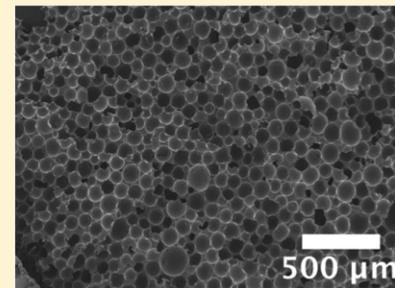


## <sup>1</sup> Polymer/Pristine Graphene Based Composites: From Emulsions to <sup>2</sup> Strong, Electrically Conducting Foams


<sup>3</sup> Steven J. Wolturnist,<sup>†</sup> Jan-Michael Y. Carrillo,<sup>§</sup> Thomas O. Xu,<sup>†</sup> Andrey V. Dobrynin,<sup>\*,‡</sup>  
<sup>4</sup> and Douglas H. Adamson<sup>\*,†,‡</sup>

<sup>5</sup> <sup>†</sup>Department of Chemistry and <sup>‡</sup>Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut  
6 06269, United States

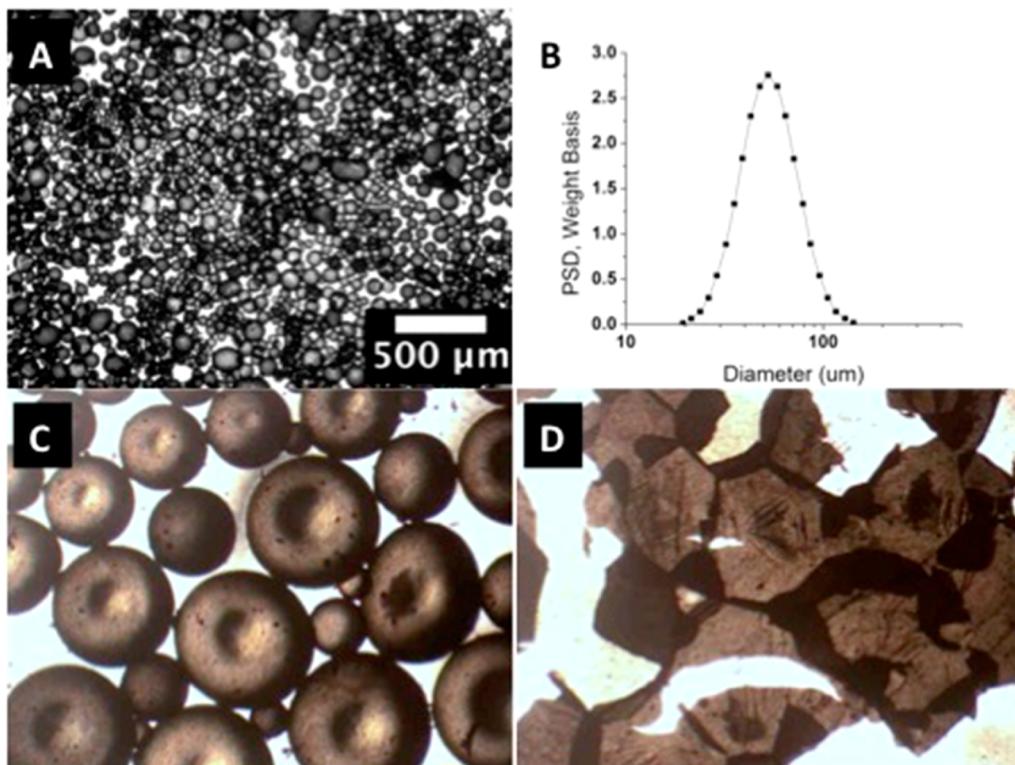
<sup>7</sup> <sup>§</sup>National Center for Computational Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

<sup>8</sup> **Supporting Information**

**ABSTRACT:** The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. Here we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boiling solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. These emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm<sup>3</sup> that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.



### INTRODUCTION


The excitement surrounding the potential of graphene as a nanofiller in composite materials is driven by its unique set of electrical and mechanical properties.<sup>1–9</sup> A common theme in previous studies of graphite and graphene based composites has been that the lack of graphene solubility is viewed as a challenge to be overcome. Solutions to graphene's insolubility include employing graphene oxide (GO) or reduced graphene oxide (rGO),<sup>10–18</sup> harsh *in situ* chemical reduction steps,<sup>17,18</sup> the use of high boiling and difficult to remove solvents,<sup>19</sup> and extended sonication treatments that result in the breaking of sheets from shear stress.<sup>20</sup> All of these approaches pay a price in terms of degraded graphene properties. An approach that does not view graphene's insolubility as a limitation and thus utilizes pristine, unaltered graphite would have major advantages in terms of properties, cost, and environmental impact.

In this article, we report the results of a combination of experimental, theoretical, and computational techniques to demonstrate the affinity of pristine graphene sheets to a water–oil interface and describe the use of this surface activity to stabilize water-in-oil emulsions. In particular, we take advantage of graphene/graphite's inherent insolubility and the large interfacial energies between aqueous and organic solvents by adding graphite to a mixture of two immiscible solvents and observing the spreading of graphene sheets at the high-energy liquid–liquid interface, where the spreading is driven by a

lowering of the total free energy of the system. The sheets then become trapped at the interface of the two solvents, playing the role of a stabilizing agent for emulsions of water droplets dispersed in a continuous oil phase. In this context graphene sheets can be viewed as two-dimensional surfactants with internal bending rigidity.

