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Abstract

Computational science is well established as the third
pillar of scientific discovery and is on par with experi-
mentation and theory. However, as we move closer to-
ward the ability to execute exascale calculations and
process the ensuing extreme-scale amounts of data
produced by both experiments and computations
alike, the complexity of managing the compute and
data analysis tasks has grown beyond the capabilities
of domain scientists. Thus, workflow management
systems are absolutely necessary to ensure current
and future scientific discoveries. A key research ques-
tion for these workflow management systems con-
cerns the performance optimization of complex calcu-
lation and data analysis tasks. The central contribu-
tion of this article is the PANORAMA approach for
modeling and diagnosing the run-time performance
of complex scientific workflows. This approach in-
tegrates extreme-scale systems testbed experimen-
tation, structured analytical modeling and parallel
systems simulation into a comprehensive workflow
framework called Pegasus for understanding and im-
proving the overall performance of complex scientific
workflows.

Keywords. Performance Modeling, Extreme Scale,
Scientific Workflow.

1 Introduction
Modern science often requires the processing and

analysis of vast amounts of data in search of postu-
lated phenomena and the validation of core principles

through the simulation of complex system behaviors
and interactions. Not surprisingly, this trait is com-
mon in fields as diverse as astronomy, bioinformatics,
physics, and ocean and ice sheet modeling.

In order to support the computational and data
needs of today’s science, new knowledge must be
gained on how to deliver the growing, distributed and
high-performance computing capabilities to the sci-
entist’s desktop in an accessible, reliable and scalable
way. As applications and infrastructure are growing
in scale and complexity, our understanding of applica-
tion behavior is not keeping up with technological and
algorithmic advances. As a result, it is difficult for
scientists and infrastructure providers to determine
the expected and realistic behavior of a complex sci-
entific workflow. Furthermore, when failures or per-
formance anomalies are encountered, it is extremely
difficult to pinpoint the root cause of the problem,
and to correct or mitigate the issue.

Many science applications today are composed of
custom scripts that tie several community or custom
codes together. These scripts are frequently edited
by hand to suit each new computational platform or
to expand the parameter and data sets they operate
on. The computing infrastructure that these applica-
tions run on is very complex and diverse. It includes
NSF-funded systems, such as Open Science Grid [1],
XSEDE [2], and cloud-based infrastructures [3}/4],
DOE computing facilities at Oak Ridge National
Laboratory, Lawrence Berkeley National Laboratory,
and others. Input, output, and intermediate data
are transferred over high-speed national and regional
transit networks like Internet2 and ESnet.



Given the complexity of applications and infras-
tructures, modeling their behavior is very tedious
and sometimes infeasible. Part of the solution for
understanding the behavior of the applications is to
formalize their structure in the form of a workflow.
Workflows are able to declaratively express complex
applications that are composed of several individual
codes with data and control dependencies. A work-
flow management system can take this application
description and manage and optimize its execution
on a variety of computational platforms.

Tools can be created that analyze the workflow and
develop models of expected behavior given a partic-
ular computing environment, such as an HPC sys-
tem, clusters distributed over wide area networks, or
clouds. Having a coupled model of the application
and execution environment, decisions can be made
about resource provisioning, application task schedul-
ing, data management within the application, etc.
As the application is executing, correlated real-time
monitoring of the application and infrastructure can
be used to verify the application behavior, to detect
and diagnose faults, and to support adaptivity.

This paper describes the PANORAMA [5] project
that aims to further our understanding of the behav-
ior of scientific workflows as they are executing in
heterogeneous environments. The central contribu-
tion of this article is the PANORAMA approach for
modeling and diagnosing the run-time performance
of complex scientific workflows. This approach in-
tegrates extreme-scale systems testbed experimen-
tation, structured analytical modeling and parallel
systems simulation into a comprehensive workflow
framework called Pegasus for understanding and im-
proving the overall performance of complex scientific
workflows.

The paper is organized as follows: Section [2| de-
scribes applications that are motivating our work.
Section [3| describes the Pegasus workflow manage-
ment system that manages the application execution.
Section 4| describes the tools and techniques we use
to capture and profile the observed behavior of work-
flows. Section [5| shows our approach to analytical
workflow modeling. Section [6] describes our approach
to correlating the real time application and infras-
tructure monitoring data, while Section [7] explores
anomaly detection based on that data. Section [5.3]
describes how analytical models can be augmented
with detailed simulations. Section [ describes related
work. Section [10] presents the work ahead and con-
cludes the paper.

