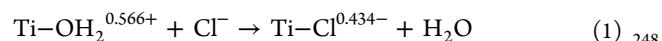

173 **2.3. Surface Complexation Modeling.** Titration data
174 were fit using Mathematica notebooks. Variable parameters
175 were Stern layer capacitance values (C_S) and ion binding
176 constants (e.g., K_{Cl}), while charge distribution (CD) values
177 were fixed. The CD-MUSIC modeling approach was combined
178 with the basic Stern EDL model following the method of Ridley
179 et al.,¹⁷ but with modifications to account for the CMD
180 simulations presented here. The most significant of those
181 modifications were (1) the use of the nonhydroxylated rather
182 than hydroxylated surface results (rationale provided in section
183 4.1 below); (2) the use of CMD results to 250 °C rather than
184 only 25 °C; (3) the fixing of CD values and reaction
185 stoichiometry based on the distribution of oxygen atoms
186 (bridging oxygens, terminal oxygens, water molecules) in the
187 first coordination shell of Rb^+ , Na^+ , and Cl^- as obtained from
188 CMD simulations; and (4) observed CMD Rb^+ and Na^+ site

binding ratios (e.g., bidentate/tetridentate) provided numeric 189 targets for SCM fitting.

The ion binding reactions utilized in the SCM were 191 formulated to match the binding configurations observed in 192 the CMD simulations with a few exceptions. First, triflate was 193 the electrolyte anion for some of the titration data (Figure 3, 194 f3 right panels), but the CMD simulations only considered Cl^- . 195 However, NaCl and NaTr titration data conducted at the same 196 temperature and ionic strength were combined and fit together. 197 This was justified because differences between NaCl and NaTr 198 titration data were negligible, at least in part because the 199 titration range over which positive surface charge can develop 200 (below the pH_{zpc}) is relatively limited (approximately, pH 201 5.4–2.7). Moreover, Tr^- (via the SO_3^- group) may interact 202 with positively charged surface groups similar to Cl^- (section 203 3.1 below). Second, the CMD observed replacement of some 204 terminal water molecules by Cl^- at positive surface charge (e.g., 205 Figure 2) that was not included in the SCM. These differences 206 are discussed in more detail below.

3. RESULTS

3.1. Classical MD Simulations. The molar ion axial 208 concentration profiles of RbCl solutions above the non- 209 hydroxylated surface of rutile at the -0.2 , -0.1 , 0 , and 0.1 210 C/m^2 charge states are shown in the left column of Figure 1. 211 Boundaries between cation adsorption sites are indicated by 212


Figure 3. Proton charge (σ_H) vs $\text{pH}_{\text{znpc}} - \text{pH}$ data (solid symbols) and SCM fits (lines) for 0.03 m RbCl (upper left) and NaCl(Tr) (upper right) and for 0.30 m RbCl (lower left) and NaCl(Tr) (lower right) at 25, 50, 100, 150, 200, and 250 °C. The inset plot in the lower right graph shows σ_H vs $\text{pH}_{\text{znpc}} - \text{pH}$ data for batch 2 rutile (solid lines) and batch 1 rutile (dashed lines) at 25 °C (black) and 100 °C (blue) for 0.30 m NaCl(Tr).

213 vertical lines as identified by local minima in the axial profiles
 214 and analysis of lateral density profiles of ions within these
 215 boundaries, which unambiguously define the position of
 216 adsorbed ions with respect to surface atoms. These boundaries
 217 are at 4.16, 5.3, and 7.7 Å above the (110) Ti–O surface plane
 218 for the tetradentate/bidentate, bidentate/outer sphere, and
 219 outer sphere/bulk solution boundaries, respectively, which are
 220 the same as those determined for the hydroxylated surface.²¹
 221 Identical boundaries are shown for the Cl[−] axial profiles in
 222 Figure 1 (right column) only to facilitate comparison with the
 223 distribution of Rb⁺ (and Na⁺ in Figure 2). Those boundaries do
 224 not delineate specific Cl[−] binding geometries, since those were
 225 not determined separately. Note that the concentration of
 226 adsorbed Rb⁺ is much higher than that of Cl[−] on negatively
 227 charged surfaces, comparable at neutral surfaces, and lower than
 228 that of Cl[−] only on the positively charged surface.

229 Binding is overwhelmingly inner-sphere tetradentate (TD);
 230 that is, Rb⁺ is bound to two terminal oxygens (TO) and two
 231 bridging oxygens (BO) at negative surfaces, with much smaller
 232 amounts of inner-sphere bidentate (peak at ca. 4.7 Å) and
 233 outer-sphere (OS) Rb⁺ (peak at ca. 6 Å) also present. Bidentate
 234 Rb⁺ binding includes adsorption to two TOs (TOTO) and one
 235 TO and one BO (BOTO), with these being difficult to
 236 distinguish on the axial density profile because of the large size
 237 of Rb⁺ and the corresponding Rb–O pair correlation
 238 function.²¹ Moreover, temperature has minimal effect on Rb⁺
 239 distribution at negative surfaces. Small amounts of TD and OS
 240 Rb⁺ are present on the neutral surface, and adsorbed Rb⁺ is
 241 barely perceptible at 0.1 C/m².

242 The Cl[−] profile at 0.1 C/m² is rather complex and
 243 temperature-dependent. The innermost peak centered near

3.1 Å represents Cl[−] adsorbed in an inner-sphere fashion via
 244 exchange with water molecules adsorbed to terminal Ti atoms,
 245 and in terms of the SCM detailed below, it can be depicted as
 246 follows:

The peak near 4.5 Å represents Cl[−] in contact with the
 249 hydrogen of protonated bridging oxygen (BOH) groups,
 250 whereas the peak near 5 Å is populated by Cl[−] also localized
 251 above BOH groups, but not in direct contact with them. Hence,
 252 they can be classified as inner- and outer-sphere monodentate,
 253 respectively. Finally, a minor outermost peak is also apparent
 254 near 6.3 Å at 25 °C and represents Cl[−] bound in a nonlocalized,
 255 outer-sphere fashion.

MD simulations with triflate as the anion were not
 257 conducted. However, the interaction of this anion with the
 258 positively charged rutile surface may be similar to that of Cl[−].
 259 That is, an oxygen of the negatively charged sulfonate group
 260 (SO₃[−]) of the triflate anion (CF₃SO₃[−]) may be in contact with
 261 or otherwise be localized above the hydrogen of protonated
 262 BOH groups. That the NaCl and NaTr titration curves are
 263 indistinguishable in the positive surface charge region would
 264 seem to support this hypothesis. Admittedly, however, how the
 265 triflate anion actually interacts with the (110) rutile surface
 266 awaits molecular scale investigation.

Figure 2 shows the NaCl molar ion axial concentration
 268 profiles at the −0.2, −0.1, 0, and 0.1 C/m² charge states with
 269 the vertical lines representing boundaries between various Na⁺
 270 binding sites. These boundaries are at 3.15, 3.80, 4.65, and 6.7
 271 Å for the TD/BOTO, BOTO/TOTO, TOTO/outer sphere,
 272 and outer sphere/bulk solution boundaries, respectively.

Table 3. Numbers of Rb⁺ and Na⁺ Ions Adsorbed as Tetradentate (TD), Bidentate (BOTO and TOTO), and Outer-Sphere (OS) Species for the CMD Charge States Simulated^a

ion	temp (°C)	-0.2 C/m ² (-36 e)					-0.1 C/m ² (-18 e)				
		TD	BOTO	TOTO	OS	Cl ⁻	TD	BOTO	TOTO	OS	Cl ⁻
Rb ⁺	25	28.7		2.8	3.4	0.9	14.4		1.5	2.6	1.5
	150	30.2		2.8	3.2	1.5	13.6		1.7	2.8	1.7
	250	32.7		2.8	2.6	2.6	14.5		1.9	2.5	1.9
Na ⁺	25	10.1	26.5	3.0	2.0	1.7	1.7	18.4	1.0	1.7	2.5
	150	18.9	20.4	1.5	1.2	3.5	4.5	15.5	0.9	1.3	2.6
	250	21.5	19.9	1.1	1.1	5.4	5.4	13.6	1.0	1.3	2.6
0.0 C/m ² (0 e)											
ion	temp (°C)	TD	BOTO	TOTO	OS	Cl ⁻	+0.1 C/m ² (+18 e)				
		TD	BOTO	TOTO	OS	Cl ⁻	TD	BOTO	TOTO	OS	Cl ⁻
Rb ⁺	25	0.64		0.12	1.93	2.34	0.0		0.0	0.9	13.5
	150	0.58		0.15	1.73	2.68	0.0		0.0	0.5	15.7
	250	0.84		0.22	1.62	2.74	0.0		0.0	0.7	16.6
Na ⁺	25	0.00	2.59	0.14	2.37	2.96	0.0	0.2	0.1	0.9	13.2
	150	0.02	1.60	0.19	1.53	2.52	0.0	0.0	0.0	0.5	14.0
	250	0.06	1.99	0.28	1.42	3.10	0.0	0.0	0.0	0.6	15.4

^aThe Cl⁻ column contains the total number of atoms within the outer-sphere boundary, irrespective of binding state.

