TRIO: Burst Buffer Based I/0O Orchestration

Sarp Oral
Auburn University'
Auburn University, AL 36849

Teng Wang'

{tzw0019,mjp0009,bwang,wkyu } @auburn.edu

Abstract—The growing computing power on leadership HPC
systems is often accompanied by ever-escalating failure rates.
Checkpointing is a common defensive mechanism used by
scientific applications for failure recovery. However, directly
writing the large and bursty checkpointing dataset to parallel
filesystem can incur significant I/O contention on storage servers.
Such contention in turn degrades the raw bandwidth utilization
of storage servers and prolongs the average job I/O time of
concurrent applications. Recently burst buffer has been proposed
as an intermediate layer to absorb the bursty I/O traffic from
compute nodes to storage backend. But an I/O orchestration
mechanism is still desired to efficiently move checkpointing data
from bursty buffers to storage backend. In this paper, we propose
a burst buffer based I/O orchestration framework, named TRIO,
to intercept and reshape the bursty writes for better sequential
write traffic to storage severs. Meanwhile, TRIO coordinates the
flushing orders among concurrent burst buffers to alleviate the
contention on storage server bandwidth. Our experimental results
reveal that TRIO can deliver 30.5% higher bandwidth and reduce
the average job I/O time by 37% on average for data-intensive
applications in various checkpointing scenarios.

I. INTRODUCTION

More complex natural systems such as weather forecasting
and earthquake prediction are being simulated on large-scale
supercomputers with a colossal amount of hardware and soft-
ware components. The unprecedented growth of system com-
ponents results in an ever-escalating failure rate. According to
a survey conducted on the 100,000-node BlueGene/L system at
Lawrence Livermore National Laboratory (LLNL) in 2009, the
system experienced a hardware failure every 7-10 days [15].
As a common defensive mechanism for failure recovery,
checkpointing dominates 75%-80% of the I/O traffic on current
High Performance Computing (HPC) systems [25, 7].

Though checkpointing is necessary for fault tolerance, it
can introduce significant overhead. For instance, a study from
Sandia National Laboratories predicts that a 168-hour job on
100,000 nodes with Mean Times Between Failures (MTBF) of
5 years will spend 65% of its time in checkpointing [14]. A
major reason for such high overhead is that during checkpoint-
ing applications usually issue tens of thousands of concurrent
write requests to the underlying parallel filesystem (PFS).
Since the number of compute nodes is typically 10x~100x
more than those on storage systems [23, 20], the excessive
write requests to each server incur heavy contention, which
raises two performance issues. First, when competing I/O
requests exceed the capabilities of each storage server, its
bandwidth will degrade [16]. Second, when storage servers
are competed by multiple jobs, checkpointing for mission-

Michael Pritchard?

Bin Wang® Weikuan Yu'
Oak Ridge National Laboratory*
Oak Ridge, TN 37831
{oralhs} @ornl.gov

critical jobs can be frequently interrupted by low-priority jobs.
I/O requests from small jobs may also be delayed due to
concurrent accesses from large jobs, prolonging the average
I/0 time [13].

Previous efforts to mitigate I/O contention generally fall
into two categories: client-side and server-side optimizations.
Client-side optimizations mostly resolve I/O contention in a
single application, by buffering the dataset in staging area [16,
21] or optimizing application’s I/O pattern [11]. Server-side
optimizations generally embed their solutions inside the stor-
age server, overcoming issues of contention by dynamically
coordinating data movement among servers [29, 12, 32].

Recently, the idea of Burst Buffer (BB) is proposed as an
additional layer with fast memory devices such as DRAM and
SSDs for bursty I/O from compute applications [17]. Many
consider it as a promising solution of I/O contention for next-
generation computing platforms. With the mediation of BB,
applications can directly dump their large checkpoint datasets
to BB and minimize their direct interactions with PFS. BB can
flush the data to PFS at a later point of time. However, existing
solutions generally consider BBs as a reactive intermediate
layer to avoid applications’ direct interactions with PFS, the
issues of contention still remain when checkpointing dataset is
flushed from BBs to PFES. Therefore, a proactive BB orches-
tration framework that mitigates the contention on PFS carries
great significance. Compared with the client-side optimization,
an orchestration framework on BB is able to coordinate 1I/O
traffic between different jobs, mitigating I/O contention at a
larger scope. Compared with the server-side optimization, an
orchestration framework on BB can free storage servers from
the extra responsibility of handling I/O contention, making it
highly portable to other PFSs.

In this work, we propose TRIO, a burst buffer orchestration
framework, to efficiently move large checkpointing dataset
to PFS. It is accomplished by two component techniques:
Stacked AVL-Tree Based Indexing (STI) and Contention-
Aware Scheduling (CAS). STI organizes the checkpointing
write requests inside each BB according to their physical
layout among storage servers and assist data flush operation
with enhanced sequentiality. CAS orchestrates all BB’s flush
operations to mitigate I/O contention. Taken together, our
contributions are three-fold.

e« We have conducted a comprehensive analysis on two
issues that are associated with checkpointing operations
in HPC systems, i.e., degraded bandwidth utilization of
storage servers and prolonged average job I/O time.



[ Time(s) | BTIO | MPI-TILE-IO] IOR | AVG | TOT |
MuliWL |41 12183 | 179.75 | 114.19 | 179.75
SigWL | 9.79 72.28 61 | 8102 | 16l

TABLE I: The I/O Time of individual benchmarks when they
are launched concurrently (MultiWL) and serially (SigWL).

« Based on our analysis, we propose TRIO to orchestrate
applications’ write requests that are buffered in BB for
enhanced I/O sequentiality and alleviated I/O contention.

o We have evaluated the performance of TRIO using rep-
resentative checkpointing patterns. Our results reveal that
TRIO is able to deliver 30.5% higher I/O bandwidth and
reduce average job I/O time by 37%.

The rest of this paper is organized as follows. Section II ex-
perimentally analyzes the major issues restricting applications’
I/O performance. Section III presents the design of TRIO.
Section IV systematically evaluates the benefits of TRIO.
Related work and conclusion are discussed in Section V and
Section VI.