2 Motivating Examples

We have identified two important application use-
cases involving advanced workflows that are the ini-
tial focus of our modeling efforts: parameter refine-
ment workflows for the Spallation Neutron Source
(SNS) and climate simulation automation for the
Accelerated Climate Modeling for Energy (ACME)
project.

2.1 Spallation Neutron Source (SNS)

The Spallation Neutron Source (SNS) [6] is a DOE
research facility at Oak Ridge National Laboratory
that provides pulsed neutron beams for scientific and
industrial research. SNS uses a particle accelerator
to impact a mercury-filled target with short proton
pulses to produce neutrons by the process of spal-
lation. A wide variety of experiment instruments
provide different capabilities for researchers across a
broad range of disciplines, including: physics, chem-
istry, materials science, and biology.

SNS hosts hundreds of researchers every year who
conduct experiments within short reservations of a
few days to a few weeks. Providing these researchers
with efficient, user-friendly and highly configurable
workflows that reduce the turnaround time from data
collection to analysis and back is essential to the suc-
cess of SNS. Figure [1| shows the data flow for a typ-
ical SNS instrument, in this case NOMAD. Neutron
events scattered from the scientific sample under in-
vestigation are collected by an array of detectors.
These raw events are processed into a representa-
tion familiar to the domain scientist depending on the
type of experiment. For NOMAD, the reduced form
is a powder diffraction pattern. This reduced data is
then analyzed and compared to materials simulations
to extract scientific information.
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Figure 1: SNS example workflow.

In addition to workflows for processing data from
SNS experiments, there are also workflows for data
analysis and simulation to support and guide SNS ex-
periments, and to validate computer models against



experimental data. These workflows automate te-
dious manual processes to reduce time to solution
and improve researcher productivity. In collaboration
with the Center for Accelerating Materials Modeling
(CAMM) of SNS data, we are adapting a workflow
that executes simulations to support experimental de-
sign and the validation of molecular models as a use
case for the PANORAMA project. The workflow exe-
cutes an ensemble of molecular dynamics and neutron
scattering simulations to optimize a model parameter
value. This workflow is being used to investigate tem-
perature and hydrogen charge parameters for models
of water molecules. The results are compared to data
from QENS experiments using the BASIS instrument
at SNS.

An illustration of this parameter refinement work-
flow is shown in Figure[2] For each set of parameters
the workflow executes 5 batch jobs. First, each set
of parameters is fed into a series of parallel molecu-
lar dynamics simulations using NAMD [7]. The first
simulation calculates an equilibrium and the second
inputs that equilibrium and calculates the production
dynamics. Each NAMD simulation runs on 288 cores
for 1 to 6 hours. The output from the MD simula-
tions has the global translation and rotation removed
using AMBER’s [§] ptraj utility [9] and is passed into
Sassena [10] for the calculation of coherent and inco-
herent neutron scattering intensities from the trajec-
tories. Each Sassena simulation runs on 144 cores
for up to 6 hours. The final outputs of the workflow
are transferred to the user’s desktop and loaded into
Mantid [11] for analysis and visualization.

2.2 Accelerated Climate Modeling for
Energy (ACME)

The Accelerated Climate Modeling for Energy
(ACME) project is using coupled models of ocean,
land, atmosphere and ice to study the complex in-
teraction between climate change and societal energy
requirements. One of the flagship workflows of this
effort is the fully-coupled climate model running at
high resolution.

The complete workflow for ACME is illustrated in
Figure B] The ACME climate modeling effort in-
volves the interaction of many different software and
hardware components distributed across computing
resources at several DOE laboratories. As part of
the ACME project, many of the workflow activities
that were previously done manually are being auto-
mated. The goal is to have an automated, end-to-end
workflow that provides full data provenance.