274 Boundaries on the hydroxylated surface were slightly different,
275 3.13, 3.50, 4.75, and 7.0 Å, respectively.²¹ Unlike for Rb⁺, the
276 bidentate BOTO and TOTO configurations can be distin-
277 guished by peaks at ca. 3.4 and 3.9 Å, respectively. In addition,
278 the Na⁺ profiles show a much more complex charge and
279 temperature dependence than those for Rb⁺. Inner-sphere TD,
280 BOTO, and TOTO species are all present at both negative
281 charge conditions, with BOTO the dominant bidentate
282 complex and the TD complex increasing with both negative
283 charge and temperature. Similar trends also occur on the
284 negative hydroxylated surface, where, however, the dominant
285 bidentate complex is TOTO under ambient conditions and for
286 -0.1 C/m² charge, even at elevated temperatures.²¹ The
287 interfacial distribution of Cl⁻ is similar to that observed for
288 RbCl.

289 The numbers of Rb⁺ and Na⁺ ions adsorbed at the binding
290 sites identified for all modeled charge states and temperatures
291 are given in Table 3, along with the total number of Cl⁻ ions
292 within the outer-sphere boundary, irrespective of binding state.
293 These data, or more specifically ratios between dominant
294 adsorption sites (e.g., BOTO/TD for Na⁺), were used to help
295 constrain the SCM results presented and discussed below. We
296 also calculated the average numbers of BO's, TO's, and oxygens
297 of water molecules in the first solvation shells of Rb⁺ and Na⁺ in
298 the various adsorption geometries and in the bulk at the -0.2,
299 -0.1, and 0 C/m² charge states and for Cl⁻ in the 0.1 C/m²
300 charge state. Oxygen atoms were counted up to the minimum
301 after the first peak of the $g_{\text{cation-O}}$ radial distribution functions,
302 which were 3.81, 3.26, and 3.86 Å for Rb⁺-O, Na⁺-O, and
303 Cl⁻-O, respectively, for all oxygens, temperatures, and charge
304 states. These numbers were used to determine adsorption
305 reaction stoichiometry (Table 4) and to fix the charge
306 distribution (CD) values (Table 5) associated with the SCM.
307

3.2. Rutile Titrations. Titration results and SCM fits at all
308 temperatures are given in Figure 3 for RbCl media (left) and
309 NaCl(Tr) media (representing combined NaCl and NaTr
310 media titrations) (right). The NaCl and NaTr data for batch 2
311 rutile were combined, since titration curves were indistinguish-
312 able at each temperature and ionic strength (0.03 and 0.30 M)
313 investigated. The results are presented relative to the pH of
314 zero net proton charge (pH_{zpc} - pH) at each temperature,

Table 4. Surface Complexation Reactions Considered and Corresponding Equilibrium Constant Designations^a

	complexation reactions	equil const
surface protonation		
	$\equiv\text{TiOH}^{0.434-} + \text{H}^+ \rightarrow \equiv\text{TiOH}_2^{0.566+}$	K_{H1}
	$\equiv\text{Ti}_2\text{O}^{0.555-} + \text{H}^+ \rightarrow \equiv\text{Ti}_2\text{OH}^{0.445+}$	K_{H2}
inner-sphere Rb ⁺		
	$2\equiv\text{TiOH}^{0.434-} + 2\equiv\text{Ti}_2\text{O}^{0.555-} + \text{Rb}^+ + v\text{H}^+ \rightarrow [(\equiv(2-v)\text{TiOH}^{0.434-})(\equiv v\text{TiOH}_2^{0.566+})](\equiv(\text{Ti}_2\text{O}^{0.555-})_2)-\text{Rb}^+$	K_{Rb} (TD)
	$\equiv\text{TiOH}^{0.434-} + \equiv\text{Ti}_2\text{O}^{0.555-} + \text{Rb}^+ + w\text{H}^+ \rightarrow [(\equiv(1-w)\text{TiOH}^{0.434-})(\equiv w\text{TiOH}_2^{0.566+})](\equiv(\text{Ti}_2\text{O}^{0.555-})_2)-\text{Rb}^+$	K_{Rb} (BOTO)
outer-sphere Rb ⁺		
	$\equiv\text{TiOH}^{0.434-} + \text{Rb}^+ \rightarrow (\equiv\text{TiOH}^{0.434-})-\text{Rb}^+$	K_{Rb} (OS)
	$\equiv\text{Ti}_2\text{O}^{0.555-} + \text{Rb}^+ \rightarrow (\equiv\text{Ti}_2\text{O}^{0.555-})-\text{Rb}^+$	K_{Rb} (OS)
inner-sphere Na ⁺		
	$2\equiv\text{TiOH}^{0.434-} + 2\equiv\text{Ti}_2\text{O}^{0.555-} + \text{Na}^+ + x\text{H}^+ \rightarrow [(\equiv(2-x)\text{TiOH}^{0.434-})(\equiv x\text{TiOH}_2^{0.566+})](\equiv(\text{Ti}_2\text{O}^{0.555-})_2)-\text{Na}^+$	K_{Na} (TD)
	$\equiv\text{TiOH}^{0.434-} + \equiv\text{Ti}_2\text{O}^{0.555-} + \text{Na}^+ + y\text{H}^+ \rightarrow [(\equiv(1-y)\text{TiOH}^{0.434-})(\equiv y\text{TiOH}_2^{0.566+})](\equiv(\text{Ti}_2\text{O}^{0.555-})_2)-\text{Na}^+$	K_{Na} (BOTO)
	$2\equiv\text{TiOH}^{0.434-} + \text{Na}^+ + z\text{H}^+ \rightarrow [(\equiv(2-z)\text{TiOH}^{0.434-})(\equiv z\text{TiOH}_2^{0.566+})]-\text{Na}^+$	K_{Na} (TOTO)
outer-sphere Na ⁺		
	$\equiv\text{TiOH}^{0.434-} + \text{Na}^+ \rightarrow (\equiv\text{TiOH}^{0.434-})-\text{Na}^+$	K_{Na} (OS)
	$\equiv\text{Ti}_2\text{O}^{0.555-} + \text{Na}^+ \rightarrow (\equiv\text{Ti}_2\text{O}^{0.555-})-\text{Na}^+$	K_{Na} (OS)
inner-sphere BOH Cl ⁻ (and Tr ⁻)		
	$\equiv\text{Ti}_2\text{O}^{0.555-} + \text{H}^+ + \text{Cl}^- \rightarrow (\equiv\text{Ti}_2\text{OH}^{0.445+})-\text{Cl}^-$	K_{Cl} (BOH)

^aThe variables v , w , x , y , and z represent the number of $\text{TiOH}_2^{0.566+}$ groups participating in the various inner-sphere Rb⁺ and Na⁺ complexes modeled as given in Table 5.

which clearly highlights surface charge differences with respect to both temperature and ionic medium. The NaCl(Tr) titration data also revealed that the batch 1 curves were noticeably steeper than batch 2 curves above the pH_{zpc} at 25, 50, and 100 °C, while differences were negligible at 150, 200, and 250 °C. The inset in the lower right panel of Figure 3 presents these differences at 25 and 100 °C for 0.30 M NaCl. It is apparent that the batch 1 surface charge data (dashed lines) are steeper than the batch 2 results (solid lines) under negative charge conditions ($\text{pH}_{\text{zpc}} - \text{pH} < 0$) and that the difference is greater at 25 °C than at 100 °C. The specific reasons for these

Table 5. Basic Stern CD-MUSIC Model Parameters for RbCl (top panel), NaCl(Tr) (middle panel), and NaCl (bottom panel) Media