II. MOTIVATION

In this section, we experimentally study two issues resulting
from I/O contention, namely, prolonged average job I/O time
and degraded storage server bandwidth utilization.

A. Experimental Environment

Testbed: Our study was conducted on the Titan supercom-
puter [4] at Oak Ridge National Laboratory (ORNL). Each
compute node is equipped with a 16-core 2.2GHZ AMD
Opteron 6274 (Interlagos) processor and 32 GB of RAM.
These nodes are connected to each other via Gemini high-
speed interconnect. Spider II filesystem [24] serves as the
backend storage system for Titan. It is composed of two
Lustre-based filesystems: Atlasl and Atlas2, which provide
30 PB of storage space and 1 TB/s of aggregated bandwidth.
Files are striped across multiple object storage targets (OSTs)
using the default stripe size of 1 MB and stripe count of four.

Benchmarks: For the performance examination of PFS,
we used multi-job workloads composed of IOR [19], MPI-
Tile-I0, and BTIO [31]. IOR is a flexible benchmarking
tool capable of emulating diverse I/O access patterns. It
was initially designed for measuring the I/O performance of
parallel filesystems. MPI-Tile-IO utilizes a common workload
wherein multiple processes concurrently access a dense two-
dimensional dataset using MPI-IO. BTIO is derived from com-
putational fluid dynamics applications. It produces a block-
tridiagonal partitioning pattern on a three-dimensional array
across a square number of processes. Each process dumps
multiple Cartesian subsets of the entire data set during its
I/O phase. IOR and MPI-Tile-IO are configured to use N-
1 checkpointing pattern in which multiple processes write to
a non-overlapping, contiguous extent of a shared file, while
BTIO is configured to follow the N-N checkpointing pattern
that many processes each write to one of many separate files.

1000

—e— Bandwidth
~ 800 ¢+
4
m
2 600 | ]
e
% 400 s D
c
©
@ 200 |
0 L L L L
1 2 4 8 16 32

Number of Processes

Fig. 1: The impact of increasing number of concurrent pro-
cesses to the bandwidth of a single OST.

We dedicate 4, 8, and 16 nodes to run BTIO, MPI-Tile-10
and IOR, respectively. In accordance with their requirements
on minimum process counts, 16 processes were launched on
each node for both BTIO and MPI-Tile-10O, while one process
per node was launched for IOR.

B. Prolonged I/O Time under Contention

In general, PFS services I/O requests in a timely manner,
i.e., in a First-Come-First-Serve (FCFS) order, which results in
undifferentiated I/O service to concurrent jobs. This undiffer-
entiated I/O service can lead to prolonged I/O time. To emulate
its impact in multi-job environment, we run BTIO, MPI-
Tile-IO and IOR concurrently but differentiate their output
data sizes as 13.27GB, 64GB and 128GB respectively. This
launch configuration is referred to as MultiWL. Competition
for storage is assured by striping all benchmark output files
across the same four OSTs. We compare their job I/O time
with that when these benchmarks are launched in a serial order,
which is referred to as SigWL.

The I/O time of the individual benchmarks are shown
in Table I as three columns, BTIO,MPI-TILE-IO and IOR,
respectively. The average and total I/O time of the three
benchmarks are shown in columns AVG and TOT. As we can
see, the average I/O time of MultiWL is 1.41x longer than
SigWL. This is because a job’s storage service is affected by
the contention from other concurrent jobs. And the contention
from large jobs can significantly delay the I/O of small jobs.
In our tests, the most affected benchmark is BTIO, which
generates the smallest workload, its I/O time in MultiWL is
4.18% longer than SigWL.

C. Degraded Bandwidth Utilization Due to Contention

On the storage server side, the aforementioned I/O con-
tention can degrade the effective bandwidth utilized by ap-
plications. A key reason for contention is that each process
can access multiple OSTs, and each OST is accessible from
multiple processes. Such N-N mapping poses two challenges:
first, each OST suffers from the competing accesses from
multiple processes; second, since the requests of each process
are distributed to multiple OSTs instead of one, each process



(a): 1 0ST |

(b): 2 OSTs

(c): 4 OSTs

Fig. 2: Scenarios when individual writes are distributed to
different number of OSTs. “N-OST” means that each process’s
writes are distributed to N OSTs.

is involved in the competition for more than one OST. We use
IOR benchmark to analyze the impacts of both challenges.
Similar to previous experiment, we place one IOR process on
each compute node.

To investigate the first challenge, we use an increasing num-
ber of processes to concurrently write in total 32GB data to a
single OST. The result is exhibited in Fig. 1. The bandwidth
first increases from 356MB/s with 1 process to 574MB/s with
2 processes, then decreases constantly to 401MB/s with 32
processes, resulting in 30.1% bandwidth degradation from 2
to 32 processes. The improvement from 1 to 2 processes is
because the single-process I/O stream is not able to saturate
OST bandwidth. Specifically, each OST is organized as RAID-
6 arrays, yielding a raw bandwidth of 750MB/s [24]. When
an I/O request is issued, it is relayed multiple hops from
peer compute nodes to I/O router, then goes through SION
network, Object Storage Server (OSS) and eventually arrives at
OST. Despite of the high network bandwidth along the critical
path, the extra data copy and data processing overhead at each
hop cause additional delays. On top of these factors, in this
experiment, the bandwidth utilization is 75.6% when there are
only two concurrent processes, but drops to 53.5% when there
are 32 processes.

Our intuition suggests that contention from 2 to 32 processes
can incur heavy disk seeks; however, our lack of privilege to
gather I/O traces at the kernel level on ORNL’s Spider filesys-
tem prevents us from directly proving our intuition. We repeat
our experiments on our in-house Lustre filesystem (running
the same version as that on Spider) and observe that up to
32% bandwidth degradation are caused by I/O contention. By
analyzing I/O traces using blktrace [1], we find that disk access
time accounts for 97.1% of the total I/O time on average.
This information indicates that excessive concurrent accesses
to OSTs can degrade the bandwidth utilization.