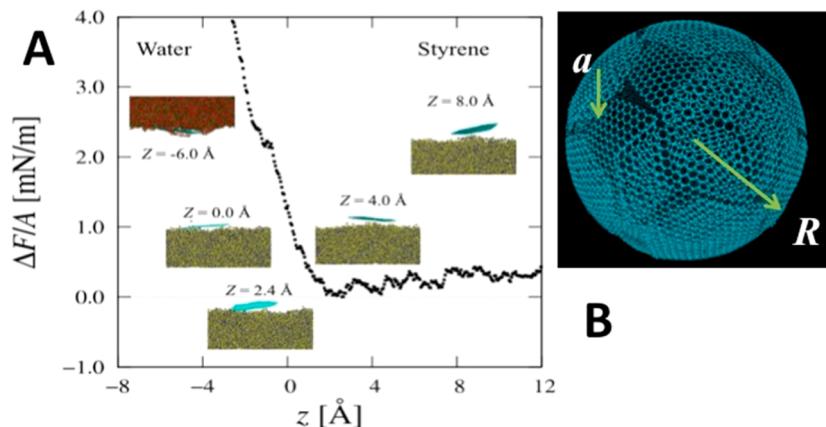
Although, to the best of our knowledge, the stabilization of emulsions by pristine graphene sheets has not been demonstrated previously, there are recent reports of GO being used as an emulsion stabilizer. The emulsions created with GO or GO derivatives are oil-in-water emulsions, as opposed to the water-in-oil emulsions we find with pristine graphene. This results in the formation of spherical polymer beads coated with GO being produced rather than a continuous composite material when the oil phase is polymerized in the GO based emulsions. For instance, Gudarzi et al. produced a “nanocomposite powder” with GO and PMMA,<sup>21</sup> Dao et al. synthesized surface functionalized rGO to make “microspheres”,<sup>22</sup> Zhang et al. used functionalized rGO to make a PS based “solid powder”,<sup>23</sup> and Yin et al. reported GO coated PS microspheres.<sup>24</sup> A recent extensive study of GO stabilized emulsions concluded that GO emulsions were best described as Pickering emulsions and that only oil-in-water emulsions were formed.<sup>25</sup>

**Received:** December 1, 2014



**Figure 1.** Graphitic skin stabilized emulsions. (A) Optical microscopy image of graphitic skin stabilized emulsion in 50:34:0.44 mass ratio water/heptane/graphene mixture. (B) Droplet size distribution of graphite skin covered water droplets with average diameter 55  $\mu\text{m}$  in 50:34:0.44 mass ratio water/heptane/graphene mixture as determined by acoustic measurements. (C) Magnified optical microscopy image of the initial structure of the water droplets covered with graphene skin before heptane evaporation. (D) Optical image of the graphitic skin left behind after heptane evaporation and droplet burst.

Using a monomer as the oil phase, we demonstrate how pristine graphene stabilized water-in-oil emulsions template solid graphite composite foams. After polymerization of the continuous phase, the water-filled spherical cavities are lined with a graphitic skin consisting of overlapping pristine graphene sheets. A gentle evaporation process removes the water, leaving a final open cell foam composite with exceptional mechanical strength, electrical conductivity, and low density, with cell sizes easily controllable by varying the mixture composition. This environmentally friendly approach to graphite utilization in polymer composites avoids the use of chemical treatments, the input of large amounts of mechanical or thermal energy, or the addition of stabilizers such as surfactants or high boiling solvents that can be difficult to remove. Potential applications of these low-cost materials include strong and lightweight building materials, filters, ultracapacitor electrodes, and conductive catalyst supports.


## RESULTS AND DISCUSSION

The affinity of graphene sheets to a water/oil interface and their emulsion stabilization is studied with emulsions formed by water/heptane/graphite mixtures. Emulsions are produced as described in the Methods section. Figure 1A shows the structure of a graphite stabilized water-in-heptane emulsion under optical microscopy. Heptane is the continuous phase surrounding graphitic skin stabilized spherical water droplets with diameters varying between 20 and 200  $\mu\text{m}$ . Note that there is some coalescence during the transfer process to the glass slide needed for imaging. The droplet size distribution in a water-in-heptane emulsion can be seen in Figure 1B.<sup>26</sup> The average size of the

droplets is 55  $\mu\text{m}$ , which is consistent with optical image analysis of the resultant emulsion shown in Figure 1A. That the water droplets are stabilized with a graphitic skin and not by chunks of graphite is shown in Figures 1C,D. These images of droplets before and after bursting upon evaporation of the heptane continuous phase clearly show the skin surrounding the droplets is made of sheets, not by graphite particles. Further, the skin displays different degrees of transparency, indicating differences in the number of sheets forming the skin and providing strong evidence for skin thicknesses of a few graphene layers.

Corroborating the observation of few layer thick skin are results of our recent all atom molecular dynamics simulations of graphene flakes in a water/heptane mixture.<sup>27</sup> These simulations show that graphene flakes associate at the water/heptane interface forming stacks consisting of two to three graphene flakes. These graphene stacks are localized at the water/heptane interface with slight preference toward the heptane phase. The system free energy change required to move a graphene flake into the heptane phase is  $|\Delta g| \approx 2.2 \text{ mN/m}$ . Thus, for a  $100 \times 100 \text{ nm}$  graphene sheet, the work required to move it from the water/heptane interface into the heptane phase is on the order of  $5300 \text{ } k_{\text{B}} T$  (where  $k_{\text{B}}$  is the Boltzmann constant and  $T = 300 \text{ K}$ ). Note that the penalty to move a graphene sheet into a water phase would be even higher. This energy cost effectively traps the graphene sheets at the water/heptane interface, a phenomenon similar in some ways to the trapping of nano- and microparticles at a water/oil interface in Pickering emulsions.<sup>28</sup>