Batch 2																	
temp (°C), salt	$\log K_{\text{H}_1}$ ^b	$\log K_{\text{H}_2}$ ^b	pH_{zappc}	C_s (F/m ²)	TD		BOTO		BOH								
					$\log K_{\text{Rb}}$	O_{tot}	νTiOH	CD									
25, RbCl	5.94	4.89	5.42	0.64	-1.00	8.25	1.70	0.48	-1.80	8.25	0.85	0.24	-1.10	-0.05	-0.14	-0.14	4.57
50, RbCl	5.61	4.61	5.12	0.60	-0.90	8.20	1.70	0.49	-1.75	8.20	0.85	0.24	-1.10	-0.05	-0.14	-0.14	4.88
100, RbCl	5.12	4.21	4.68	0.49	-0.75	8.09	1.70	0.49	-1.70	8.09	0.85	0.25	-1.10	-0.05	-0.14	-0.14	4.78
150, RbCl	4.83	3.97	4.41	0.51	-0.60	7.98	1.70	0.50	-1.65	7.98	0.85	0.25	-1.10	-0.05	-0.14	-0.14	5.52
200, RbCl	4.63	3.81	4.23	0.56	-0.50	7.87	1.70	0.51	-1.65	7.87	0.85	0.25	-1.10	-0.05	-0.14	-0.14	5.02
250, RbCl	4.50	3.70	4.11	0.67	-0.35	7.76	1.70	0.52	-1.65	7.76	0.85	0.26	-1.10	-0.05	-0.14	-0.14	5.05
Batch 2 only for 25, 50, and 100 °C; Combined Batches 1 and 2 for 150, 200, and 250 °C										TOTO	OS	BOH					
temp (°C), salt	C_s (F/m ²)	$\log K_{\text{Na}}$	O_{tot}	$\log K_{\text{Na}}$	TD		BOTO		BOH								
					$\log K_{\text{Na}}$	O_{tot}	νTiOH_2	CD									
25, NaCl(Tr)	0.64	-1.55	6.76	1.30	0.59	-0.85	6.08	0.50	0.33	-1.45	6.09	1.40	0.33	-1.20	-0.05	-0.14	6.41
50, NaCl(Tr)	0.64	-1.40	6.70	1.30	0.60	-0.90	6.05	0.50	0.33	-1.50	6.07	1.40	0.33	-1.30	-0.05	-0.14	4.16
100, NaCl(Tr)	0.70	-1.10	6.59	1.20	0.61	-0.85	5.99	0.40	0.33	-1.60	6.00	1.40	0.33	-1.60	-0.05	-0.14	5.97
150, NaCl(Tr)	0.77	-0.65	6.48	1.20	0.62	-0.70	5.93	0.40	0.34	-1.65	5.96	1.40	0.34	-1.75	-0.05	-0.14	3.99
200, NaCl(Tr)	0.98	-0.35	6.37	1.20	0.63	-0.65	5.88	0.40	0.34	-1.80	5.86	1.40	0.34	-1.80	-0.05	-0.14	3.96
250, NaCl(Tr)	1.20	-0.20	6.26	1.20	0.64	-0.60	5.82	0.35	0.34	-1.70	5.78	1.40	0.34	-1.90	-0.05	-0.14	3.84
Batch 1										TOTO	OS	BOH					
temp (°C), salt	C_s (F/m ²)	$\log K_{\text{Na}}$	O_{tot}	$\log K_{\text{Na}}$	TD		BOTO		BOH								
					$\log K_{\text{Na}}$	O_{tot}	νTiOH_2	CD									
25, NaCl	0.82	-1.55	6.76	1.30	0.59	-0.85	6.08	0.50	0.33	-1.45	6.09	1.40	0.33	-1.20	-0.05	-0.14	5.19
50, NaCl	0.82	-1.40	6.70	1.30	0.60	-0.90	6.05	0.50	0.33	-1.50	6.07	1.40	0.33	-1.30	-0.05	-0.14	4.72
100, NaCl	0.83	-1.10	6.59	1.20	0.61	-0.85	5.99	0.40	0.33	-1.60	6.00	1.40	0.33	-1.60	-0.05	-0.14	5.27
150, NaCl	0.85	-0.65	6.48	1.20	0.62	-0.70	5.93	0.40	0.34	-1.65	5.96	1.40	0.34	-1.75	-0.05	-0.14	4.38
200, NaCl	0.93	-0.35	6.37	1.20	0.63	-0.65	5.88	0.40	0.34	-1.80	5.86	1.40	0.34	-1.80	-0.05	-0.14	4.04
250, NaCl	1.35	-0.20	6.26	1.20	0.64	-0.60	5.82	0.35	0.34	-1.70	5.78	1.40	0.34	-1.90	-0.05	-0.14	3.66

^aThe intrinsic equilibrium constants ($\log K$) correspond to the reactions given in Table 4. C_s is the Stern-layer capacitance value, O_{tot} is the total number of oxygen atoms in the primary coordination sphere of Rb⁺ or Na⁺ adsorbed as (left to right) TD, BOTO, and TOTO (Na⁺ only) complexes, and ν , w , x , y , and z represent the corresponding number of oxygens as TiOH₂⁺ groups. CD values represent those portions of Rb⁺, Na⁺, or Cl⁻ charge attributed to the surface plane (remaining charge at the Stern plane), and the model selection criterion (MSC) values are a goodness of fit measure (larger is better). ^bFrom Machesky et al.²⁸

326 differences are not known, although temperature may have
 327 played a role, since the batch 1 and 2 curves coalesced at 150
 328 °C and above. It is also possible that factors such as particle
 329 morphology, surface roughness, or other defects could have
 330 contributed to the differences. Bourikas et al.²⁶ divided the
 331 room temperature charging data for titanium oxides into those
 332 with higher (1.6 C/m^2) and lower (0.9 C/m^2) Stern-layer
 333 capacitance values and suggested that the difference was due to
 334 surface roughness, with the lower capacitance group being
 335 more well-crystallized. Livi et al.²⁷ characterized the atomic
 336 scale edge morphology of the same batch 2 rutile used in this
 337 study with detailed STEM HAADF imaging and estimated that
 338 one-third of the predominant (110) faces may be populated by
 339 steps at the atomic scale. Although batch 1 rutile was not
 340 similarly characterized, it is conceivable that its step population
 341 or other imperfections could be significantly different from
 342 those of batch 2 rutile and affect charging behavior. It is also
 343 possible that the batch differences become less apparent above
 344 100 °C, because surface imperfections are somehow smoothed
 345 at the relatively acidic conditions ($\text{pH} \sim 2.7$) from which the
 346 rutile titrations commenced after an overnight equilibration
 347 period.²⁵ In any case, the 25, 50, and 100 °C NaCl(Tr) data
 348 presented in Figure 3 are for batch 2 rutile, while combined
 349 batch 2 and batch 1 data are presented at 150, 200, and 250 °C.
 350 The experimental data and SCM model fits for Figure 3 and for
 351 all additional experimental conditions are provided in the
 352 Supporting Information.

353 **3.3. Surface Complexation Modeling.** The ion binding
 354 reactions used are given in Table 4. Note that the fractional
 355 charges for the TO and BO groups, as well as their protonation
 356 reactions and corresponding equilibrium constants, come
 357 directly from earlier work.²⁸ However, all other reactions in
 358 Table 4 have not been used before and were formulated to
 359 closely match observed CMD binding configurations. Specif-
 360 ically, the configurations that involve TO groups in inner-
 361 sphere Rb^+ and Na^+ binding (e.g., TD, BOTO, and TOTO)
 362 explicitly incorporate the number of those TO groups existing
 363 as TOH_2 in the adsorption complex. Those quantities are
 364 represented by the variables, v , w , x , y , and z , in Table 4 and
 365 represent the number of TOH_2 groups participating in TD Rb^+ ,
 366 bidentate ($\text{TOBO}+\text{TOTO}$) Rb^+ , TD Na^+ , BOTO Na^+ , and
 367 TOTO Na^+ adsorption complexes, respectively. Table 5
 368 contains the numerical values for these variables as determined
 369 from the CMD simulations. The number of TOH groups
 370 participating in the various adsorption complexes are then fixed
 371 by difference as, for example, $2 - v$ for TD Rb^+ and $1 - y$ for
 372 BOTO Na^+ . Additionally, all Cl^- binding is represented solely
 373 by the observed inner-sphere association with BOH groups
 374 (section 3.1).