To emulate the second challenge, we distribute each IOR’s
write requests to multiple OSTs. In our experiment, we spread
the write requests from each process to 1, 2, 4 OSTs, which are

2500
M1 0ST ©2 0STs 4 OSTs

¥ 2000
[=4)
2
= 1500 '
5
2 1000 ' '
c
[5°]
o

500 ' '

0 _ ANMTSUEEES W FAEEE WIWVAEEER  ANMSLEEES \NVAEEES  N\VaEs
4 8 16 32 64 128

Number of Processes

Fig. 3: Bandwidth when individual writes are distributed to
different number of OSTs.

presented in Fig. 2 as 1 OST, 2 OSTs, 4 OSTs, respectively.
We fix the total data size as 128GB, the number of utilized
OSTs as 4, and measure the bandwidth under the three
scenarios using a varying number of processes. The result is
demonstrated in Fig. 3. The scenario of 1 OST consistently
delivers the highest bandwidth with the same number of
processes, outperforming 2 OSTs and 4 OSTs by 16% and
26% on average, respectively. This is because, by localizing
each process’s writes on 1 OST, each OST is competed by
fewer processes. Another interesting observation is that the
bandwidth under the same scenario (e.g. 1 OST) degrades
with the increasing number of processes. This trend can be
explained by the impact of first issue as we measured in Fig. 1.

Based on our characterization, under a contentious environ-
ment where numerous processes concurrently access a smaller
number of OSTs, bandwidth can be more efficiently utilized by
localizing each process’s access on one OST, and scheduling
a proper number of processes to access each OST.

III. TRIO: A BURST BUFFER BASED ORCHESTRATION

The aforementioned two I/O performance issues result from
direct and eager interactions between applications and storage
servers. Many computing platforms, such as the supercomputer
Tianhe-2 [8] and the two future generation supercomputers
Coral [2] and Trinity [9], have introduced Burst Buffer (BB)
as an intermediate layer to mitigate these issues. Buffering
large checkpoint dataset in BB gives more visibility to the I/O
traffic, which provides a chance to intercept and reshape the
pattern of I/O operations on PFS. However, existing works
generally use BB as a middle layer to avoid applications’
direct interaction with PFS [17], few works [30] focus on
the interaction between BB and PFS, i.e. how to orchestrate
I/O so that intensive datasets can be efficiently flushed from
BB to PFS. To this end, we propose TRIO, a burst buffer-
based orchestration framework, to coordinate the I/O traffic
from compute nodes to BB and to storage servers. In the
rest of the section, we first highlight the main idea of TRIO
through a comparison with a reactive data flush approach
for BB management; then we detail two key techniques in



\Compute Node-B |

| Compute Node-A|

Process0 Pracessl

r Burst Buffer-A \

Flush Order

I; ; I _________ >
1 [B5] JCANy l I
Burst Buffer-B N —_
B7(B8[B5|B6 \ \\
Time Time ;
O O
,_'_ __________ De ;t_a_ fTu_s_h____________i unordered
O O

Legend
| [ ] [BMEIE

Storage Server1

Storage Server2 Storage Servert

(a) Burst buffer framework with data

|

|

|

|

|

| =

— I \\\

|

|

|

|

|

flush. I
I

(b) Reactive data flush.

Inter-BB Flush
Ordering using CAS
Burst Buffer-A
\ ( Server-Oriented Data \

Burst Buffer-B

Server-Oriented Data
Organization using STI

O
Inter-BB Flush Order in TRIO
S @ Flush first S
Storage Server1 © Flush second Storage Server2

(c) Proactive data flush with TRIO.

Storage Server2

Fig. 4: A conceptual example comparing TRIO with reactive data flush approach. In (b), Reactive data flush incurs unordered
arrival (e.g. B7 arrives earlier than B5 to Serverl) and interleaved requests of BB-A and BB-B. In (c), Server-Oriented Data
Organization increases sequentiality while Inter-BB Flush Ordering mitigates I/O contention.

Section III-B and Section III-C.
A. Main Idea of TRIO

Fig. 4(a) illustrates a general framework of how BB interacts
with PFS. On each Compute Node (CN), 2 processes are
checkpointing to a shared file that is striped over 2 storage
servers. Al, A2, A3, A4, BS5, B6, B7 and B8 are contiguous
file segments. These segments are first buffered on the BB
located on each CN during checkpointing, then flushed from
BB to two storage servers on PFS.

An intuitive strategy for the BB is to reactively flush
the datasets to the PFS as they arrive at the BB. Fig. 4(b)
shows the basic idea of such a reactive approach. However,
reactive approach has two drawbacks. First, directly flushing
the unordered segments from each BB can degrade the chance
of sequential writes (We refer to this chance as sequentiality).
In this figure, segments B5 and B7 are contiguously laid out
on storage server 1, but arrive at BB-B out of order. Due to
reactive flushing, B7 will be flushed earlier than BS5, losing the
opportunity to retain sequentiality. Second, it suffers from the
same server-side contention resulting from N-N mapping. As
indicated by this figure, BB-A and BB-B concurrently flush
A2 and B8 to Server2, so the two segments are interleaved.
This will degrade the bandwidth with frequent disk seeks. In
a multi-job environment, segments to a storage server come
from files of different jobs. Interleaved accesses to storage
servers can prolong the average job I/O time and delay the
timely service for mission-critical and small jobs.

In contrast to our analysis, we propose a proactive data flush
framework, named TRIO, to address these two drawbacks.
Fig. 4(c) gives an illustrative example of how it enhances
the sequentiality in flushed data stream and mitigates con-
tention on storage server side. Before flushing data, TRIO

follows a server-oriented data organization to group together
segments to each storage server and establishes an intra-
BB flushing order based on their offsets in the file. This is
realized through a server-oriented and stacked AVL-Tree based
indexing (STI) technique, which is elaborated in Section III-B.
In this figure, B5 and B7 in BB-B are organized together and
flushed sequentially, which enhances sequentiality on Server 2.
However, contention arises when both BB-A and BB-B flush
to the same servers. TRIO addresses this problem using a sec-
ond technique, Contention-Aware Scheduling (CAS), which
is discussed in Section III-C. CAS establishes an inter-BB
flushing order that specifies which BB should flush to which
server each time. In this simplified example, BB-A flushes
its segments to Storage Server 1 and Storage Server 2 in
sequence, while BB-B flushes to Storage Server 2 and Storage
Server 1 in sequence. In this way, during the time periods tl
and t2, each server is accessed by a different BB, avoiding
contention. More details about these two optimizations are
discussed in the rest of this section.