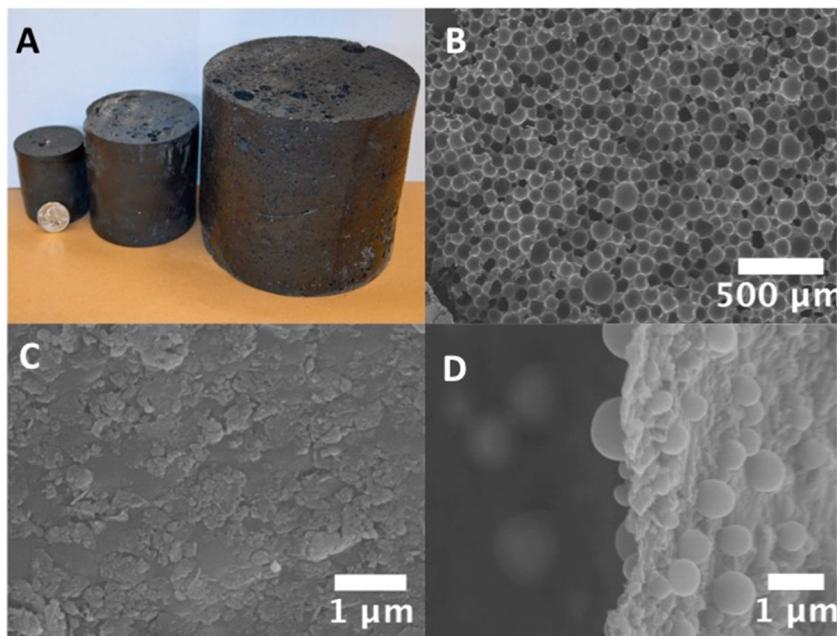
In order to compare graphene affinity in heptane/water emulsions with that in the styrene/water emulsions used to make the reported composites, we have performed all atom molecular



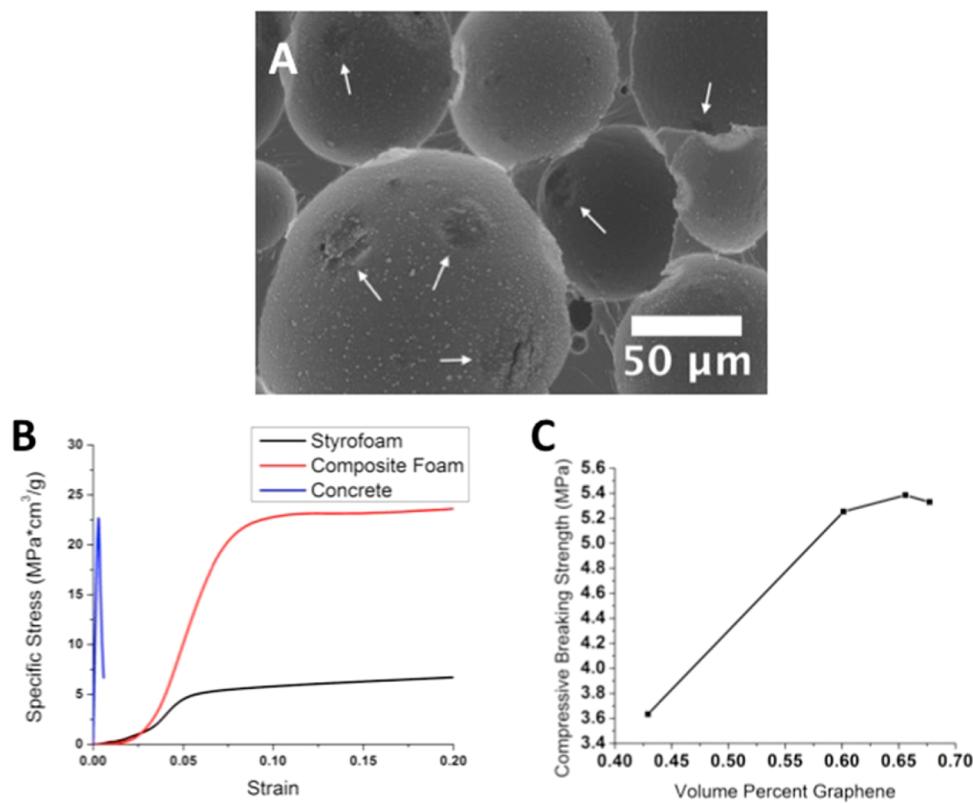
**Figure 2.** (A) Potential of the mean force for a graphene flake calculated along  $z$ -axis normal to water/styrene interface. Insets show typical graphene flake configurations. The solvent into which the graphene flake is pulled is transparent. In the insets, the hydrogen atoms of water molecules are yellow, oxygen atoms of water are blue, the carbon atoms belonging to styrene are red, and the hydrogen atoms of styrene are green. Graphene flakes are shown in cyan. (B) Schematic representation of a water droplet with size  $R$  covered with a graphene skin formed by flakes of size  $a$ .

133 dynamics simulations to calculate the potential of the mean force  
 134 between a graphene flake and water/styrene interface. In these  
 135 simulations we use the generalized Amber force field<sup>29</sup> for the  
 136 atomistic model of styrene and graphene. The graphene flake is  
 137 modeled as a polycyclic aromatic hydrocarbon consisting of eight  
 138 generations of carbon rings terminated by hydrogen,  
 139  $C_{384}H_{48}$ .<sup>27,30</sup> The partial charges on the styrene and the graphene  
 140 flakes are obtained from the Mulliken population analysis from  
 141 *ab initio* calculations using the Gaussian09 simulation package  
 142 with the 6-31G(d) basis set and B3LYP DFT method<sup>31</sup> as  
 143 described in the work of Woltornist et al.,<sup>27</sup> Oyer et al.,<sup>30</sup> and  
 144 section SI1 of the Supporting Information. For water we use the  
 145 TIP3P force field potential.<sup>32</sup> The system consists of 9360 water  
 146 molecules, 1360 styrene molecules, and one graphene sheet. The  
 147 simulations are performed following methodology developed for  
 148 modeling of the graphene flakes in heptane/water mixture,<sup>27</sup>  
 149 with details of the simulation procedure described in section SI1.  
 150 In order to determine the surface activity of a graphene sheet in a  
 151 water/styrene system, the weighted histogram analysis method<sup>33</sup>  
 152 is used to calculate the potential between the graphene sheet and  
 153 the water/styrene interface.