One important step towards that goal is to au-
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Figure 2: The SNS refinement workflow executes a
parameter sweep of molecular dynamics and neutron
scattering simulations to optimize the value for a tar-
get parameter to fit experimental data.

tomate the small portion of the full workflow that
involves running the ACME climate model. The
PANORAMA project is developing a workflow that
automates the manual effort involved in monitoring
and resubmitting the model code in case of failures,
and provides periodic reporting for validation of sci-
ence outputs. The workflow, illustrated in Figure [4]
divides a large climate simulation into several stages.
Each stage completes a portion of the total target
simulation time. For example, a 40-year simulation
may be divided into 8, 5-year stages. This enables
each stage of the workflow to be completed within
the maximum walltime permitted for batch jobs on
the target DOE leadership class computing systems.
Restart files generated at the end of each stage are
used as input to the next stage in order to continue
the simulation. Each stage also produces history files,
which are used by the workflow to automatically com-
pute summary data called climatologies. This clima-
tology data can be reviewed periodically by project
scientists to ensure that the simulation is progress-
ing as expected, so that problems can be identified,
and corrections made, before computing resources are
wasted. Both the history files and the climatologies
are transferred to HPSS and CADES (open infras-
tructure) for long-term storage and future analysis.
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Figure 3: The complete Accelerated Climate Modeling for Energy (ACME) includes many interacting com-

ponents distributed across DOE labs.

3 Workflow Execution

In order to facilitate workflow creation, scientists
need to be able to formulate the workflows in a way
that is meaningful to them, in a resource-independent
way, using high-level abstractions to specify the struc-
ture of the analysis and the data to be operated on
(via a visual or textual representation). This ab-
stract workflow (or workflow instance) is important
because it uniquely identifies the analysis to be con-
ducted at the application level, without including op-
erational details of the execution environment. The
workflow instance can be published along with the
results of a computation to describe how a particu-
lar data product was obtained. This approach sup-
ports reproducibility, a cornerstone of the scientific
method. In order to support the use of abstract work-
flow specifications, planning technologies are needed
to automatically interpret and map user-defined, ab-
stract workflows onto the available resources.

Workflow technologies have been demonstrated to
be very effective in exploiting coarse grain paral-
lelism in applications running on distributed infras-
tructures such as grids and clouds . Our sys-
tem, Pegasus , focuses on scalable, reliable and
efficient workflow execution on a wide range of sys-
tems, from user’s desktops to leadership class ma-
chines . The cornerstone of our approach is
the separation of the workflow description from the
description of the execution environment, which re-

sults in: 1) workflows that are portable across exe-
cution environments, and 2) the ability for the work-
flow management system to make performance- and
reliability-focused decisions at “compile time” and/or
at “runtime”. Pegasus pioneered the use of plan-
ning in scientific workflow systems [16]. It takes
a resource-independent, or abstract, workflow de-
scription, automatically locates the input data and
computational resources necessary for workflow ex-
ecution, maps/plans this description onto the avail-
able execution resources, then reliably executes the
plan. When errors occur, Pegasus tries to recover
when possible by retrying tasks, by retrying the en-
tire workflow, by providing workflow and task-level
checkpointing, by re-planning portions of the work-
flow, by trying alternative data sources for staging
data, and, when all else fails, by providing a rescue
workflow containing a description of only the work
that remains to be done. A Pegasus workflow can
process millions of tasks and terabytes of data, so
storage management is important. Pegasus has a so-
phisticated model for reasoning about and optimizing
data transfers and it cleans up storage as the work-
flow is executed so that data-intensive workflows have
enough space to execute on storage-constrained re-

sources [17].
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Figure 4: The ACME workflow runs one climate sim-
ulation in several stages. The output of each stage
is used to compute climatologies for validation. All
outputs are stored in HPSS and CADES for archiving
and further analysis.

4 Characterizing Workflows

Workflow behavior modeling and analysis methods
need accurate execution event traces and monitoring
information to build models of system behavior and
conduct anomaly detection and diagnosis. Here, we
describe some of the tools and techniques we are using
in PANORAMA.

Workflow Monitoring. Workflow-level monitor-
ing collects information about events in the execu-
tion of a workflow that are critical to understand-
ing its behavior. The STAMPEDE |[18] framework
collects monitoring data by parsing and correlating
log files that are generated by the workflow manage-
ment system. These logs contain information about
the submit time of the jobs, the time when the jobs
are sent to the remote system for execution, and the
time when they are reported finished or failed. The
logs also have information about the progress of the
workflow through time, for example, when the data
dependencies have been satisfied. This data can be
used to compute runtimes, queue delays, and other
important performance metrics.