B. Server-Oriented Data Organization via Stacked AVL-Tree
Based Indexing

As mentioned earlier, directly flushing unordered segments
to PFS can degrade I/O sequentiality on servers. Many state-
of-the-art storage systems apply tree-based indexing [27, 26]
to increase sequentiality. These storage systems leverage con-
ventional tree structures (e.g. B-Tree) to organize file segments
based on their locations on the disk. Sequential writes can be
enabled by in-order traversal of the tree.

Although it is possible to organize all segments in BB using
a conventional tree structure (e.g. indexing only by offset), it
will result in a flat metadata namespace. This cannot satisfy the
complex semantic requirements in TRIO. For instance, each



Metadata

Burst Buffer| =)
)
2
A
S

Data Store

Fig. 5: Server-Oriented Data Organization with Stacked AVL
Tree. Segments of each server can be sequentially flushed
following in-order traversal of the tree nodes under this server.

Indexing

— o~ a
[Raw DataGIRaw DataZIRaw Data1] \

Data Store

BB needs to sequentially flush all segments belonging to a
given storage server each time. Since these segments can come
from different files, it is necessary to group together segments
belonging to the same file and then sequentially flush segment
groups (i.e., files). A conventional tree structure requires a full
tree traversal to retrieve all the segments belonging to a given
server and group these segments for different files.

We introduce a technique called Stacked AVL-Tree Based
Indexing to address these requirements. Like many other
conventional tree structures, the AVL-tree is a self-balancing
tree that supports lookup, insertion and deletion in logarithmic
complexity. It can also deliver an ordered node sequence
following an in-order traversal of all nodes in the tree. STI
differs in that all the tree nodes are organized in a stacked
manner, based on the fact that each server hosts segments
from multiple files, and each file contains multiple segments
starting at different offsets. As shown in Fig. 5, this example of
stacked AVL-tree enables two semantics: sequentially flushing
all segments of a given file (e.g., offsetl, offset2, and offset3 of
Filel), and sequentially flushing all files in a given server (e.g.,
Filel, File2, and File3 of Serverl). The semantic of server-
based flushing is stacked on top of the semantic of file-based
flushing. STI is also extensible for new semantics (e.g. flushing
all segments under a given timestamp) by inserting a new layer
(e.g. timestamp) in the stacked AVL-tree.

The stacked AVL-tree of each BB is dynamically built
during runtime. When a file segment arrives at BB, three types
of metadata that uniquely identify this segment are extracted:
server ID, file name, and offset. BB first looks up the first layer
(e.g. the layer of server ID in Fig. 5) to check if the server ID
already exists (it may exist if another segment belonging to
the same server has already been inserted). If not, a new tree
node is created and inserted in the first layer. Similarly, its file
name and offset are inserted in the second and third layers.
Once the offset is inserted as a new tree node in the third
layer (there is no identical offset under the same file because
of the append-only nature of checkpointing), this tree node is
associated with a pointer that points to the raw data of this
segment in data store.

With this data structure, each BB can sequentially issue
all segments belonging to a given storage server by in-order
traversal of the subtree rooted at the server node. For instance,
flushing all segments to Serverl in Fig. 5 can be accomplished
by traversing the subtree of the node “Serverl”, sequentially
retrieving and writing the raw data of all segments (e.g. raw
data pointed by offsetl, offset2, offset3) of all the files (e.g.
filel, file2, file3). Once all the data in a given server is flushed,
all the tree nodes belonging to this server are trimmed from
this tree.

Our current design for data flush is based on a general BB
use case. That is, after an application finishes one or multiple
rounds of computation, it dumps the checkpointing dataset
to BB, and begins next round of computation. Though we
use a proactive approach in reshaping the I/O traffic inside
BB, flushing checkpointing data to PFS is still driven by the
demand from applications. After flushing, storage space on
BB will be reclaimed entirely. We leave it as our future work
to investigate a more aggressive and automatically triggering
mechanism for flushing inside the burst buffer.

C. Inter-BB Ordered Flush via Contention-Aware Scheduling

Server-oriented organization enhances sequentiality by al-
lowing each BB to sequentially flush all file segments be-
longing to one storage server each time. However, contention
can arise when multiple BBs flush to the same storage server.
For instance, in Fig. 4(c), contention on Storage Server 2 can
happen if BB-A and BB-B concurrently flush their segments
belonging to Storage Server 2 without any coordination, lead-
ing to multiple concurrent I/O operations at Storage Server 2
within a short period. We address this problem by introducing
a technique called Contention-Aware Scheduling (CAS). CAS
orders all BBs’ flush operations to minimize competitions for
each server. For instance, in Fig. 4(c), BB-A flushes to Serverl
and Server2 in sequence, while BB-B flushes to Server2 and
Serverl in sequence. This ordering ensures that, within any
given time period, each server is accessed only by one BB.
Although the flushing order can be decided statically before all
BBs starts flushing, this approach needs all BBs to synchronize
before flushing and the result is unpredictable under real-world
workloads. Instead, CAS follows a dynamic approach, which
adjusts the order during flush in a bandwidth-aware manner.

1) Bandwidth-Constrained Data Flushing: In general, each
storage server can only support a limited number of concurrent
BBs flushing before its bandwidth is saturated. In this paper,
we refer to this threshold as «, which can be measured via
offline characterization. For instance, our experiment in Fig. 1
of Section II reveals that each OST on Spider II is saturated
by the traffic from 2 compute nodes; thus, setting « to 2
can deliver maximized bandwidth utilization on each OST.
Based on this bandwidth constraint, we propose a Bandwidth-
aware Flush Ordering (BFO) to dynamically order the flush
operations of each BB so that each storage server is being
used by at most o BBs. For instance, in Fig. 4, BB-A buffers
segments of Serverl and Server2. Assuming o = 1, it needs to
select a server that has not been assigned to any BB. Since BB-



B is flushing to Server2 at time t1, BB-A picks up Serverl and
flushes the corresponding segments (A1, A3) to this server. By
doing so, the contention on Serverl and Server2 are avoided
and consequently the two servers’ bandwidth utilization is
maximized.