154 All simulations are performed at constant temperature  $T$  equal  
 155 to 300 K. The variation of the potential of the mean force along  
 156 the  $z$ -axis normal to the interface is shown in Figure 2A. The  
 157 minimum of the potential is located in the styrene phase,  
 158 indicating that although insoluble in both phases, the preference  
 159 of graphene is for styrene rather than water. The increase of the  
 160 potential in the styrene phase is not as steep as that observed in  
 161 the water phase, another indication that styrene is a better solvent  
 162 for graphene than is water. Oscillations seen in the potential of  
 163 mean force indicate displacement of the aligned styrene  
 164 molecules as the graphene flake is moved further away from  
 165 the interface. The magnitude of the potential in the plateau  
 166 regime is on the order of  $|\Delta g| \approx 0.4$  mN/m. It is important to  
 167 point out that similar calculations done for the heptane/water  
 168 mixtures show that this free energy change is even higher  $|\Delta g| \approx$   
 169 2.2 mN/m for that system.<sup>27</sup> Using these values, we can estimate  
 170 the work required to displace a  $100 \times 100$  nm graphene sheet  
 171 from the water/styrene interface into the styrene phase to be 966  
 172  $k_B T$ , sufficiently strong to trap graphene sheets at the water/  
 173 styrene interface. The work required to displace the graphene  
 174 sheet into a heptane phase is about 6 times larger.


175 To model the total potential of the mean force in our system,  
 176 we consider an emulsion prepared by mixing oil, water, and  
 177 graphite with masses  $m_o$ ,  $m_w$ , and  $m_g$ , respectively. The emulsion  
 178 composition can be characterized by two mass ratios of graphene  
 179 to water,  $\phi_g = m_g/m_w$  and water to oil,  $\phi_{w/o} = m_w/m_o$ . The oil  
 180 forms a continuous phase surrounding the water droplets with  
 181 size  $R$ . Each water droplet is covered by a graphitic skin of  
 182 thickness  $h$  which is made of graphene sheets with average size  $a$   
 183 (see Figure 2B). The thickness of the graphitic skin  $h$  depends on  
 184 the size  $R$  of the water droplets due to the mass conservation  
 185 requirement such that  $h = \beta R/3$ , where we introduced parameter  
 186  $\beta = \phi_g \rho_w / \rho_g$  with  $\rho_w = 1.0$  g/cm<sup>3</sup> and  $\rho_g = 2.66$  g/cm<sup>3</sup> being mass  
 187 densities of water and graphene respectively (see section SI2 for  
 188 details). The volume of emulsion per water droplet  $V_0$  can be  
 189 expressed in terms of the emulsion composition  $\phi_{w/o}$ , where  
 190  $V_0 = 4\pi a R^3 / 3$  with parameter  $\alpha = 1 + \rho_w / \phi_{w/o} \rho_o$  and  $\rho_o$  is the oil  
 191 mass density. Thus, in the emulsion occupying volume  $V$  there  
 192 are  $V/V_0$  water droplets with size  $R$ . The total free energy change  
 193 due emulsion formation is the sum of contributions from  
 194 individual droplets (see section SI2 for derivation details). It has  
 195 contributions from the graphitic skin bending energy and from  
 196 the change of the oil/water interface free energy due to bringing  
 197 graphene sheets to the interface. Equation 1 describes the result:  
 198

$$\frac{\Delta F_{\text{total}}}{V} \approx \frac{E \beta a^4}{384 \alpha R^4} - \frac{3|\Delta g|}{\alpha R} \quad (1)$$


199 where  $E$  is the Young's modulus of the graphene sheet ( $\sim 1$  TPa).  
 200 It follows that the affinity of the graphene toward the water/oil  
 201 interface promotes the formation of smaller droplets to maximize  
 202 the system free energy gains. However, graphene sheets adsorbed  
 203 at the surface of smaller droplets have to bend more in order to  
 204 remain at the interface, producing a bending energy penalty for  
 205 each graphene sheet covering the surface of a droplet.  
 206

207 The size of the emulsion droplets is thus determined by a  
 208 balance between the affinity of the graphene toward the solvent  
 209 interface and the rigidity of the graphene sheets. The optimal size  
 210 of the droplets is obtained by optimizing the system free energy  
 211  $\Delta F_{\text{total}}$  with respect to droplet size  $R$ :

$$R^* \approx \left( \frac{E \beta a^4}{288 |\Delta g|} \right)^{1/3} \quad (2)$$



**Figure 3.** Composite foam morphology. (A) Graphene composite foams of various sizes with a US quarter for scale. (B) Scanning electron micrograph of a cross section of the composite after polymerization made from an emulsion with a 50:34:0.44 mass ratio of water/styrene/graphite. (C) Graphene sheets seen lining the inside of the spherical cavities of the composite foams. (D) Micrograph of a cross section of a sphere–sphere contact point. The small spheres seen on both sides of the graphitic skin arise from the very small amount of styrene solubilized in the water phase.



**Figure 4.** Morphology and compressive strength. (A) Scanning electron micrograph of a composite foam with visible sphere–sphere contact points indicated with arrows. These areas often sag because of the lack of supporting polymer. (B) Stress/strain curves of the composite foam and other industrial materials normalized by material density.<sup>38</sup> (C) Compressive strength vs volume percent graphite of the composite samples.