Task Monitoring and Profiling. Task-level
monitoring can be used to measure and predict the
resource requirements of workflows. In addition to
workflow-level data, the STAMPEDE framework also

collects information about the execution of workflow
tasks on remote resources using Kickstart [19], a mon-
itoring tool launched along with the computation and
data management tasks to collect information about
the behavior of the tasks and their execution envi-
ronment. As part of the DOE dV/dt project [20]
we added functionality to Kickstart to automatically
capture resource usage metrics of workflow tasks [21].
This functionality uses operating system monitoring
facilities as well as system call and library call inter-
position to collect fine-grained profile data that in-
cludes process 1/0, file accesses, runtime, memory
usage, and CPU utilization. Using this information,
we developed techniques based on machine learning
algorithms for automatically modeling and predict-
ing the resource usage of workflow tasks [22], such as
runtime, disk usage and memory consumption. This
approach combined with a Monitor Analyze Plan Ex-
ecute (MAPE-K) autonomic computing loop [23], is
used for online estimation of task needs as the work-
flow executes. Experimental results show that this
online process produces more accurate estimates than
a comparable offline method. Table [I] shows average
estimation errors using this approach for a bioinfor-
matics application (Epigenomics).

Application Monitoring. As part of the
PANORAMA project we will develop the capability
to automatically capture monitoring data generated
by workflow tasks, such as progress information,
performance metrics, and diagnostic messages.

Infrastructure Monitoring. The previous moni-
toring techniques are not sufficient for modeling the
behavior of scientific workflows. Additional infor-
mation about the infrastructure is also required to
understand the observed performance of workflows.
Network performance monitoring using tools such as
perfSONAR [24], for example, is crucial to discover
“soft failures” in the network, where the network
seems to be up, but is performing at just a fraction of
it’s peak efficiency, which translates to poor perfor-
mance for data-intensive workflows. perfSONAR in-
stances can run continuous checks for latency changes
and packet loss, and run periodic throughput tests
using a suite of already available tools like BWCTL,
OWAMP, and NDT. There are currently around
1,200 perfSONAR, instances worldwide, providing us
with critical network performance information.



Runtime I/O Write Memory

Task Estimation Avg. Error Avg.Error Avg.Error
(%) (%) (%)

fastqSplit Offline 8.36 3.28 9.14

Online 8.36 3.28 9.14

filterContams Offline 59.31 109.81 102.83

Online 29.13 5.35 8.15

sol2sanger Offline 54.93 98.20 96.68

Online 34.74 1.23 1.96

fast2bfq Offline 27.13 128.18 99.98

Online 17.09 15.11 10.65

map Offline 23.62 0.00 21.07

Online 1.39 0.00 3.33

mapMerge Offline 53.74 93.34 1.01

Online 10.22 9.39 1.00

pileup Offline 6.00 4.17 49.42

Online 5.11 3.87 19.31

Table 1: Average estimation errors of task runtime,
I/O write, and peak memory usage for the Epige-
nomics workflow.

5 Analytical Models

5.1 Performance modeling with As-
pen

Our Aspen system [25] was designed to bridge the
gap between structured analytical models and func-
tional simulation. In this work, we are extending the
Aspen modeling framework to include workflow sce-
narios and resources to be able to develop structure
analytical models for scientific workflows. We are
extending Aspen’s domain specific language (DSL),
which was initially designed to create analytical mod-
els of traditional scientific applications and HPC ar-
chitectures, to scientific workflows.

Aspen’s DSL approach to analytical performance
modeling provides several advantages over traditional
approaches. For instance, Aspen’s kernel construct
helps to fully capture control flow, and preserves
more algorithmic information than traditional frame-
works [25]. Aspen’s model also captures the impor-
tant concepts of data capacities and data movement
in very explicit terms. Similarly, the abstract ma-
chine model is more expressive than frameworks that
reduce machine specifications to a small set of pa-
rameters. The formal language specification forces
scientists to construct models that can be syntacti-
cally checked and consumed by analysis tools. This
formal specification also facilitates collaboration be-
tween domain experts and computer scientists, and
enables scientists to include application specific pa-
rameters in their model definitions, which would oth-
erwise be difficult to infer. Finally, Aspen is modular,
and therefore it is easy to compose, reuse, and ex-
tend performance models. With these features, As-
pen can help answer important application-specific

questions.

Aspen is complementary to other performance pre-
diction techniques including simulation [26}27], em-
ulation, or measurement on early hardware proto-
types. Compared to these techniques, Aspen’s ana-
lytical model is machine-independent, has fewer pre-
requisites (e.g., architectural descriptions, applica-
tion source code), and can be computed very effi-
ciently.

Performance Modeling of Workflows

Many workflow systems have been integrated with
performance monitoring and analysis tools [28-30].
These systems typically collect only coarse-grained
information, such as task runtime and data size. Us-
ing Kickstart enables us to collect fine-grained pro-
files including I/O, memory, CPU usage, and runtime
data for use in performance modeling.