A key question is how to get the usage information of
each server. BFO maintains this information via an arbitrator
located on one of the compute nodes. When a BB wants to
flush to one of its targeted servers, it sends a flushing request to
arbitrator. This request contains several pieces of information
about this BB, such as its job ID, job priority, and utilization.
The arbitrator then selects one from the targeted servers being
used by fewer than o BBs, returns its ID to BB, and increases
the usage of this server by 1. The BB then starts flushing all
its data to this server. After flushing, it requests to flush to
other targeted servers. Arbitrator then decreases the usage of
the old server by 1 and assigns another qualified server to this
BB. When there is no qualified BB, it temporarily queues the
BB’s request.

2) Job-Aware Scheduling: In general, compute nodes
greatly outnumber storage servers, so there may be multiple
BBs queued to the same storage server for flushing. When this
storage server becomes available, the arbitrator needs to assign
this storage server to a proper BB. A naive approach to select
a BB would be to follow FCFS. Since each BB is allocated
to one job along with its compute node, treating BBs equally
can delay service of critical jobs, and prolong job I/O time
of small jobs. Instead, the arbitrator categorizes BBs based on
their job priorities and job sizes. It prioritizes the service for
BBs of high-priority jobs, including those that are important at
the beginning, or the ones that have higher criticality (e.g. the
usages of some BB in this job reach their capacity). Among
BBs with equal priority, it selects the one belonging to the
smallest jobs (e.g. jobs with smallest checkpointing data size)
to reduce average job I/O time.

Sometimes multiple servers may be available to serve a
BB’s request. Since the checkpointing datasets of each job
are generally evenly striped over multiple storage servers, the
arbitrator selects the server least utilized by this BB’s job
(i.e. size of data that has been already flushed to this server
is the smallest). This can balance server utilization for this
job and minimize wait time for the last server to complete
its service. When the available servers are equally utilized,
the arbitrator selects the server being utilized by the least
number of processes to balance BBs’ concurrent accesses to
each server.

IV. EXPERIMENT EVALUATION

For evaluation, we implemented an initial prototype of
the TRIO framework with the support of Stacked AVL-Tree
Based Indexing (STI) and Contention-Aware /O Scheduling
(CAS). Our experiments were conducted on the Titan super-
computer [4], which uses Spider II as the backend Lustre
filesystem. More details on this platform can be found in
Section II. Of the 32GB memory on each compute node,
we allocated 16GB to the TRIO client and reserved 16GB

B IOR_NOTRIO S I0OR_TRIO

[y
[
o
o

Bandwidth (MB/s)
=)
o o
o o o

4 8
Number of Processes

Fig. 6: The overall performance of TRIO under both inter-node
and intra-node I/O traffic.

for BB. We used IOR [28] as a representative benchmark for
performance evaluation. IOR is a flexible benchmarking tool
that is able to generate diverse I/O patterns. Each experiment
was executed 15 times, and we took the median value as the
result.

As discussed in Section III-C, CAS mitigates contention
by restricting the number of concurrent BBs flushing to each
storage server to «. In all our experiments, we set « to 2, thus
limiting the number of BBs on each OST to at most two. This
was in accordance with our characterization in Section II.

A. Overall Performance of TRIO

Fig. 6 demonstrates the overall performance of TRIO under
competing workloads with an increasing number of IOR
processes. We evaluated TRIO by first having all processes
on the same compute node copy their datasets to burst buffer
space, then using TRIO to coordinate the data flush to PFS.
This configuration is shown in Fig. 6 as [OR_TRIO. We com-
pared the aggregated OST bandwidth under this configuration
with the configuration that used the same number of IOR
processes to directly write their datasets to PFS (referred to as
IOR_NOTRIO in Fig. 6). In both configurations, all processes
wrote to a shared file striped over 4 OSTs. Each process wrote
a non-overlapping, contiguous segment of this shared file. We
initially used 4 processes to write to the 4 OSTs, and placed
each process on 1 compute node. Then gradually increased the
number of processes in each compute node. Once each node
had 16 processes, additional nodes were used to host the rest
of processes (e.g. 8 and 16 compute nodes were used for 128
and 256 processes in Fig. 6).

As we can see from Fig. 6, bandwidth of IOR_NOTRIO
dropped with increasing number of processes involved. This
was due to the exacerbated contention from both intra-node
and inter-node I/O traffic. By contrast, IOR_TRIO demon-
strated much more stable performance by optimizing intra-
node traffic using STI and inter-node I/O traffic using CAS.
The lower bandwidth observed with fewer than 64 processes
was due to OST bandwidth not being fully utilized (4 BBs
were used to flush to 4 OSTs in these cases). Overall, TRIO
improved I/O bandwidth by 30% on average by coordinating
I/O traffic.



2000
®IOR_NOTRIO & I0R_TRIO
21600 N
=]
2 , ,
<1200
=
el
S 800 '
T
&
8 400 ,
0 LB N1 B N N B N N NN B
1 2 4 8 16

Number of Processes Per Node

Fig. 7: Bandwidth of TRIO under varying intra-node traffic.
Intra-node I/O traffic is amplified by fixing the number of
compute nodes and increasing the number of processes per
node.

B. Benefit of STI in Optimizing Intra-Node I/0O Traffic

To evaluate the benefit of STI in optimizing intra-node I/O
traffic, we fixed the number of compute nodes utilized as 16
(same as 256-process in Fig. 6), then increased the number
of processes launched on each node from 1 to 16. Fig. 7
compared the bandwidth of IOR_NOTRIO and IOR_TRIO.