375 The SCM fitting process was as follows. The numbers of Rb^+
 376 and Na^+ ions in specific binding configurations (Table 3) were
 377 used to calculate binding site ratios at each negative and neutral
 378 charge condition and temperature (e.g., BOTO/TD), which
 379 were then matched as closely as possible by adjustment (both
 380 freely optimized and manual) of the corresponding Stern-layer
 381 capacitance values and intrinsic binding constants. Correspond-
 382 ing CD values were fixed at values predicted from the CMD
 383 simulations. These CD values were fixed on the basis of the
 384 inner-sphere binding configurations observed ($\text{TD} = 4$, BOTO
 385 + TOTO = 2), divided by the total number of oxygen atoms in
 386 first coordination sphere of Rb^+ and Na^+ (the O_{tot} values in
 387 Table 5). The CD value for Cl^- in inner-sphere monodentate
 388 coordination with BOH was determined similarly. The total

389 number of water molecules and BOH groups within the 389
 390 primary coordination sphere of adsorbed Cl^- at 25, 150, and 390
 391 250 °C was 7.36, 6.98, and 6.73, respectively. Given this small 391
 392 decrease in adsorbed Cl^- hydration, which translates into a 0.01 392
 393 difference in calculated CD values, it was decided to fix the CD 393
 394 value for Cl^- (and Tr^-) at the temperature-averaged CD value 394
 395 ($\text{CD} = z/n = -1/7.03 = -0.14$) for all SCM simulations. 395

396 Model parameters are given in Table 5 for rutile in RbCl 396
 397 media (top), $\text{NaCl}(\text{Tr})$ media (middle), and NaCl media 397
 398 (bottom). All RbCl titrations utilized batch 2 rutile and all 398
 399 NaCl -only titrations (bottom panel) utilized batch 1 rutile. The 399
 400 $\text{NaCl}(\text{Tr})$ parameters given in the middle panel represent only 400
 401 batch 2 rutile at lower temperatures (25, 50, 100 °C) and 401
 402 combined batch 1 and batch 2 rutile at higher temperatures 402
 403 (150, 200, 250 °C), since the surface charge curves at both 0.03 403
 404 and 0.30 m were virtually indistinguishable. The protonation 404
 405 constant ($\log K_{\text{H}1}$ and $\log K_{\text{H}2}$) and pH of zero net proton 405
 406 charge (pH_{zmpc}) values are from previous studies,^{23,28} while the 406
 407 Stern-layer capacitance values (C_S), as well as the remaining \log 407
 408 K and model selection criterion (MSC) values, were 408
 409 determined in this study.

4. DISCUSSION

410 **4.1. Nonhydroxylated vs Hydroxylated CMD Results.** 410
 411 Our CMD simulations employ nondissociable SPC/E water 411
 412 molecules, and hence, bulk or surface proton exchange 412
 413 reactions are not possible during simulation. Consequently, 413
 414 the charge state of the surface must be set manually beforehand, 414
 415 starting from either the neutral hydroxylated or neutral 415
 416 nonhydroxylated surface. On the neutral hydroxylated surface, 416
 417 hydroxyl groups terminate 5-fold coordinated Ti atoms ($\text{Ti}-$ 417
 418 OH) and each BO atom is protonated (BOH), while the 418
 419 neutral nonhydroxylated surface is populated by bare BO atoms 419
 420 and water molecules terminate the 5-fold coordinated Ti atoms 420
 421 ($\text{Ti}-\text{OH}_2$). In alternate terminology, water is “associated” on 421
 422 the nonhydroxylated surface and “dissociated” on the 422
 423 hydroxylated surface. Charge is generated on the hydroxylated 423
 424 surface by either removing protons from BOH groups to create 424
 425 negative charge or adding protons to $\text{Ti}-\text{OH}$ groups to create 425
 426 positive charge, while protons are removed from $\text{Ti}-\text{OH}_2$ 426
 427 groups or added to BO groups to generate negative or positive 427
 428 nonhydroxylated surfaces, respectively.

429 These differences impact our SCM efforts because 429
 430 hydroxylated and nonhydroxylated surfaces bind ions some- 430
 431 what differently. This was first noted by Předota and Vlcek,²⁰ 431
 432 and a more specific comparison can be made between the 432
 433 nonhydroxylated results of the present study and the 433
 434 hydroxylated surface results reported by Předota et al.,²¹ 434
 435 which concern the same ions, surface charge states, and 435
 436 temperatures. Boundaries between the various binding 436
 437 configurations, particularly for Na^+ , are a bit different between 437
 438 the hydroxylated and nonhydroxylated simulations (see section 438
 439 3.1). Nevertheless, ion-binding trends for both surfaces are 439
 440 similar, most notably in that under negative charge conditions 440
 441 TD binding of Rb^+ is always dominant and becomes more so 441
 442 for Na^+ with increasing negative charge and temperature. The 442
 443 most significant difference concerns bidentate binding, where 443
 444 BOTO binding tends to dominate at nonhydroxylated surfaces 444
 445 and TOTO binding at hydroxylated surfaces. This difference is 445
 446 understandable given that BOs are unprotonated at non- 446
 447 hydroxylated surfaces and TOs usually contain one proton 447
 448 (rather than two) at hydroxylated surfaces. There is also more 448
 449 inner-sphere binding of Na^+ (as TOTO) at neutral 449

450 hydroxylated surfaces than at neutral nonhydroxylated ones.
 451 Chloride binding at $+0.1 \text{ C/m}^2$ charge is also similar at both
 452 surfaces, but with somewhat greater replacement of terminal
 453 water molecules (eq 1) at the nonhydroxylated surface because
 454 associated water molecules occupy all terminal sites on the
 455 positive nonhydroxylated surface but only one-eighth of these
 456 sites on the positive hydroxylated surface.

457 In our MUSIC model surface protonation scheme,²⁸ the
 458 protonation constant of BO is less than that of Ti—OH ($K_{\text{H}_2} <$
 459 K_{H_1} in Table 5), meaning that the more acidic BO will be the
 460 dominant negatively charged site, and conversely, Ti—OH₂ will
 461 be the dominant positively charged site. At 25 °C and the
 462 pH_{zpc} (5.4) about 77% of the rutile (110) surface groups exist
 463 as BO and Ti—OH₂ combined. As these are also the dominant
 464 site types on the nonhydroxylated surface, our SCM modeling
 465 efforts focused on matching the CMD results for that surface.
 466 Moreover, there is other molecular-level support for the
 467 dominance of BO and Ti—OH₂ on the neutral rutile (110)
 468 surface. Kumar et al.²⁹ found that water was 25% dissociated
 469 (corresponding to 75% Ti—OH₂ + BO surface groups) on the
 470 rutile (110) surface from DFTMD simulations, although in a
 471 later study they cautioned that DFT alone was unable to
 472 definitively distinguish between partially dissociated and fully
 473 associated water because of the small energy differences
 474 involved.³⁰ Raju et al.³¹ predicted water to be 23% dissociated
 475 on the rutile (110) surface from MD simulations with the
 476 REAXFF force field, while Huang et al.³² observed 10%
 477 dissociated water also via REAXFF MD simulations. Titanium—
 478 oxygen distances are longer for Ti—OH₂ than for Ti—OH, with
 479 the plane wave DFT calculations of Bandura et al.³³ providing
 480 distance ranges of 2.20–2.30 Å for the former and 1.88–2.00 Å
 481 for the latter. Given this difference, Zhang et al.³⁴ were able to
 482 estimate from X-ray crystal truncation rod measurements in DI
 483 water (pH 5.6) that the observed Ti—O distance of 2.13 Å
 484 corresponded to 30(±15)% dissociated water. The Ti—O
 485 distance decreased to 2.05 Å at pH 12 in the presence of 1 *m*
 486 RbCl, from which they estimated that dissociated water had
 487 increased to 65(±15)%. In comparison, our MUSIC model
 488 surface protonation scheme predicts water is about 84%
 489 dissociated under those solution conditions.

490 **4.2. SCM Parameter Trends.** SCM fits to the RbCl and
 491 NaCl(Tr) titration data are generally good, as can be seen in
 492 Figure 3, as well as in the data tabulated in the Supporting
 493 Information. The MSC values in Table 5 quantify the goodness
 494 of fit and range from 3.6 to 6.5. Various other modeling
 495 schemes have also been used to fit some of these titration data,
 496 and similar or even higher MSC values have resulted.^{17,28}
 497 However, the present SCM results are constrained more fully
 498 by the available molecular level information, particularly over a
 499 wide range of temperatures and surface charge states.