Most workflow models focus on performance pre-
diction of individual computational tasks. Data
transfer and management tasks that are present in
workflows are either not modeled, or are modeled
very simplistically. Thus, existing performance pre-
dictions are not realistic and not detailed enough to
help scientists and infrastructure providers estimate
application performance, and pinpoint and diagnose
issues. Profiling data, which is automatically col-
lected during workflow execution and includes de-
tailed runtime and resource usage statistics, can be
used to create a performance model of the workflow,
which is able to generate these estimates. In addition,
profiling data can be used to guide resource provi-
sioning algorithms that require estimates of resource
usage [31H33].

We have been extending Aspen to include applica-
tion features and resources necessary for workflows.

Compute resources. Aspen was originally designed
with the capability to model large scale scientific ap-
plications running on traditional HPC systems (e.g.,
Titan, with hybrid CPU/GPU architecture, or Mira
with the Blue Gene/Q architecture). Current As-
pen constructs model computation, memory access,
communication, and data size. Workflows represent
a much broader set of resources, which include large
storage systems of varying capability and capacity,
high speed networks, and a variety of instruments
and distributed computing systems and services.

Networks. One area of focus for our modeling will
be networks, particularly wide area networks, which
are often used during workflow execution. Wide area
communication models must deal with network pro-
tocol issues. For example, TCP throughput, and
thus data transfer throughput, is directly impacted
by packet loss. Newer protocols and long haul fiber



networks will need to be represented in Aspen.
Storage systems. For data-intensive applications,
storage system (e.g., GPFS, HPSS, Lustre) perfor-
mance has a significant impact on overall workflow
performance. The increased data movement and
storage performance requirements created by largei
workflows can heavily impact overall workflow perfor-2
mance and, thus, will need to be modeled by Aspen.j
5
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One major benefit to our approach is symmetry ino

representations of Pegasus workflows and Aspen per:3
formance models. In fact, we can use the strucl}
tured Pegasus framework to generate Aspen perforﬂ;
mance models automatically. Because Aspen is a7
structured language that mirrors concepts (e.g., sub!8
routines, loops) in traditional languages like C an(%:)
Java, it is straightforward to generate performance;
models from other structured representations. We2
have started the implementation of a post-processings
phase during the Pegasus compilation that will use’
the Pegasus intermediate abstract workflow represen-
tation to construct an Aspen model. (The infrastruc-
ture model is different from the workflow model, and
is developed in a later time.)

In our initial work, we have developed a DAX (Pe-
gasus abstract workflow format) to Aspen generator,
which maps the dependencies in the workflow to an
Aspen control flow sequence. In Aspen, statements
within a par clause execute independently, i.e., with
task parallelism, and statements within a seq clause
must be executed in order, i.e., they have sequen-
tial dependencies. Our initial scheduler performed a
wavefront-like algorithm, grouping each set of tasks
with completed dependencies into a par clause, re-
peating within one master sequential region until all
tasks completed. Because Pegasus operates at the
level of individual tasks, however, this schedule was
only accurate if all tasks within a group took the
same amount of time. As such, we implemented an
advanced scheduler, which is a more direct transla-
tion of the dependencies and more accurately matches
Pegasus scheduling behavior.

Figure [2 shows an example DAX developed for a
SNS workflow. It contains two sequences with differ-
ent initial conditions within a single workflow, with
the joint requirement that a database file must first
be unpacked for Sassena to operate. Listing [1| shows
the results as an Aspen kernel, with two major steps.
The first step starts unpacking the Sassena database

while initiating each pair of sequential equilibrium
and production dynamics NAMD calculations. The
second major step performs the Sassena runs in par-
allel with each other after ptraj run completes.

kernel main

{
par {
call unpack_database ()
seq {
call namd_eq-200()
call namd_prod_200 ()
}
seq {
call namd._eq-290()
call namd_prod-290 ()
}
}
par {
call ptraj-200()
call ptraj_-290()
}
par {
call sassena_incoh_200 ()
call sassena_coh_200 ()
call sassena_incoh_290 ()
call sassena_coh_290()
}
}

Listing 1: Automatically-generated Aspen model for
example SNS workflow

5.3 Evaluating the Use of Analytical
Models

Validation of a performance model is a difficult task.
The most obvious validation step would be to use
the model to generate a performance prediction, and
compare the performance against a measured value.
This strategy has weaknesses, generally stemming
from one important fact: performance is machine-
dependent, and so cannot effectively disambiguate
the correctness of our generated application/workflow
models from that of the machine model. This means
that you must generate multiple predictions and mea-
surements in an attempt to disambiguate not only
across machines, but across scales, and across scaling
rates.