As we can see from this figure, a lack of intra-node I/O traf-
fic coordination resulted in the bandwidth of IOR_NOTRIO
constantly degrading as the number of processes on each node
increased. This performance degradation resulted from the
destroyed sequentiality by the mixed workload. In contrast,
IOR_TRIO demonstrated stable performance. Sequentiality
was maintained by reordering all write requests using STI.
Overall, IOR_TRIO delivered 66% higher bandwidth than
IOR_NOTRIO with 16 processes on each compute node.
Optimizing the intra-node I/O traffic accounted for 16.4% of
the bandwidth improvement.

C. Avoiding Bandwidth Degradation under Contention using
CAS

We evaluated TRIO’s ability to mitigate I/O contention
under two dominating checkpointing patterns: N-1 and N-N.
In N-1 pattern, all processes write to a shared file. In N-N
pattern, each process writes a separate file. We placed 1 IOR
process on each compute node. This allowed us to focus on
the evaluation of CAS without consideration for intra-node I/O
traffic.

CAS’s support for the two checkpointing patterns was
evaluated by having each IOR process dump a 16GB dataset
to its local BB and using TRIO to flush these datasets to the
PFS. Such configurations for N-1 and N-N are referred to
as TRIO-N-1 and TRIO-N-N respectively. For comparison,
we had each IOR process dump its 16GB in-memory data
directly to the underlying PFS; Such configurations for the
two patterns are referred to as NOTRIO-N-1 and NOTRIO-N-
N respectively. For the N-1 case, each IOR process wrote on
a non-overlapping, contiguous extent of a shared file striped
over 4 OSTs. For N-N, each IOR process wrote a separate

2500

B NOTRIO_N_N STRIO_N_N ZNOTRIO_N_1 ©TRIO_N_1

N
o
o
o

=
v
o
o

1000

Bandwidth (MB/s)

w
o
o

HEHHHHHAHHAH

HHHHHHAHHH R HHAH
IHHHARHHAAARHHHANR
THHHHHHHHHHHHHHHHA
HHHHHHHHHHHHHHHHY

4 8 16 32 64 128
Number of Processes

N
vl
[<)]

Fig. 8: The bandwidth of TRIO under I/O contention with
increasing number of processes.

file. Contention for N-N was assured by striping files over the
same 4 OSTs.

Fig. 8 reveals the bandwidth of both TRIO and NOTRIO
with an increasing number of IOR processes. In N-1 case, the
bandwidth of TRIO first grew from 1.3GB/s with 4 processes
to 1.7GB/s with 8 processes, then stabilized around 1.8GB/s
with more processes. The lower performance with 4 processes
was because CAS placed one BB on each of the 4 OSTs
for balanced workload, I/O traffic from one BB was not
able to saturate OST bandwidth. The stable performance with
more than 8 processes occurred because TRIO scheduled 2
concurrent BBs on each OST. Therefore, even under heavy
contention, each OST was being used by 2 BBs that consumed
most OST bandwidth. In contrast, the bandwidth of NOTRIO
peaked at 1.46GB/s with 8 processes, then dropped to 1.1GB/s
with 256 processes. This accounted for only 60% of the band-
width delivered by TRIO with 256 processes. This bandwidth
degradation resulted from the contention generated by larger
numbers of processes. Overall, by mitigating contention, TRIO
delivered a 34% bandwidth improvement over NOTRIO on
average.

We also observed similar trends for both TRIO and
NOTRIO in N-N case: The bandwidth of TRIO ascended
from 1.5GB/s with 4 processes to 2.1GB/s with 8 processes,
then stabilized from this point on. The bandwidth of NOTRIO
kept dropping as the number of processes increased. These
performance trend resulted from the same reasons as discussed
for N-1 case. Another observation from this experiment was
that, although same number of OSTs were used in both N-1
and N-N cases, TRIO_N_N performed better than TRIO_N_1.
After analyzing single OST bandwidth under both cases,
and discussing with the administrator, we found the lower
bandwidth of TRIO_N_1 resulted from a bug in existing Lustre
version (v2.5.3) as reported by [5].

D. Evaluating CAS’s Bandwidth with Increasing Provisioned
Storage Resources

Sometimes applications tend to stripe their files over a
large number of OSTs to utilize more resources. Though
utilizing more OSTs can deliver higher bandwidth, writing
in a conventional manner that issues write requests to servers



512

—»— NOTRIO_N_1

256
128 | -~ ©- NOTRIO_N_N
64 | —=— TRIO_N_1

- A-

TRIO_N_N

1/0 Bandwidth (GB/s)

2 4 8 16 32 64
Stripe Count

Fig. 9: Bandwidth of TRIO with Increasing Number of Pro-
visioned OSTs.

128

[y
N
o

B NOTRIO E TRIO-FCFS & TRIO-SJF

=
o O
o O

N B
o O

Average 1/0 Time (Sec)
(o))
o

ﬁﬁ

WL1 WL2 WL3
Workload Per OST

o

Fig. 10: Comparison of Average I/O Time.

in a round-robin manner can distribute each write request to
more OSTs, incurring greater contention and preventing /O
bandwidth from further scaling. We emulated this scenario
by striping each file over an increasing number of OSTs and
using double the number of IOR processes to write on these
OSTs. Contention for both N-1 and N-N patterns was assured
by striping each file over the same set of OSTs.

Fig. 9 compares the bandwidth of TRIO and NOTRIO
under this scenario. It can be observed that the bandwidth
of NOTRIO-N-1 increased sublinearly from 0.81GB/s with
a stripe count of 2 to 27GB/s with a stripe count of 128.
In contrast, the bandwidth of TRIO increased with a much
faster speed, resulting in on average a 38.6% improvement
over NOTRIO. A similar trend was observed with the N-N
checkpointing pattern. By localizing the writes of each BB
on one OST each time and assigning the same number of
BBs to each OST, CAS minimized the interference between
different processes, thereby better utilizing the bandwidth.
In some scenarios, localization may not help utilize more
bandwidth. For instance, when the number of available OSTs
is greater than the number of flushing BBs, localizing on one
OST may underutilize the supplied bandwidth. We believe
a similar approach can also work for these scenarios. For
instance, we can assign a few OSTs to each BB, with each
BB only distributing its writes among the assigned OSTs to
mitigate interference.