Equation 2 shows that we can control the size of the droplets by changing the graphene/water ratio (changing parameter  $\beta$ ), by varying the graphene sheet size  $a$ , or by changing the identity of the oil. For example, in an emulsion with about 1% weight

fraction of graphite with respect to water,  $\beta \approx 0.0033$ , of radius  $a = 1.4 \mu\text{m}$ , we can estimate the diameter of the droplets in a water/heptane mixture to be on the order of  $54 \mu\text{m}$ . This estimate is consistent with the emulsion droplet size of  $55 \mu\text{m}$  observed

Table 1. Water/Styrene Ratio Study

| ratio water/styrene<br>(volume) | ratio water/graphite<br>(mass) | observed sphere diameter<br>( $\mu\text{m}$ ) | density<br>( $\text{g}/\text{cm}^3$ ) | compressive strength<br>(MPa) | conductivity<br>( $\text{S}/\text{m}$ ) | loading percent (by<br>TGA) |
|---------------------------------|--------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------|-----------------------------------------|-----------------------------|
| 1/1                             | 114                            | 90                                            | 0.26                                  | 5.33                          | 0.043                                   | 5.73                        |
| 3/2                             | 136                            | 130                                           | 0.27                                  | 5.25                          | 0.051                                   | 4.90                        |
| 7/3                             | 159                            | 160                                           | 0.30                                  | 5.38                          | 0.054                                   | 4.81                        |
| 3/1                             | 170                            | 190                                           | 0.22                                  | 3.63                          | 0.070                                   | 4.29                        |
| 4/1                             | 182                            |                                               | 0.15                                  | 1.07                          | 0.148                                   | 8.76                        |

220 experimentally (see Figure 1B). Repeating the same calculations  
221 for a water/styrene mixture, we estimate the diameter of the  
222 droplets to be  $95\ \mu\text{m}$ . This is consistent with the image shown in  
223 Figure 3B of a foam resulting from an emulsion with  $80\text{--}90\ \mu\text{m}$   
224 diameter droplet sizes. Note that the increase in the droplet size  
225 is consistent with a decrease in the graphene flake affinity to the  
226 water/oil interface in these two systems. However, this is only an  
227 estimate for the size of the droplets covered with the graphitic  
228 skin. In reality, the droplets in the emulsions could be smaller due  
229 to droplets' breakup upon emulsion shearing in homogenizer.<sup>34</sup>  
230 Indeed, we see a decrease followed by saturation of the average  
231 droplet size with increasing homogenization time.

232 The same approach is used to make emulsions with styrene as  
233 is used to make emulsions with heptane. In both cases, the  
234 graphitic skin stabilized water droplets settle to form a densely  
235 packed phase of spheres with the oil phase filling the space  
236 between them. The aggregation between graphitic skin covered  
237 droplets is due to van der Waals attraction between graphene  
238 sheets forming the skin layer. The excess of the oil phase forms a  
239 pure liquid phase above the emulsion, and the densely packed  
240 emulsion phase remains stable as confirmed by measuring  $G'$  at  
241 extended time (see section SI3 for details).

242 In the case of styrene as the oil phase, gentle heating  
243 polymerizes the oil phase. After the styrene monomers are  
244 polymerized, the graphitic skin covered water droplets are fixed  
245 in space, forming a rigid foam. This approach is highly scalable as  
246 illustrated in Figure 3A showing composites of increasing overall  
247 size, all with the same underlying foam structure. A cross-  
248 sectional image of a typical graphene foam using a JEOL 6330  
249 field emission scanning electron microscope (FESEM) is shown  
250 in Figure 3B. The imaged surface is much like the surface of a golf  
251 ball, with concave divots covering the entire surface. A higher  
252 magnification image of the interior of a divot, shown in Figure  
253 3C, clearly shows a layer of graphene sheets lining the interior of  
254 the cavities. Figure 3D shows where the emulsion droplets make  
255 contact, with little or no polymer observed, only a thin layer of  
256 overlapping graphene sheets. This structural feature is crucial to  
257 the electrical conductivity of the composites as it provides the  
258 contact between graphene sheets of different spheres. The  
259 spheres observed on the surface of the graphitic skin in Figure 3D  
260 are the result of a very small amount of dissolved styrene in the  
261 water phase that polymerizes and precipitates out. This is verified  
262 by the addition of NaCl to the water phase, reducing the  
263 solubility of styrene and resulting in nearly no small polystyrene  
264 spheres being observed in the composite (see section SI4).

265 The placement of these thin contact regions can be seen in  
266 Figure 4A. In some instances a tear can be observed in the  
267 graphitic skin, providing a pathway for water removal. If gentle  
268 heat is applied, these regions provide ample space for water to  
269 escape. Placing the water wet material in high vacuum, however,  
270 causes the water to burst out of the spheres, creating a popcorn-  
271 like effect. These openings between spheres also allow for the  
272 infusion of various polymers into a dried foam. Adding a second

273 polymer to the inside surface of the spheres, along with  
274 controlling the average size of the spheres, provides a powerful  
275 handle for tuning the mechanical and electrical properties of the  
276 foams. A comparison of the specific stress of the foams versus  
277 those of concrete and Styrofoam may be seen in Figure 4B. The  
278 foams are seen to have both the specific strength of concrete and  
279 the plateauing failure mechanism of Styrofoam. As the graphene  
280 content increases, the compressive breaking strength increases  
281 until it reaches a local maximum, as seen in Figure 4C.