In the case of Aspen, two facets work in our fa-
vor. First, Aspen models are not based on runtime,
but on resource usage. This means we can query the
Aspen models to derive, for example, counts of float-
ing point operations or messages. While these val-
ues might vary based on compiler or library, they are
far more machine-independent and can be measured
with tools like hardware counters and MPI library



interposition to give a ground truth against which
we can judge our application models. Second, Aspen
is an analytical tool, and can output not simply val-
ues for runtime and resource usage, but also symbolic
equations. In some cases, this makes validation possi-
ble against algorithmic expectations; for example, we
can use Aspen to validate that the number of floating
point operations in a matrix multiplication is equal
to 2n3.

As Section [5.1] points out, the context of workflows
adds complexity. However, extending the MPI mea-
surement to socket transmission and adding I/O cap-
ture can give us additional metrics for validating our
workflow models. Sections[fland [[also describe addi-
tional monitoring which can aid this process, and we
note that anomaly detection is not only most useful
with a performance model in hand, but can assist in
validating that same performance model.

6 Correlating Monitoring of
Workflows and Infrastruc-
ture

An accurate attribution of the anomalies to the ob-
served workflow performance is critical for fixing the
problem, or adapting the system. In some cases the
observed anomaly may have complex causes. For ex-
ample, poor task performance can be caused by a slow
CPU, by poor cache performance, by a slow disk, etc.
Low task throughput within a workflow execution can
be attributed to bottlenecks in the workflow engine,
a lack of computational resources, or application er-
rors. The end-to-end performance of data-intensive
workflows is even more complex as it often depends
on efficiently moving large data sets. This can be ac-
complished using bandwidth provisioned high-speed
networks, however, performance in such networks is
affected by a large number of factors, including: con-
gestion, packet loss, end-host network and I/0O per-
formance, and end-host network tuning, among oth-
ers. Thus, to diagnose these complex problems, we
need to correlate observed performance with moni-
toring information coming from a number of systems
(CPU, network, I/0, storage, etc.), and determine
which of these systems is the most likely cause of the
problem.

Using a combination of system monitoring util-
ities like the sysstat suite, nethogs, iotop, and
the multi-domain networking monitoring tool, perf-
SONAR, we are conducting a parametric study of
data transfer performance for workflows in a con-
trolled and isolated environment using a testbed

called ExoGENI [34]. We are exploring differ-
ent workflow configurations based on throttling
of data volumes, different data transfer modes
(sharedfs, nonsharedfs/pegasus-lite, nonsharedfs-
condorio), and multiple distributed domains. This
will enable us to define baseline expected data-
transfer performance and the monitoring manifes-
tations of different performance profiles. We plan
to combine this with other monitoring and profil-
ing tools described in Section We will use this
monitoring information and the output of analyti-
cal performance models from ASPEN to conduct a
thorough evaluation of these different kinds of corre-
lations, which will help in detecting anomalies in an
online fashion.

7 Anomaly Detection and Di-
agnosis

Anomalies should be detected when there is a de-
viation of observed workflow performance from the
end-to-end performance model. At the same time,
for accurate diagnosis, the observed performance de-
viations need to be traced to anomalies at the appli-
cation, workflow, and infrastructure levels. A com-
bination of offline and online strategies needs to be
developed for detecting performance anomalies dur-
ing workflow execution, and for diagnosing the root
causes of the observed problems.

7.1 Offline Anomaly Classification

Our initial approach is to classify the different types
of anomalies that can cause problems with end-to-
end workflow performance, and use offline methods
to determine the severity of the anomalies. Infras-
tructure anomalies contribute to a number of issues
with application performance. Among them are: re-
source unavailability [35], poor I/O performance [36],
disk failure, file system corruption, violations of disk
quotas [37], poor network performance due to con-
gestion and packet loss [38], firewalls (which often
drop packets in flows over 1 Gbps), limitations in
LAN switches (which may not have enough buffer-
ing to handle multiple simultaneous flows), bad opti-
cal fiber, and others. Typical application anomalies
seen during workflow execution include: input data
unavailability, application execution errors |39], and
poor performance for tasks with very short execution
times [40,[41]. Workflow-level anomalies are devia-
tions in workflow-level performance metrics, such as:
low task throughput, which may indicate problems



with resource availability; high task error rates, or
significant changes in task error rates; slow end-to-
end data transfers; data sets that are larger or smaller
than expected; long queue wait times, which may in-
dicate low resource availability or fairness and pri-
ority issues; and low resource utilization, which may
be caused by resource failures, over-provisioning, or
misconfiguration.