0.9
. 038
& o7
[}]
£ 0.6
= 0.5
S 04
('

o
(3)

03 —»— TRIO_FCFS
0.2 —8— TRIO_SJF
Y NOTRIO
0 20 40 60 80 100120140160180200
Time (sec)

Fig. 11: The CDF of Job Response Time

E. Minimizing Average Job I/O Time using CAS

As mentioned in Section III-C, TRIO reduces average job
I/O time by prioritizing small jobs. To evaluate this feature,
we grouped 128 processes into 8 IOR jobs, each with 16
processes. We had each IOR process dump its dataset to its
local BB and coordinated the data flush using TRIO. When
multiple BBs request the same OST, TRIO selects a BB via
the Shortest Job First (SJF) algorithm, which first serves a BB
belonging to the smallest job. This configuration is shown in
Fig. 10 as TRIO_SJF. For comparison, we applied FCFS in
TRIO to select a BB. This configuration serves the first BB
requesting this OST, and we refer to it as TRIO_FCFS. We
also included the result of having each IOR process directly
write its dataset to PFS, which we refer to as NOTRIO. We
varied the data size such that each process in the next job
wrote a separate file whose size was twice that of the prior
job. Following this approach, each process in the smallest job
wrote a 128MB file, and each process in the largest job wrote
a 16GB file. To enable resource sharing, we striped the file
so that each OST was shared by all 8 jobs. We increased the
ratio of the number of processes over the number of OSTs to
observe scheduling efficiency under different workloads.

Fig. 10 reveals average job I/O time for all the three cases.
Workload 1 (WL1), WL2, WL3, and WL4 refer to scenarios
when the number of processes was 2, 4, 8, and 16 times
the number of OSTs, respectively. The average I/O time of
TRIO_SJF was the shortest for all workloads, accounting
for on average 57% and 63% of TRIO_FCFS and NOTRIO,
respectively. We also observed that the I/O time of TRIO_SJF
increased with growing workloads at a much slower rate than
the other two. This was because, with the heavier workload,
each OST absorbed more data from each job. This gave SJF
more room for optimization. Another interesting phenomenon
was that TRIO_FCFS demonstrated no benefit over NOTRIO
in terms of the average I/O time. This was because, using
TRIO_FCFS, once each BB acquired an available OST from
the arbitrator, it drained all of its data striped over this OST.
Since FCFS is unaware of large and small jobs, it is likely
that the requests from the large job were scheduled first on
a given OST. The small job requesting the same OST could
only start draining its data after the large job finished. This



250
B NOTRIO HETRIO-FCFS

100
5"EEE
WL1 WL2 WL3 wL4

Workload Per OST

TRIO-SJF

Total I/0 Time (Sec)

Fig. 12: Comparison of Total I/O Time

monopolizing behavior significantly delayed small jobs’ I/O
time.

For a further analysis, we also plotted the cumulative
distribution functions (CDF) of job response time with WL4
as shown in Fig. 11, it is defined as the interval between the
arrival time of first request of the job at the arbitrator and the
time when the job complete its I/O task. By scheduling small
jobs first, 87.5% of jobs in TRIO-SJF were able to complete
their work within 80 seconds. By contrast, jobs in TRIO-FCFS
and NOTRIO completed at much slower rates.

Fig. 12 shows the total I/O time of draining all the
jobs’ datasets. There was no significant distinction between
TRIO_FCFS and TRIO_SJF because, from OST’s perspective,
each OST was handling the same amount of data for the two
cases. By contrast, I/O time of NOTRIO was longer than the
other two due to contention. The impact of contention became
more significant under larger workloads.

V. RELATED WORK

1I/O Contention: In general, research around I/O contention
falls into two categories: client-side and server-side optimiza-
tion. In client-side optimization, processes involved in the
same job collaboratively coordinate their access to the PFS
to mitigate contention. Abbasia et al. [10] and Nisar et al [21]
address contention by delegating the I/O of all processes
involved in the same application to a small number of compute
nodes. Chen [11] and Liao et al[22] mitigate I/O contention
in MPI-IO by having processes shuffle data in a layout-aware
manner. Server-side optimization embeds some I/O control
mechanisms on the server side. Dai er al [12] have designed
an I/O scheduler that dynamically places write operations
among servers to avoid congested servers. Zhang et al [12]
propose a server-side I/O orchestration mechanism to mitigate
interference between multiple processes. Different from these
works, we address I/O contention issues using BB as an
intermediate layer. Compared with client-side optimization,
an orchestration framework on BB is able to coordinate I/O
traffic between different jobs, mitigating I/O contention at a
larger scope. Compared with the server-side optimization, an
orchestration framework on BB can free storage servers from
the extra responsibility of handling I/O contention, making it
portable to other PFSs.

Burst Buffer: The idea of BB was proposed recently to
cope with data handling challenges presented by the upcoming
exascale computing era. Two of the largest next-generation
HPC systems, Coral [2] and Trinity [9], are designed with BB
support. The SCR group is currently trying to strengthen the
support for SCR by developing a multi-level checkpointing
scheme on top of BB [6]. DataDirect Networks is developing
the Infinite Memory Engine (IME) [3] as a BB layer to
provide real-time I/O service for the scientific applications.
Most of these works use BB as an intermediate layer to avoid
application’s direct interaction with PFS. The focal point of
our work is the interaction between BB and PFS. Namely, how
to efficiently flush data to PFS.

Inter-Job /0O Coordination: Compared with the numerous
research works on intra-job I/O coordination, inter-job coor-
dination has received very limited attention. Liu et al. [18]
design a tool to extract the I/O signatures of various jobs to
assist the scheduler in making optimal scheduling decisions.
Dorier et al. [13] propose a reactive approach to mitigate
I/O interference from multiple applications by dynamically
interrupting and serializing application’s execution upon per-
formance decrease. Our work differs in that it coordinates
inter-job I/O traffic in a layout-aware manner to both avoid
bandwidth degradation and minimize average job I/O time
under contention.