282 The sphere size is controlled by altering the ratio of styrene to  
283 water in the emulsion as well as by varying the amount of  
284 graphite. Table 1 shows the progression of sphere sizes from a 4/  
285 1 to a 1/1 water/styrene ratio with a constant graphene  
286 concentration. The graphene concentration dependence of  
287 sphere size is shown in section S1S. The relative amount of  
288 each solvent in the initial mixture also determines the volume  
289 fraction of the emulsion phase in the total mixture. For a 7/3  
290 water/styrene ratio, the final volume of the sample is composed  
291 almost entirely of the emulsion. If the volume fraction of the  
292 water is less than 7/3, the system has an excess styrene phase and  
293 spheres become smaller. When the volume fraction of water is  
294 raised above 3/1, the emulsion loses its stability and the graphene  
295 spheres coalesce, leaving an excess of water and a larger average  
296 sphere size. At a 9/1 ratio and above, the emulsion structure is  
297 lost. The relationship between solvent volume ratio and  
298 emulsion volume fraction is plotted in section S16.

299 The sphere size of the foams is strongly correlated with both  
300 compression strength and electrical conductivity, with foams  
301 composed of spheres smaller than  $\sim 160\ \mu\text{m}$  diameter having a  
302 higher compressive strength than foams with larger spheres. At  
303 diameters greater than  $\sim 190\ \mu\text{m}$ , the emulsions begin to coalesce  
304 and the volume fraction of the emulsion in the mixtures becomes  
305 smaller. At a 4/1 ratio, the regular foam structure is nearly gone  
306 and an average sphere size cannot be determined. Even though  
307 the composite contains a large fraction of graphite, the collapse of  
308 the regular sphere structure results in a weak material. Our  
309 material compares favorably to commercial materials formed by  
310 dispersing graphite flakes in foamed polystyrene have  
311 compressive resistances on the order of 0.173 MPa at 10%  
312 yield.<sup>35</sup>

313 Unlike the mechanical strength, the electrical conductivity is  
314 observed to depend on the overall level of graphene loading  
315 rather than on the spherical structure of the foam. This results in  
316 larger sphere foams showing increased conductivity as the  
317 emulsion phase gets smaller while the amount of graphene stays  
318 constant. The densely packed sphere structure of the graphene  
319 foam composite allows for electrical conductivity at low graphene  
320 loadings, although increased graphite loading levels in non-  
321 optimal systems can also lead to highly conductive material.

322 Increasing the conductivity and mechanical properties of the  
323 foams is also achieved by the addition of a second polymer to the  
324 interior of a previously dried foam. The passageways for the  
325 removal of water provide an opportunity to infuse a second

326 polymer into the system. Submerging a composite sample in a 327 polymer solution and placing the system under gentle vacuum, 328 the solution replaces the air in the foam. Subsequent removal of 329 the solvent leaves behind the dissolved polymer from the 330 solution. Infusing the graphene composite foam with an aqueous 331 suspension of poly(3,4-ethylenedioxythiophene):poly- 332 (styrenesulfonate) (PEDOT:PSS), followed by evaporation of 333 the water, leaves a layer of PEDOT:PSS lining the interior 334 surfaces of the foam. After the water evaporates, the PEDOT:PSS 335 left behind is “draped” over the PS beads and graphene sheets as 336 shown in section SI7. A dramatic increase in conductivity and 337 compressive strength is observed, with conductivities improved 338 by up to 2 orders of magnitude, from 0.07 to 7 S/m for a 3/1 339 initial water volume fraction sample. Compressive strengths are 340 also improved by as much as 20%.

341 Although the graphene foam composite described uses water 342 with styrene as the oil phase, many other monomers have been 343 used. These include isoprene, butyl acrylate, divinylbenzene, and 344 butyl methacrylate. Flexible foam composites are observed with 345 polyisoprene, and ultralow densities are realized with butyl 346 acrylate.

## 347 ■ CONCLUSION

348 We have demonstrated the ability of graphene to serve as a 349 surfactant for the stabilization of water-in-oil emulsions and used 350 this ability to form low density, conductive, high compressive 351 strength graphene/graphite polymer composites. A conductive 352 network with low graphite loading is formed by the contact 353 between thin graphitic skins surrounding the droplets of the 354 close-packed dispersed phase. Computational results indicate an 355 interface trapping mechanism operates to form the emulsions 356 that serve as the composite template. Additionally, we 357 demonstrated that the electrical conductivity and strength of 358 the composite foams may be increased dramatically through 359 control of the emulsion droplet size and the infusion of additional 360 polymers such as PEDOT. The foams are inexpensive, and their 361 formation is environmentally friendly with no volatile organic 362 solvents, oxidations, reductions, high temperatures, or large input 363 of energy required.

364 Limitations on the choice of monomer comes from the 365 requirement that graphene stabilize the oil/water interface.<sup>27</sup> 366 The oil phase must have a surface energy less than the surface 367 energy of graphene and be nearly insoluble in the water phase. As 368 graphene has a surface energy of 54.8 mN/m,<sup>36,37</sup> and water has a 369 surface energy of 72.9 mN/m, the surface energy of the oil phase 370 must be below 54.8 mN/m. The low surface energy of styrene 371 and most other monomers easily fit this criterion, making the 372 described approach both robust and diverse. Applications such as 373 strong and lightweight building materials, ultracapacitor electro- 374 des, conductive catalyst supports, and filtration are expected to 375 be enabled by these materials and are currently being 376 investigated.

## 377 ■ METHODS

378 **Sample Preparation. Polystyrene/Graphene Composites.** For a 379 typical graphene composite foam, a flask was charged with 880 mg of 380 graphite (Asbury Carbons grade 2299, although others such as Asbury 381 Carbons Micro 890 and 3243 have been used successfully as well), along 382 with 150 mL of water (Deionized), 50 mL of styrene (Acros Organics, 383 99.5%), 12 mL of divinylbenzene (Aldrich, 80%), and a stir bar. The 384 contents were then mixed on a stir plate for 30 s, followed by 30 s of bath 385 sonication (Branson 80W B2510DTH). This procedure results in a 386 graphene concentration of 4.4 mg/mL and a 3/1 water/styrene ratio.