500 The present SCM is based on that developed by Ridley et
 501 al.,¹⁷ and consequently, modeled reactions are similar,
 502 consisting of inner-sphere tetradentate and bidentate adsorp-
 503 tion, as well as outer-sphere binding. Moreover, some of the
 504 same titration data were fit by Ridley et al.,¹⁷ specifically those
 505 for batch 2 rutile in both RbCl and NaCl media at 25 and 50
 506 °C. Consequently, it was possible to fix the batch 2 Stern-layer
 507 capacitance values (C_S) to those determined by Ridley et al.¹⁷
 508 at 25 °C (0.64 C/m^2), whereas batch 1 C_S values are greater
 509 (0.82 C/m^2), reflecting the greater degree of negative surface
 510 charge development. At higher temperatures, batch 1 and batch
 511 2 C_S values in NaCl and NaCl(Tr) media increase, reflecting
 512 increasing negative surface charge development, while C_S values

513 for RbCl are lower at 50, 100, 150, and 200 °C than at 25 °C. 513
 514 This decrease in capacitance values is attributable to the 514
 515 relatively slight enhancement in negative surface charge 515
 516 development between 25 and 200 °C (Figure 3, left) being 516
 517 more than offset by the effect of the temperature increase on 517
 518 the SCM electrostatic terms, which are simulated with the 518
 519 C_S and CD parameters. That is, model-derived surface potentials 519
 520 increase with temperature, for example, from 55 mV/pH unit at 520
 521 25 °C to 88 mV/pH unit at 200 °C, which is similar to the 521
 522 increase in the Nernst potential slope over the same 522
 523 temperature range (59–94 mV/pH unit). Consequently, 523
 524 given that CD values were held at CMD-derived values, C_S 524
 525 values needed to decrease to moderate the increased potentials. 525

526 As temperature increases, negative surface charge develop- 526
 527 ment increases much more sharply in NaCl(Tr) than RbCl 527
 528 media, reflecting the movement of more Na⁺ to the innermost 528
 529 TD binding site (Figure 2), whereas TD binding always 529
 530 predominates for Rb⁺ under negative charge conditions (Figure 530
 531 1). Consequently, the intrinsic Na⁺ TD binding constant 531
 532 increases more between 25 and 250 °C (log K from -1.55 to 532
 533 -0.20) than does the Rb⁺ TD constant (from -1.00 to -0.35). 533
 534 The remaining binding constants for both Rb⁺ and Na⁺ are less 534
 535 temperature dependent. The bidentate BOTO constants for 535
 536 both Rb⁺ and Na⁺ increase slightly between 25 and 250 °C, 536
 537 while the Na⁺ TOTO constant and Na⁺ OS constant decrease 537
 538 slightly, again reflective of both Rb⁺ and Na⁺ moving closer to 538
 539 the surface with increasing temperature as BOTO and 539
 540 ultimately TD adsorption complexes. In our previous SCMs 540
 541 utilizing the batch 1 NaCl data,^{23,35,36} we considered Na⁺ 541
 542 binding to be dominated by one complex over the entire range 542
 543 of pH and temperature, which the CMD results demonstrate is 543
 544 too simple a picture.

545 The decreased degree of cation hydration with increasing 545
 546 temperature is also reflected in the CMD-derived CD values for 546
 547 TD binding, which increase slightly (≤ 0.05 valence units) with 547
 548 temperature. For example, the total number of oxygen atoms in 548
 549 the first coordination sphere of Na⁺ adsorbed in TD fashion at 549
 550 -0.2 C/m^2 charge are 6.76 at 25 °C and 6.26 at 250 °C (Table 550
 551 5), which results in CD values of 0.59 (4/6.76) and 0.64 (4/ 551
 552 6.26), respectively. The CMD-derived bulk solution primary 552
 553 hydration numbers for Rb⁺ and Na⁺ also decrease with 553
 554 increasing temperature, consistent with previous studies.^{37,38} 554

555 Some of the CMD results for Cl⁻ binding were also 555
 556 incorporated into the SCM, even though Cl⁻ binding trends 556
 557 with respect to charge could not be established because of the 557
 558 narrow pH window experimentally available. Nevertheless, 558
 559 given that CMD axial density profiles for Cl⁻ were very similar 559
 560 in both RbCl and NaCl media, as expected, the corresponding 560
 561 SCM parameters were constrained to be equal for the single 561
 562 inner-sphere monodentate complex considered.

563 **4.3. Binding Site Ratio Agreement.** The site occupancies 563
 564 given in Table 3 were used to calculate binding site ratios (e.g., 564
 565 BOTO/TD) for Na⁺ at the -0.2 , -0.1 , and 0 C/m^2 charge 565
 566 states to provide numeric targets for SCM fitting. Despite 566
 567 numerous attempts, it was not possible to match any single 567
 568 ratio at all charge states for any temperature closely. 568
 569 Consequently, the -0.2 C/m^2 charge state and the ratios 569
 570 between the predominant inner-sphere Rb⁺ and Na⁺ adsorption 570
 571 configurations at that charge state, (BOTO + TOTO)/TD and 571
 572 BOTO/TD, respectively, were chosen as the primary numeric 572
 573 targets. SCM parameters (Stern-layer capacitance values and 573
 574 relevant binding constants) were adjusted (typically free 574
 575 optimization followed by manual adjustment) to best match 575

576 the CMD ratios using the 0.3 m ionic strength experimental
 577 data (nearest the effective ionic strength of the CMD
 578 simulations), while also attaining a reasonable fit to all
 579 experimental data.

580 The MD and fitted SCM ratios for Rb^+ are given in Figure 4
 581 (top). Rb^+ (BOTO + TOTO)/TD ratios are always <0.30

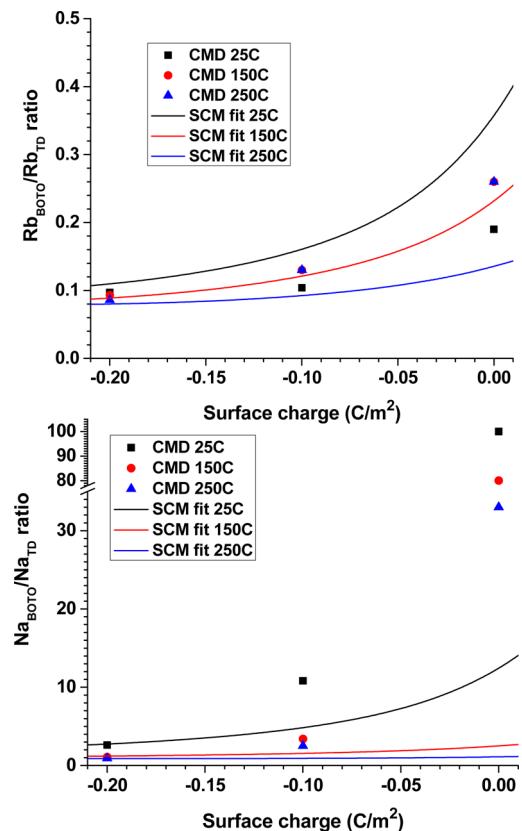


Figure 4. Bidentate/tetridentate binding site ratios from CMD simulations at -0.2 , -0.1 , and 0 C/m^2 surface charge and 25 , 150 , and $250 \text{ }^\circ\text{C}$ (symbols) and corresponding SCM fit ratios (lines) for RbCl (top) and $\text{NaCl}(\text{Tr})$ (bottom). Note the y -axis break in the lower graph. The $\text{NaCl}(\text{Tr})$ MD ratio at $25 \text{ }^\circ\text{C}$ and 0 surface charge (100) is an estimate.

582 because of the dominance of the TD complex. Consequently,
 583 closely matching the -0.2 C/m^2 ratios also resulted in
 584 reasonable agreement at -0.1 and even 0 C/m^2 , even though
 585 only fractions of Rb^+ atoms contribute to the ratio at the latter
 586 charge condition (e.g., $0.15/0.58$ at $150 \text{ }^\circ\text{C}$).

587 The Na^+ BOTO/TD ratios (Figure 4, bottom) decrease with
 588 increasing temperature because of the increasing dominance of
 589 TD binding. Ratios vary more widely than those for Rb^+ ,
 590 ranging from 1 to 100 (with 100 a rough estimate because no
 591 Na^+ was bound in TD fashion at 0 C/m^2 and $25 \text{ }^\circ\text{C}$). After
 592 adjusting the TD and BOTO binding constants to closely
 593 match the BOTO/TD ratios at -0.2 C/m^2 , the ratios at -0.1
 594 and 0 C/m^2 were significantly underpredicted. This mismatch
 595 also extended to other ratios, in particular to those between
 596 BOTO and TOTO for all charge conditions. Despite these
 597 discrepancies, only small adjustments to the intrinsic binding
 598 constants were necessary to better match binding site ratios at
 599 -0.1 rather than -0.2 C/m^2 . For example, the $250 \text{ }^\circ\text{C}$ BOTO/
 600 TD ratio for Na^+ at -0.1 C/m^2 (2.5) is nicely matched by
 601 decreasing the TD binding constant 0.2 log units and increasing

602 the BOTO binding constant 0.2 log units from those values
 603 providing a close match at -0.2 C/m^2 (-0.20 and -0.60 ,
 604 respectively, Table 5).