VI. CONCLUSION

In this paper, we have analyzed the major performance
issues of checkpointing operations on HPC systems: prolonged
average job I/O time and degraded storage server bandwidth
utilization. Accordingly, we have designed a burst buffer
based orchestration framework, named TRIO, to efficiently
intercept and reshape I/O traffic from burst buffer to PFS. By
increasing intra-BB write sequentiality and coordinating inter-
BB flushing order, TRIO is able to deliver on average 30.5%
higher bandwidth and reduce average job I/O time by 37% in
various checkpointing patterns.

Our future work is two-fold. First, we will investigate
an aggressive mechanism that can automatically flush the
data based on their utilizationt. Second, we will explore a
distributed arbitration mechanism to determine the inter-BB
flushing order among a distributed set of BB nodes and PFS
storage servers.

Acknowledgments

This research is sponsored in part by the Office of Advanced
Scientific Computing Research; U.S. Department of Energy
and performed at the Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC under Contract No. DE-
AC05-000R22725 and resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for Com-
putational Sciences at Oak Ridge National Laboratory. This
work is also funded in part by an Alabama Innovation Award
and National Science Foundation awards 1059376, 1320016,
1340947, and 1432892.



(1]
(2]
(3]

(4]
(3]
(6]
(71

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

REFERENCES

blktrace. http://linux.die.net/man/8/blktrace.

CORAL. https://www.olcf.ornl.gov/summit.

IME.  http://www.ddn.com/products/infinite-memory-engine-
ime.

Introducing Titan. http://www.olcf.ornl.gov/titan/.

LU-4388. https://jira.hpdd.intel.com/browse/LU-4388.

SCR. https://computation.llnl.gov/project/scr.

The ASC Sequoia Draft Statement of Work. https://asc.1Inl.gov/
sequoia/rfp/02_SequoiaSOW_V06.doc.

Tianhe-2. http://www.top500.org/system/177999.

TRINITY. https://www.nersc.gov/assets/Trinity—-NERSC-8-
RFP/Documents/trinity-NERSC8-use-case-v1.2a.pdf.

H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,
and F. Zheng. Datastager: Scalable data staging services for
petascale applications.  Cluster Computing, 13(3):277-290,
2010.

Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp.
Lacio: A new collective i/o strategy for parallel i/o systems. In
Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 794-804. IEEE, 2011.

D. Dai, Y. Chen, D. Kimpe, and R. Ross. Two-choice random-
ized dynamic i/o scheduler for object storage systems. In High
Performance Computing, Networking, Storage and Analysis,
SCI14: International Conference for, pages 635-646. IEEE,
2014.

M. Dorier, G. Antoniu, R. Ross, D. Kimpe, S. Ibrahim, et al.
Calciom: Mitigating i/o interference in hpc systems through
cross-application coordination. In IPDPS-International Parallel
and Distributed Processing Symposium, 2014.

K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros,
K. Pedretti, T. Kordenbrock, and R. Brightwell. Increasing fault
resiliency in a message-passing environment. Sandia National
Laboratories, Tech. Rep. SAND2009-6753, 2009.

J. N. Glosli, D. F. Richards, K. Caspersen, R. Rudd, J. A.
Gunnels, and F. H. Streitz. Extending stability beyond cpu
millennium: a micron-scale atomistic simulation of kelvin-
helmholtz instability. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, page 58. ACM, 2007.

Y. Kim, S. Atchley, G. R. Vallée, and G. M. Shipman. Lads:
Optimizing data transfers using layout-aware data scheduling.
2015.

N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn. On the role of burst buffers in
leadership-class storage systems. In Mass Storage Systems and
Technologies (MSST), 2012 IEEE 28th Symposium on, pages
1-11. IEEE, 2012.

Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. Automatic
identification of application i/o signatures from noisy server-side
traces. In Proceedings of the 12th USENIX Conference on File
and Storage Technologies, FAST’ 14, pages 213-228, Berkeley,

10

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

CA, USA, 2014. USENIX Association.

LLNL. IOR Benchmark. http://www.llnl.gov/asci/purple/
benchmarks/limited/ior.

A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supin-
ski. Design, modeling, and evaluation of a scalable multi-
level checkpointing system. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International
Conference for, pages 1-11. IEEE, 2010.

A. Nisar, W.-k. Liao, and A. Choudhary. Scaling parallel i/o
performance through i/o delegate and caching system. In High
Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, pages 1-12. IEEE,
2008.

A. Nisar, W.-k. Liao, and A. Choudhary. Delegation-based i/o

mechanism for high performance computing systems. Parallel
and Distributed Systems, IEEE Transactions on, 23(2):271-279,

2012.

R. A. Oldfield, L. Ward, R. Riesen, A. B. Maccabe, P. Widener,
and T. Kordenbrock. Lightweight i/o for scientific applications.
In Cluster Computing, 2006 IEEE International Conference on,
pages 1-11. IEEE, 2006.

S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S.
Vazhkudai, F. Wang, Y. Kim, J. Rogers, J. Simmons, et al. Olcfs
1 tb/s, next-generation lustre file system. In Proceedings of Cray
User Group Conference (CUG 2013), 2013.

F. Petrini. Scaling to thousands of processors with buffered
coscheduling. In Scaling to New Heights Workshop, 2002.

K. Ren and G. A. Gibson. Tablefs: Enhancing metadata
efficiency in the local file system. In USENIX Annual Technical
Conference, pages 145-156, 2013.

O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS), 9(3):9, 2013.
H. Shan and J. Shalf. Using ior to analyze the i/o performance
for hpc platforms. Lawrence Berkeley National Laboratory,
2007.

H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang. Server-side
i/o coordination for parallel file systems. In Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, page 17. ACM, 2011.

T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and
W. Yu. Burstmem: A high-performance burst buffer system
for scientific applications. In Big Data (Big Data), 2014 IEEE
International Conference on, pages 71-79. IEEE, 2014.

P. Wong and R. der Wijngaart. Nas parallel benchmarks i/o
version 2.4. NASA Ames Research Center, Moffet Field, CA,
Tech. Rep. NAS-03-002, 2003.

X. Zhang, K. Davis, and S. Jiang. lorchestrator: improving the
performance of multi-node i/o systems via inter-server coordina-
tion. In Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, pages 1-11. IEEE Computer Society, 2010.