387 Composites with other ratios and concentrations are simply adjusted 388 accordingly. The sonication was not necessary to obtain emulsions but 389 utilized simply to break up large clumps of graphite. 150 mg of 389 azobis(isobutyronitrile) (AIBN) (Aldrich, 98%) was then added to the 390 same flask. The system was then mixed on a stir plate for a minimum of 391 15 min while being purged with Ar gas (Fisher). After the purging 392 process, the contents of the flask were poured into a Waring commercial 393 blender (Model 33BL79) under an Ar atmosphere. The blender was 394 then turned on for 1 min. The newly formed emulsion was placed into a 395 250 mL jar and sealed under Ar gas. The jar was then placed in an oven 396 (Thermo Electron Corporation, Model 6500) at ~70 °C for 24 h. After 397 the reaction was complete, the composite samples were removed from 398 the jars and heated at ~80 °C for ~2 days to remove all water. Excess 399 bulk polystyrene was cut off of the top if necessary. 400

401 **Characterization. Emulsion Droplet Size Analysis.** The size of the 402 dispersed aqueous phase droplets was determined with a DT-100 402 acoustic spectrometer from Dispersion Technology Inc. The attenu- 403 ation spectra were analyzed using Dispersion Technology software for 404 polydisperse emulsions.<sup>26</sup> The distribution was obtained from ultra- 405 sound attenuation spectra in the frequency range between 1 and 100 406 MHz. 407

408 The emulsion sample used in the measurement utilized heptane 409 rather than styrene as the continuous phase. A flask was charged with 409 880 mg of graphite (Asbury Carbons grade 2299), along with 150 mL of 410 water (Deionized), 62 mL of heptane (Fisher Optima), and a stir bar. 411 The contents were then mixed on a stir plate for 30 s, followed by 30 s of 412 bath sonication (Branson 80W B2510DTH). The sonication was not 413 necessary to obtain emulsions but utilized simply to break up large 414 clumps of graphite. The system was then mixed on a stir plate for about 415 30 s. After the mixing, the contents of the flask were poured into a 416 Waring commercial blender (Model 33BL79). The blender was then 417 turned on for 1 min. The contents were then poured into a jar for 418 transportation and then directly into the instrument. 419

420 **Microscopic Characterization.** To prepare composite samples for 421 the electron microscope, they were first cut with a razor blade. The slices 421 were then mounted on aluminum stubs and coated with Au/Pd in a 422 sputter coater (Polaron Unit E5100). The samples were characterized 423 with a JEOL 6330 field emission scanning electron microscope with a 10 424 kV accelerating voltage. 425

426 The emulsion samples in Figure 1A,C,D utilized heptane rather than 427 styrene as the continuous phase as described above. A wide-mouth pipet 427 was used to transfer some of the emulsion to a glass slide. These were 428 then analyzed using a Nikon Labophot with an IDS UI-3370CP Color 429 camera in full color (C, D) or monochrome (A) mode. 430

431 **Electrical Measurements.** To prepare the samples for electrical 432 conductivity testing, they were first cut into rectangular prisms on the 433 scale of a few centimeters in length. The ends were then covered with 433 silver paint (Ted Pella) and allowed to dry. Copper tape (Ted Pella) was 434 then attached to the silver contacts, and the resistance was measured 435 using a Keithly Model 2420 sourcemeter. 436

437 **Thermal Analysis.** 20 mg of each of the composites was crushed to a 438 fine powder and analyzed in a TA Instruments TGA Q-500 to determine 438 the graphene loading. The sample was heated in a platinum pan in a 439 nitrogen-filled chamber from 20 to 800 °C at 10 °C/min. The mass of 440 the sample left at 700 °C was taken to be purely graphene, since all of the 441 polymer burned off by this point. 442

443 **Mechanical Measurements.** To prepare the samples for testing, they 443 were first cut into cylinders around 5 cm in diameter (the diameter of the 444 glass jars they are prepared in) and a few centimeters in height. They 445 were then tested using an Instron Model 5869 in compression mode. 446

## 447 ■ ASSOCIATED CONTENT

### 448 ■ Supporting Information

449 Stabilization of emulsions by graphene sheets, simulation details, 449 Raman spectroscopy, graphene concentration studies, salt 450 studies, droplet size distribution, initial solvent volume vs final 451 phase volume. This material is available free of charge via the 452 Internet at <http://pubs.acs.org>. 453

## 454 ■ AUTHOR INFORMATION

## 455 Corresponding Authors

456 \*E-mail avd@ims.uconn.edu (A.V.D.).  
457 \*E-mail adamson@uconn.edu (D.H.A.).

## 458 Notes

459 The authors declare no competing financial interest.

## 460 ■ ACKNOWLEDGMENTS

461 The authors are grateful to the National Science Foundation for  
462 financial support under grants DMR-1004576 and DMR-  
463 1111021. J.-M Y.C's contribution was sponsored by the Office  
464 of Advanced Scientific Computing Research, U.S. Department of  
465 Energy, and performed at the Oak Ridge National Laboratory,  
466 which is managed by UT-Battelle, LLC, under Contract No. De-  
467 AC05-00OR22725.