We need to quantify anomaly severity in discrete
anomaly levels so that different sets of actions can
be triggered to address different levels of the diag-
nosed anomaly. For example, some anomalies may
be critical to workflow performance, such as input
data unavailability, while others may only reduce ap-
plication performance, such as long queue wait times.
Anomaly levels can be determined based on thresh-
olds that are derived by clustering performance met-
rics into groups. The threshold value of an anomaly
level will be determined from execution traces col-
lected and published in the workflow archive devel-
oped as part of the DOE dV/dt project, for which dif-
ferent thresholding approaches can be used. Anomaly
levels and thresholds will, initially, be determined of-
fline; thus they will not create any overhead on the
workflow execution.

7.2 Real-time Anomaly Detection

We developed a persistent query agent (PQA) [42]
that enables persistent queries on data federated from
different sources, including multi-domain infrastruc-
ture monitoring data, and workflow and application
performance data. Using this agent, it is possible
to run continuous queries on disparate data sources
and get asynchronous, real-time notifications when
relevant performance events occur. We will lever-
age the PQA framework to combine offline anomaly
analysis, Aspen performance model evaluations, and
multi-domain monitoring data for online, real-time
detection and scalable distribution of the triggers to
the appropriate stakeholders.

It is important to define, ahead of time, which met-
rics are important for particular application use cases
by benchmarking executions of individual applica-
tions. It is also imperative to register the application-
level metrics, workflow-level metrics, and infrastruc-
ture metrics with the system so that persistent
queries can refer to these metrics while construct-
ing event conditions that might result in anomaly
triggers. This will make it possible to use a uni-
fied mechanism to understand anomalies in multi-
domain infrastructure, anomalies in the application,
and anomalies in the application’s view of the infras-

tructure. The Aspen analytical performance mod-
els will also help in identifying critical metrics, and
hence in the design of the persistent queries. Predic-
tions from the analytical models will also be pushed
as events into the PQA making it possible to do “con-
tinuous diffs” of observed metric values with values
predicted from the end-to-end models.

Another advantage of the persistent query mecha-
nism is that the anomaly triggers immediately iden-
tify the corresponding persistent query, and hence the
precise event condition that led to the trigger. The
triggers are also distributed in a scalable fashion using
a publish-subscribe framework, which makes it possi-
ble to inform only the interested stakeholders. For in-
stance, different persistent queries will be relevant for
different stakeholders. Since all these queries can co-
exist in the system, and triggers are associated with
queries, only the stakeholders who are interested in
the anomaly event condition will be notified. Hence,
the design of persistent queries will take into account
the different possible use cases—scientist use cases,
workflow management system use cases, infrastruc-
ture adaptation use cases, resource provisioning use
cases, and infrastructure operator use cases.

8 Hybrid Modeling: Interleav-
ing Simulation with Analyti-
cal Modeling

Workflow models will undoubtedly have many com-
ponents and interactions among those components.
We will use simulation to help understand workflow
components for which analytical models are not suffi-
ciently accurate. The two simulation components are
described below.

Rensselaer’s Optimistic Simulation System (ROSS)

(network simulation) is a framework for developing
parallel discrete event simulations. ROSS has
demonstrated highly scalable, massively parallel
event processing capability for both conservative
and optimistic synchronization approaches [43-47].
ROSS mitigates Time Warp state-saving overheads
via reverse computation [48]. In this approach,
rollback is realized by performing the inverse of the
individual operations that were executed in the event
computation. This eliminates the need to explicitly
store prior logical process (LP), which represents
a distinct component of the model state, leading
to much more efficient memory utilization. We
have leveraged reverse computation to demonstrate
massively parallel performance of the ROSS simu-
lation engine [44] in several models. Most recently,



ROSS optimistic event processing has demonstrated
super-linear performance for the PHOLD benchmark
using nearly 2 million Blue Gene/Q cores on the
120 rack Sequoia supercomputer system located at
LLNL [43].