605 Limitations in both the CMD and SCM approaches are likely
 606 responsible for the inability to better match all Rb^+ and Na^+
 607 ratios simultaneously. The CMD model employs nondissoci-
 608 able SPC/E water, which requires the modeled surface charge
 609 states to be set manually.¹⁹ Moreover, our basic Stern SCM is
 610 composed of two smooth planes of charge (one representing
 611 the surface and the second the oppositely charged Stern plane),
 612 and electrostatic potentials are governed by continuum
 613 electrostatics, both of which are rather crude approximations
 614 at the molecular level. One manifestation of continuum
 615 electrostatics, as embodied in the Gouy–Chapmann–Stern
 616 theory, is apparent in Figure 4, where, as temperature increases,
 617 the predicted site ratios increase more slowly between -0.2 and
 618 0 C/m^2 charge. This follows directly from temperature
 619 appearing in the denominator of the Boltzmann factor,
 620 $\exp(-F\Psi/RT)$, used to correct intrinsic binding constants
 621 (Table S) for model-derived interfacial potentials (Ψ). For
 622 example, between 0 and -0.2 C/m^2 surface charge the Rb^+
 623 BOTO binding constant increases from -1.80 to 1.87 log units
 624 at $25 \text{ }^\circ\text{C}$ but only from -1.65 to 0.63 log units at $250 \text{ }^\circ\text{C}$.
 625 Finally, the CMD simulations apply strictly to the (110) surface
 626 of rutile with a given distribution of charged sites, while the
 627 titrations were performed on two distinct batches of rutile
 628 powder containing other crystal planes as well as various defects
 629 along with the dominant (110) surface (see section 3.2 above).
 630 Nevertheless, the present CMD and titration data, spanning a
 631 wide range of charge and temperature, constitute the most
 632 compatible and complete sets of molecular and macroscopic
 633 information currently available to help constrain SCMs.

4.4. SCM Agreement with Other Molecular Scale

634 **Information.** Several other types of molecular scale
 635 information exist with which to help gauge the accuracy of
 636 the SCM approach, at least near room temperature. That the
 637 nonhydroxylated surface better agrees with our surface
 638 protonation scheme, as well as with computational and
 639 experimental evidence that water is partially dissociated on
 640 the neutral (110) surface, is discussed in section 4.1.
 641 Additionally, the X-ray crystal truncation study of Zhang et
 642 al.³⁴ determined that the monolayer surface coverage of
 643 tetrahedrally coordinated Rb^+ ($1 \text{ ML} = 1 \text{ Rb}^+ \text{ per } 19.24 \text{ \AA}^2$)
 644 was $0.4 \pm 0.1 \text{ ML}$ in 1 m RbCl at $\text{pH } 12$. Although these
 645 solution conditions are beyond those directly included in the
 646 SCM, extrapolation to those conditions results in a very similar
 647 surface coverage of 0.38 ML . In a related study, Kohli et al.³⁹
 648 used resonant anomalous X-ray reflectivity (RAXR) to
 649 interrogate the vertical density profile of Rb^+ in 1 mM
 650 RbOH solution at $\text{pH } 11$ above the rutile (110) surface.
 651 Extrapolating the SCM to those solution conditions results in
 652 0.12 ML coverage, which compares less favorably with that
 653 measured ($0.080 \pm 0.003 \text{ ML}$). Additionally, the root-mean-
 654 square width of the RAXR data ($0 \pm 0.2 \text{ \AA}$) is consistent with
 655 the multisite nature of the CMD (and SCM) results. That is,
 656 mostly tetridentate binding but also some bidentate Rb^+
 657 binding.

658 There is also some molecular level support for the fitted (C_S)
 659 values at $25 \text{ }^\circ\text{C}$, which is the primary SCM fitting parameter
 660 governing interfacial electrostatics. Perez et al.⁴⁰ investigated
 661 the dielectric properties of water above the rutile (110) surface
 662 at $25 \text{ }^\circ\text{C}$ with nonequilibrium CMD simulations. CMD-derived
 663 C_S values depend sensitively on the location of the surface
 664

665 charge plane. The height of the surface charge plane needed to
 666 agree with the fit SCM values ($0.6\text{--}0.8\text{ F/m}^2$) is about 1.7 \AA
 667 above the first layer of coplanar Ti–O atoms on the (110)
 668 surface, which is between the heights of the charge-bearing BO
 669 ($\sim 1.2\text{ \AA}$) and TO ($\sim 2.0\text{ \AA}$) groups. Thus, the position of the
 670 surface charge plane is fully consistent with BO and TO
 671 oxygens as the charge-defining species on rutile (110). It was
 672 also concluded that the electrostatic potential profile above the
 673 rutile (110) surface was dominated by water, with the dissolved
 674 salts (0.35 M NaCl) being only of minor influence. Cheng and
 675 Sprik⁴¹ employed DFTMD to calculate C_s at the aqueous rutile
 676 (110) surface. Two different calculation methods resulted in
 677 virtually identical C_s values of $\sim 0.4\text{ F/m}^2$, which is within a
 678 factor of 2 of the SCM estimates of this study and those of
 679 Ridley et al.¹⁷

680 **4.5. CMD Binding Features Not Incorporated into the**
 681 **SCM.** The CMD simulations revealed several binding features
 682 that were not explicitly incorporated into the SCM. The
 683 replacement of terminal water molecules by Cl^- at positively
 684 charged ($+0.1\text{ C/m}^2$) surfaces (Figures 1 and 2) as represented
 685 by eq 1 was not included. Preliminary modeling indicated that a
 686 significant quantity of such replacements resulted in flatter
 687 simulated titration curves below the pH_{znpC} , which mimicked
 688 the higher temperature 0.03 m NaCl(Tr) data (Figure 3 right)
 689 but not the corresponding RbCl titrations (Figure 3 left), which
 690 showed no such flattening. Moreover, establishing definitive
 691 titration data trends below the pH_{znpC} was not possible because
 692 the accessible pH range is narrow and the “missing” proton
 693 concentration is small relative to the free proton concentration
 694 in these acidic solutions. Therefore, the replacement reaction
 695 was not incorporated into the final SCM.

696 A more subtle CMD adsorption trend was the inward
 697 movement of Rb^+ and Na^+ with increasing negative charge,
 698 even when bound in the same adsorption configuration. This is
 699 illustrated in Figure 5 for Rb^+ (top) and Na^+ (bottom) and
 700 results from increased Coulombic attraction. Between -0.1 and
 701 -0.2 C/m^2 , the movement inward amounts to about 0.1 \AA ,
 702 which, although slight, is not accounted for in the present or
 703 any other SCM. A potential incorporation strategy would be to
 704 formulate charge-dependent CD and/or C_s terms, but how to
 705 do that while the relative simplicity of SCMs is also maintained
 706 is not yet apparent. It should be noted that such a charge-
 707 dependent CD or C_s SCM would be distinct from the variable
 708 capacitance model (VCM) recently proposed by Boily,⁴² in
 709 which interfacial capacitance values are crystal face specific.

710 The inward movement of Rb^+ due to increased Coulombic
 711 attraction may also explain the 0.28 \AA height increase for Rb^+ in
 712 TD coordination in going from the XR results of Zhang et al.³⁴
 713 to the RAXR results of Kohli et al.³⁹ The former study was
 714 conducted in 1 m RbCl at $\text{pH } 12$ and the latter in 0.001 M
 715 RbOH at $\text{pH } 11$, and extrapolating our SCM for Rb^+ to those
 716 conditions results in estimated surface charges of -0.39 and
 717 -0.16 C/m^2 , respectively. Consequently, the lower negative
 718 charge in the Kohli et al.³⁹ study and the resulting decreased
 719 Coulombic attraction may at least be partly responsible for the
 720 higher Rb^+ adsorption height (3.72 vs 3.44 \AA) they reported³⁹

5. SUMMARY AND FUTURE DIRECTIONS

721 The CD-MUSIC SCMs we have formulated for the RbCl –
 722 rutile and combined NaCl – NaTr –rutile systems are the most
 723 molecularly consistent SCMs yet available over a wide range of
 724 temperature, pH, and ionic strength. Our ability to
 725 quantitatively constrain CD-MUSIC was more successful for

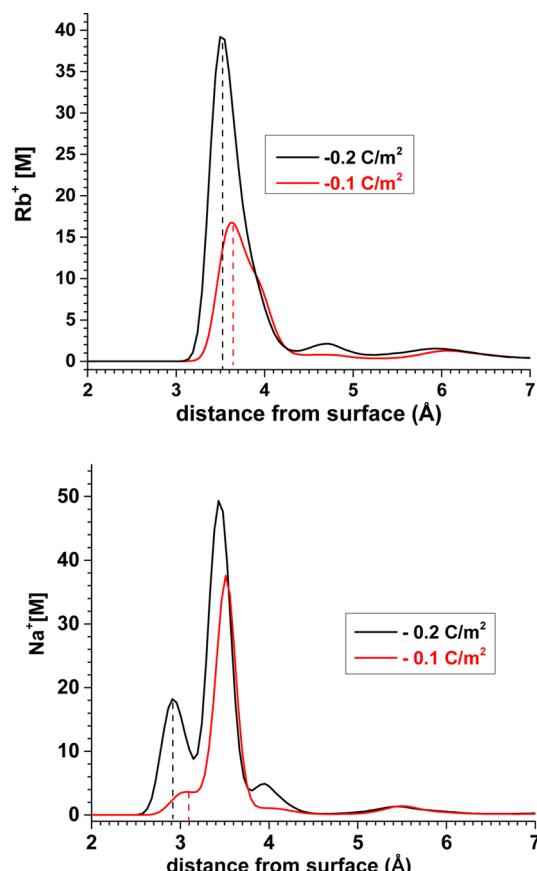


Figure 5. Axial density profiles at $25\text{ }^\circ\text{C}$ for Rb^+ (top) and Na^+ (bottom) at -0.1 (red line) and -0.2 C/m^2 (black line). The vertical dotted lines indicate the approximate peak distances [above the (110) surface plane] at the inner-sphere tetradentate site.