## 468 ■ REFERENCES

469 (1) Geim, A.; Novoselov, K. *Nat. Mater.* **2007**, *6*, 183–192.  
470 (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.;  
471 Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. *Science* **2004**, *306*, 666–  
472 669.  
473 (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;  
474 Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. *Nature*  
475 **2005**, *438*, 197–200.  
476 (4) Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. *Nature* **2005**, *438*,  
477 201–204.  
478 (5) Balandin, A. a; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.;  
479 Miao, F.; Lau, C. N. *Nano Lett.* **2008**, *8*, 902–907.  
480 (6) Chatterjee, S.; Wang, J. W.; Kuo, W. S.; Tai, N. H.; Salzmann, C.;  
481 Li, W. L.; Hollertz, R.; Nüesch, F. A.; Chu, B. T. T. *Chem. Phys. Lett.*  
482 **2012**, *531*, 6–10.  
483 (7) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. *Science* **2008**, *321*, 385–388.  
484 (8) Lee, J.-U.; Yoon, D.; Cheong, H. *Nano Lett.* **2012**, *12*, 4444–4448.  
485 (9) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. *Nano Lett.* **2008**,  
486 *8*, 3498–3502.  
487 (10) Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. *ACS Nano* **2010**, *4*,  
488 6557–6564.  
489 (11) Boukhvalov, D. W.; Katsnelson, M. I. *J. Am. Chem. Soc.* **2008**, *130*,  
490 10697–10701.  
491 (12) Becerril, H. a; Mao, J.; Liu, Z.; Stoltberg, R. M.; Bao, Z.; Chen,  
492 Y. *ACS Nano* **2008**, *2*, 463–470.  
493 (13) Liu, H.; Zhang, L.; Guo, Y.; Cheng, C.; Yang, L.; Jiang, L.; Yu, G.;  
494 Hu, W.; Liu, Y.; Zhu, D. *J. Mater. Chem. C* **2013**, *1*, 3104.  
495 (14) Pei, S.; Cheng, H.-M. *Carbon* **2012**, *50*, 3210–3228.  
496 (15) Galpaya, D.; Wang, M.; Liu, M.; Motta, N.; Waclawik, E.; Yan, C.  
497 *Graphene* **2012**, *2012*, 30–49.  
498 (16) Verdejo, R.; Bernal, M. M.; Romasanta, L. J.; Lopez-Manchado,  
499 M. A. *J. Mater. Chem.* **2011**, *21*, 3301.  
500 (17) Ansari, S.; Kelarakis, A.; Estevez, L.; Giannelis, E. P. *Small* **2010**, *6*,  
501 205–209.  
502 (18) Wei, T.; Luo, G.; Fan, Z.; Zheng, C.; Yan, J.; Yao, C.; Li, W.;  
503 Zhang, C. *Carbon* **2009**, *47*, 2296–2299.  
504 (19) Barroso-Bujans, F.; Fernandez-Alonso, F.; Pomposo, J. A.; Enciso,  
505 E.; Fierro, J. L. G.; Colmenero, J. *Carbon* **2012**, *50*, 5232–5241.  
506 (20) An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.;  
507 Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S. *Nano Lett.* **2010**, *10*,  
508 4295–4301.  
509 (21) Gudarzi, M. M.; Sharif, F. *Soft Matter* **2011**, *7*, 3432.  
510 (22) Dao, T. D.; Erdenedelger, G.; Jeong, H. M. *Polymer* **2014**, *55*,  
511 4709–4719.  
512 (23) Zhang, L.; Shi, T.; Wu, S.; Zhou, H. *High Perform. Polym.* **2013**,  
513 *26*, 156–165.  
514 (24) Yin, G.; Zheng, Z.; Wang, H.; Du, Q.; Zhang, H. *J. Colloid Interface  
515 Sci.* **2013**, *394*, 192–198.  
516 (25) He, Y.; Wu, F.; Sun, X.; Li, R.; Guo, Y.; Li, C.; Zhang, L.; Xing, F.;  
517 Wang, W.; Gao, J. *ACS Appl. Mater. Interfaces* **2013**, *5*, 4843–4855.

(26) Dukhin, A. S.; Goetz, P. J. *Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies using Ultrasound*; Elsevier: Oxford, UK, 2010. 518  
519  
520 (27) Woltonist, S. J.; Oyer, A. J.; Carrillo, J.-M. Y.; Dobrynin, A. V.; Adamson, D. H. *ACS Nano* **2013**, *7*, 7062–7066. 521  
522  
523 (28) Aveyard, R.; Binks, B. P.; Clint, J. H. *Adv. Colloid Interface Sci.* **2003**, *100*–102, 503–546. 524  
525  
526 (29) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P.; Case, D. J. *Comput. Chem.* **2004**, *25*, 1157–1174. 525  
527  
528 (30) Oyer, A. J.; Carrillo, J.-M. Y.; Hire, C. C.; Schniepp, H. C.; Asandei, A. D.; Dobrynin, A. V.; Adamson, D. H. *J. Am. Chem. Soc.* **2012**, *134*, 5018–5021. 529  
530  
531 (31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. Gaussian, 2009. 533  
532  
533 (32) Price, D. J.; Brooks, C. L. *J. Chem. Phys.* **2004**, *121*, 10096–10103. 534  
534  
535 (33) Kumar, S.; Rosenberg, J.; Bouzida, D.; Swendsen, R.; Kollman, P. *J. Comput. Chem.* **1995**, *16*, 1339–1350. 536  
537  
538 (34) Larson, R. *The Structure and Rheology of Complex Fluids*; Oxford University Press: New York, 1998. 537  
539  
540 (35) BASF. BASF Neopor <http://www.neopor.bASF.us/about/> product-certification. 540  
541  
542 (36) Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. *Langmuir* **2009**, *25*, 11078–11081. 541  
543  
544 (37) Coleman, J. N. *Adv. Funct. Mater.* **2009**, *19*, 3680–3695. 543  
545 (38) Carreira, D. J.; Chu, K. **1986**, *797*–804. 544