CODES storage simulation: We also developed the
CODES simulation framework (based on ROSS),
which combines models of storage devices, high per-
formance networks, I/O forwarding infrastructure,
and storage software into a unified parallel discrete
event simulation model. CODES can simulate com-
plete, large-scale storage systems all the way from
individual application processes to individual storage
device accesses.

Traditionally, users are required to create a sim-
ulation structure for the component of interest, and
the interactions with those components. Since we al-
ready have the high-level structured analytical model
of the target workflow in Aspen, we intend to use this
Aspen model to drive the ROSS/CODES simulation
of the component under consideration, and the ex-
ternal interactions that it expects (analytically). For
example, in this combined framework, we will be able
to use an Aspen model for the entire workflow (e.g.,
Climate model simulation), and then use the CODES
simulator to simulate a component of the workflow
(e.g., HPSS storage system) in great detail. The As-
pen model will generate the I/O requests and trans-
fers to the components (e.g., HPSS) in the simulator,
and use analytical models for the remainder.

9 Related Work

There have been several previous efforts to charac-
terize the workloads of distributed systems [49H52].
For instance, [49] and [50] presented analyses of
Grid and HPC workload characteristics including sys-
tem usage, user population, application characteris-
tics, and characteristics of grid-specific application
types. Analysis of MapReduce job characteristics
such as CPU utilization, memory usage, slots allo-
cation, I/O operations, and network transfers was
presented in [51]. Cloud workload patterns (period-
icity, threshold, relationship, variability, and image
similarity) were identified in [52]. These studies typ-
ically use data provided by Grid and HPC workload
archives [53H56]. These workloads mainly capture in-
formation about task executions, but lack critical in-
formation about scientific workflow executions such
as task dependencies, task clustering, etc.

In the area of characterization and profiling, some
efforts have been made to collect and publish traces
and performance statistics for real scientific work-
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flows, such as workflow-based workload traces from
the Austrian grid [57,/58], provenance-based work-
loads from a workflow management system [59], a
survey of workflow characteristics from several re-
search domains including bioinformatics, medical in-
formatics, weather and ocean modeling, and as-
tronomy [60], and workflow-based workloads from a
science-gateway [61]. We have characterized and pro-
filed scientific workflows to understand and predict
their resource requirements [22}/62,63], and recently,
we published traces for a few workflows executed us-
ing Pegasus [64], and synthetic workflows based on
statistics from real applications for use in simula-
tions [64}65].

Performance modeling spans a large range of tech-
niques, from analytical modeling to simulation. In
analytical modeling, predictions can be obtained
without directly using the application source code.
These modeling methods range from ad-hoc, hand-
written models to more structured methods like
BSP [66] and LogP [67,/68]. The strength of ana-
lytical approaches when evaluating far-future archi-
tectures is shown in the HPC space in two examples
considering FFT for exascale systems in [69] and [70].
Aspen extends these analytical modeling concepts to
a formal DSL and adds extensibility and flexibility
to analytical techniques; see [25] for a treatment of
FFT on HPC architectures. Aspen is under active
development and investigation for a variety of perfor-
mance modeling contexts; see [71] for a more recent
example of the use of Aspen in the HPC space.

10 Future Work

In addition to real workflows we will also develop syn-
thetic workflows that emulate the behavior of the real
applications, but allow us to easily vary parameters
such as the input data size and the task runtimes.
This will be supported by profiling the applications
using our workflow profiling tools, which will be ex-
tended to support parallel applications and to collect
additional metrics that characterize application be-
havior.

We will also identify and develop mechanisms for
collecting and correlating infrastructure, workflow,
and application monitoring data. This will involve
developing new tools and enhancing existing tools to
extract monitoring data and transport it to a cen-
tral location for correlation and analysis. We plan
to use the empirical monitoring data to validate the
Aspen performance models for the different workflow
use-cases. We will also validate the models using the
ExoGENI and ESnet testbeds.



We plan to develop offline techniques for cluster-
ing and classifying anomalies based on thresholds and
time-series data. We will extend our persistent query
tool to use both Aspen performance models and mon-
itoring data, and design new persistent queries for
real-time detection and diagnosis of anomalies. To
evaluate the accuracy of our anomaly detection ap-
proach we plan on using a combination of fault and
load injection.

We will extend the Aspen analytical models and
integrate them further with ROSS/CODES to facil-
itate detailed simulations, where analytical models
lack the necessary insights.

We will also explore and implement adaptation
techniques, which will be automatically triggered
when anomalies and failures are detected.
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