RbCl than for NaCl(Tr) media. This was because Rb^+ binding⁷²⁶ is predominately tetradentate under all negative charge⁷²⁷ conditions and temperatures, which meant that only the⁷²⁸ tetradentate binding constant required significant adjustment in⁷²⁹ order to reflect the dominance of that site, while also providing⁷³⁰ a good fit to the corresponding titration data. In NaCl media,⁷³¹ however, two types of bidentate binding, in addition to⁷³² tetradentate binding, were significant at lower negative charge⁷³³ and temperatures. Despite numerous adjustments to the⁷³⁴ corresponding tetradentate and bidentate binding constants,⁷³⁵ we were not able to achieve a close match between the⁷³⁶ constrained CD-MUSIC fits to the titration data and the⁷³⁷ bidentate/tetradentate binding site ratios for Na^+ observed via⁷³⁸ CMD at both negative charge conditions (-0.2 and $-0.1\text{ C/}\text{m}^2$).⁷³⁹ Consequently, we settled for a good match at -0.2 C/m^2 .⁷⁴⁰

The CMD results also revealed that adsorbed Rb^+ and Na^+ ⁷⁴¹ were drawn closer to the rutile (110) surface with increasing⁷⁴² negative charge even when bound in the same adsorption⁷⁴³ configuration (e.g., tetradentate). Although this movement is⁷⁴⁴ not captured in CD-MUSIC (or any other SCM) it could be⁷⁴⁵ mimicked by incorporating Stern-layer capacitance or CD⁷⁴⁶ values that vary with charge in future versions of the model.⁷⁴⁷ Moreover, since the CD and Stern-layer capacitance values that⁷⁴⁸ govern the electrostatic component of CD-MUSIC are based⁷⁴⁹ on mean field electrostatics, it is possible that more⁷⁵⁰ sophisticated potential of mean force electrostatic approaches⁷⁵¹ will yield more robust SCMs.⁴³ Future SCMs must utilize more⁷⁵² realistic molecular modeling inputs that incorporate dissociable⁷⁵³

754 water as well as water and ion polarizability. Additionally, the
 755 models need to be applied to a variety of mineral–water
 756 interfaces over a range of physical–chemical conditions. These
 757 interfaces should include those bounded by well-defined crystal
 758 faces and various aqueous solution compositions, which, when
 759 characterized by a wide variety of experimental techniques
 760 including surface charge and ion adsorption experiments, will
 761 provide corresponding macroscopic data for developing ever
 762 more realistic SCMs.

763 ■ ASSOCIATED CONTENT

764 ■ Supporting Information

765 An Excel file containing the rutile powder titration data and
 766 model fits discussed; the first worksheet contains the data and
 767 model fits for the RbCl media titrations, and the second
 768 worksheet contains the data and model fits for the NaCl(Tr)
 769 media titrations. The Supporting Information is available free of
 770 charge on the ACS Publications website at DOI: 10.1021/
 771 acs.jpcc.5b02841.

772 ■ AUTHOR INFORMATION

773 Corresponding Author

774 *E-mail: machesky@illinois.edu. Tel: 217-222-9322.

775 Notes

776 The authors declare no competing financial interest.

777 ■ ACKNOWLEDGMENTS

778 M.L.M. and D.J.W. were supported by the Division of Chemical
 779 Sciences, Geoscience and Biosciences, Office of Basic Energy
 780 Sciences, U.S. Department of Energy. M.K.R. acknowledges the
 781 support of the National Science Foundation (EAR-0842526).
 782 M.P. was supported by the Czech Science Foundation (13-
 783 08651S). The comments of two anonymous reviewers were
 784 greatly appreciated and resulted in an improved final manu-
 785 script.

786 ■ REFERENCES

- (1) Brown, G. E., Jr.; Calas, G. Mineral–Aqueous Solution Interfaces and Their Impact on the Environment. *Geochem. Perspect.* **2012**, *1*, 483–742.
- (2) Dzombak, D. A.; Morel, F. M. M. *Surface Complexation Modeling: Hydrous Ferric Oxide*; John Wiley and Sons: New York, 1990; p 393.
- (3) Lützenkirchen, J. *Surface Complexation Modelling*; Elsevier: New York, 2006; p 638.
- (4) Stumm, W.; Hohl, H.; Dalang, F. Interaction of Metal Ions with Hydrous Oxide Surfaces. *Croat. Chem. Acta* **1976**, *48*, 491–504.
- (5) Schindler, P. W.; Fürst, B.; Dick, R.; Wolf, P. U. Ligand Properties of Surface Silanol Groups. I. Surface Complex Formation with Fe^{3+} , Cu^{2+} , Cd^{2+} , and Pb^{2+} . *J. Colloid Interface Sci.* **1976**, *55*, 469–794.
- (6) Yates, D. E.; Levine, S.; Healy, T. W. Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface. *J. Chem. Soc., Faraday Trans. 1* **1974**, *70*, 1807–1818.
- (7) Davis, J. A.; James, R. O.; Leckie, J. O. Surface Ionization and Complexation at the Oxide/Water Interface: I. Computation of Electrical Double Layer Properties in Simple Electrolytes. *J. Colloid Interface Sci.* **1978**, *63*, 480–499.
- (8) Westall, J.; Hohl, H. A Comparison of Electrostatic Models for the Oxide/Solution Interface. *Adv. Colloid Interface Sci.* **1980**, *12*, 265–809 294.
- (9) Tejedor-Tejedor, M. I.; Anderson, M. A. “In Situ” ATR-Fourier Transform Infrared Studies of the Goethite (α -FeOOH)–Aqueous Solution Interface. *Langmuir* **1986**, *2*, 203–210.
- (10) Hayes, K. F.; Roe, A. L.; Brown, G. E., Jr.; Hodgson, K. O.; Leckie, J. O.; Parks, G. A. In Situ X-ray Absorption Study of Surface

- Complexes: Selenium Oxyanions on Goethite (α -FeOOH). *Science* **1987**, *238*, 783–786.
- (11) Rustad, J. R.; Felmy, A. R.; Hay, B. P. Molecular Statics Calculations for Iron Oxide and Oxyhydroxide Minerals: Toward a Flexible Model of the Reactive Mineral–Water Interface. *Geochim. Cosmochim. Acta* **1996**, *60*, 1553–1562.
- (12) Wasserman, E.; Rustad, J. R.; Felmy, A. R.; Hay, B. P.; Halley, J. W. Ewald Methods for Polarizable Surfaces with Application to Hydroxylation and Hydrogen Bonding on the (012) and (001) Surfaces of α -Fe₂O₃. *Surf. Sci.* **1997**, *385*, 217–239.
- (13) Sverjensky, D. A.; Fukushi, K. Anion Adsorption on Oxide Surfaces: Inclusion of the Water Dipole in Modeling the Electrostatics of Ligand Exchange. *Environ. Sci. Technol.* **2006**, *40*, 263–271.
- (14) Hiemstra, T.; Venema, P.; VanRiemsdijk, W. H. Intrinsic Proton Affinity of Reactive Surface Groups of Metal (Hydr)Oxides: The Bond Valence Principle. *J. Colloid Interface Sci.* **1996**, *184*, 680–692.
- (15) Hiemstra, T.; VanRiemsdijk, W. H. A Surface Structural Approach to Ion Adsorption: The Charge Distribution (CD) Model. *J. Colloid Interface Sci.* **1996**, *179*, 488–508.
- (16) Hiemstra, T.; Van Riemsdijk, W. H. On the Relationship between Charge Distribution, Surface Hydration, and the Structure of the Interface of Metal Hydroxides. *J. Colloid Interface Sci.* **2006**, *301*, 836 1–18.
- (17) Ridley, M. K.; Hiemstra, T.; van Riemsdijk, W. H.; Machesky, M. L. Inner-Sphere Complexation of Cations at the Rutile–Water Interface: A Concise Surface Structural Interpretation with the CD and MUSIC Model. *Geochim. Cosmochim. Acta* **2009**, *73*, 1841–1856.
- (18) Předota, M.; Bandura, A. V.; Cummings, P. T.; Kubicki, J. D.; Wesolowski, D. J.; Chialvo, A. A.; Machesky, M. L. Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of Ab Initio Potentials. *J. Phys. Chem. B* **2004**, *108*, 12049–12060.
- (19) Předota, M.; Zhang, Z.; Fenter, P.; Wesolowski, D. J.; Cummings, P. T. Electric Double Layer at the Rutile (110) Surface. 2. Adsorption of Ions from Molecular Dynamics and X-ray Experiments. *J. Phys. Chem. B* **2004**, *108*, 12061–12072.
- (20) Předota, M.; Vlcek, L. Comment on Parts 1 and 2 of the Series “Electric Double Layer at the Rutile (110) Surface”. *J. Phys. Chem. B* **2007**, *111*, 1245–1247.
- (21) Předota, M.; Machesky, M. L.; Wesolowski, D. J.; Cummings, P. T. Electric Double Layer at the Rutile (110) Surface. 4. Effect of Temperature and pH on the Adsorption and Dynamics of Ions. *J. Phys. Chem. C* **2013**, *117*, 22852–22866.
- (22) Matsui, M.; Akaogi, M. Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO₂. *Mol. Simul.* **1991**, *6*, 239–244.
- (23) Machesky, M. L.; Wesolowski, D. J.; Palmer, D. A.; Ichiro-Hayashi, K. Potentiometric Titrations of Rutile Suspensions to 250 °C. *J. Colloid Interface Sci.* **1998**, *200*, 298–309.
- (24) Ridley, M. K.; Machesky, M. L.; Palmer, D. A.; Wesolowski, D. J. Potentiometric Studies of the Rutile–Water Interface: Hydrogen-Electrode Concentration-Cell Versus Glass-Electrode Titrations. *Colloids Surf., A* **2002**, *204*, 295–308.
- (25) Machesky, M. L.; Wesolowski, D. J.; Palmer, D. A.; Ridley, M. K.; Benezeth, P.; Lvov, S. N.; Fedkin, M. V. Ion Adsorption into the Hydrothermal Regime: Experimental and Modeling Approaches. In *Surface Complexation Modelling*; Johannes, L., Ed.; Elsevier: New York, 2006; pp 324–358.
- (26) Bourikas, K.; Hiemstra, T.; Van Riemsdijk, W. H. Ion Pair Formation and Primary Charging Behavior of Titanium Oxide (Anatase and Rutile). *Langmuir* **2001**, *17*, 749–756.
- (27) Livi, K. J. T.; Schaffer, B.; Azzolini, D.; Seabourne, C. R.; Hardcastle, T. P.; Scott, A. J.; Hazen, R. M.; Erlebacher, J. D.; Brydson, R.; Sverjensky, D. A. Atomic-Scale Surface Roughness of Rutile and Implications for Organic Molecule Adsorption. *Langmuir* **2013**, *29*, 6876–6883.
- (28) Machesky, M. L.; Předota, M.; Wesolowski, D. J.; Vlcek, L.; Cummings, P. T.; Rosenqvist, J.; Ridley, M. K.; Kubicki, J. D.; Bandura, A. V.; Kumar, N.; Sofo, J. O. Surface Protonation at the

884 Rutile (110) Interface: Explicit Incorporation of Solvation Structure
885 within the Refined Music Model Framework. *Langmuir* **2008**, *24*,
886 12331–12339.

887 (29) Kumar, N.; Kent, P. R. C.; Bandura, A. V.; Kubicki, J. D.;
888 Wesolowski, D. J.; Cole, D. R.; Sofo, J. O. Faster Proton Transfer
889 Dynamics of Water on SnO_2 Compared to TiO_2 . *J. Chem. Phys.* **2011**,
890 *134*, 0447061–0447067.

891 (30) Kumar, N.; Kent, P. R. C.; Wesolowski, D. J.; Kubicki, J. D.
892 Modeling Water Adsorption on Rutile (110) Using van der Waals
893 Density Functional and Dft+U Methods. *J. Phys. Chem. C* **2013**, *117*,
894 23638–23644.

895 (31) Raju, M.; Kim, S.-Y.; van Duin, A. C. T.; Fichthorn, K. A. Reaxff
896 Reactive Force Field Study of the Dissociation of Water on Titania
897 Surfaces. *J. Phys. Chem. C* **2013**, *117*, 10558–10572.

898 (32) Huang, L.; Gubbins, K. E.; Li, L.; Lu, X. Water on Titanium
899 Dioxide Surface: A Revisiting by Reactive Molecular Dynamics
900 Simulations. *Langmuir* **2014**, *30*, 14832–14840.

901 (33) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. Comparisons of
902 Multilayer H_2O Adsorption onto the (110) Surfaces of $\alpha\text{-TiO}_2$ and
903 SnO_2 As Calculated with Density Functional Theory. *J. Phys. Chem. B*
904 **2008**, *112*, 11616–11624.

905 (34) Zhang, Z.; Fenter, P.; Sturchio, N. C.; Bedzyk, M. J.; Machesky,
906 M. L.; Wesolowski, D. J. Structure of Rutile TiO_2 (110) in Water and
907 1 Molal Rb^+ at pH 12: Inter-Relationship among Surface Charge,
908 Interfacial Hydration Structure, and Substrate Structural Displace-
909 ments. *Surf. Sci.* **2007**, *601*, 1129–1143.

910 (35) Machesky, M. L.; Wesolowski, D. J.; Palmer, D. A.; Ridley, M. K.
911 On the Temperature Dependence of Intrinsic Surface Protonation
912 Equilibrium Constants: An Extension of the Revised Music Model. *J.*
913 *Colloid Interface Sci.* **2001**, *239*, 314–327.

914 (36) Ridley, M. K.; Machesky, M. L.; Wesolowski, D. J.; Palmer, D. A.
915 Modeling the Surface Complexation of Calcium at the Rutile–Water
916 Interface to 250°C. *Geochim. Cosmochim. Acta* **2004**, *68*, 239–251.

917 (37) Driesner, T.; Seward, T. M.; Tironi, I. G. Molecular Dynamics
918 Simulation Study of Ionic Hydration and Ion Association in Dilute and
919 1 Molal Aqueous Sodium Chloride Solutions from Ambient to
920 Supercritical Conditions. *Geochim. Cosmochim. Acta* **1998**, *62*, 3095–
921 3107.

922 (38) Fulton, J. L.; Pfund, D. M.; Wallen, S. L.; Newville, M.; Stern, E.
923 A.; Ma, Y. Rubidium Ion Hydration in Ambient and Supercritical
924 Water. *J. Chem. Phys.* **1996**, *105*, 2161.

925 (39) Kohli, V.; Zhang, Z.; Park, C.; Fenter, P. Rb^+ and Sr^{2+}
926 Adsorption at the TiO_2 (110)–Electrolyte Interface Observed with
927 Resonant Anomalous X-ray Reflectivity. *Langmuir* **2009**, *26*, 950–958.

928 (40) Parez, S.; Předota, M.; Machesky, M. Dielectric Properties of
929 Water at Rutile and Graphite Surfaces: Effect of Molecular Structure. *J.*
930 *Phys. Chem. C* **2014**, *118*, 4818–4834.

931 (41) Cheng, J.; Sprik, M. The Electric Double Layer at a Rutile TiO_2
932 Water Interface Modelled Using Density Functional Theory Based
933 Molecular Dynamics Simulation. *J. Phys.: Condens. Matter* **2014**, *26*,
934 244108.

935 (42) Boily, J.-F. The Variable Capacitance Model: A Strategy for
936 Treating Contrasting Charge-Neutralizing Capabilities of Counterions
937 at the Mineral/Water Interface. *Langmuir* **2014**, *30*, 2009–2018.

938 (43) Attard, P. Fits to Hypernetted Chain Calculations for
939 Electrostatic Potential and Ion Concentrations for Use in Surface
940 Complexation. In *Surface Complexation Modelling*; Lutzenkirchen, J.,
941 Ed.; Elsevier: New York, 2006; pp 88–111.