An OpenACC-Based Unified Programming Model
for Multi-accelerator Systems

Jungwon Kim

Oak Ridge National Laboratory, USA
kimj@ornl.gov

Abstract

This paper proposes a novel SPMD programming model of Ope-
nACC. Our model integrates the different granularities of paral-
lelism from vector-level parallelism to node-level parallelism into
a single, unified model based on OpenACC. It allows programmers
to write programs for multiple accelerators using a uniform pro-
gramming model whether they are in shared or distributed memory
systems. We implement a prototype of our model and evaluate its
performance with a GPU-based supercomputer using three bench-
mark applications.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.4 [Programming Lan-
guages]: Processors — Code generation, Compilers, Optimization,
Run-time environments

Keywords OpenACC, Programming models, Heterogeneous com-
puting, Accelerators

1. Introduction

Directive-based, high-level accelerator programming models such
as OpenACC and OpenMP 4.0 have been gaining considerable at-
tention as a powerful way to easily harness the computing power
of the accelerators such as NVIDIA/AMD GPUs and Intel Xeon
Phi. They allow programmers to use compiler directives to identify
which parts of the program to be offloaded to an accelerator. Due
to their code readability, maintainability, usability, and portability,
directive-based programming models are increasingly being con-
sidered as an alternative to lower-level accelerator programming
models such as CUDA and OpenCL.

Multi-accelerator systems are being increasingly used in high-
performance computing to solve bigger problems within an accept-
able time frame. The system can be a single-node system with mul-
tiple accelerators, or a cluster that contains multiple nodes with
one or more accelerators per node. In order to scale accelerator ap-
plications across multiple accelerators, programmers usually have
to resort to a combination of different programming models: Ope-
nACC/OpenMP 4.0 for accelerators, OpenMP for multithreading,

Seyong Lee

Oak Ridge National Laboratory, USA
lees2@ornl.gov

Jeffrey S. Vetter

Oak Ridge National Laboratory, USA
Georgia Institute of Technology, USA

vetter@computer.org

and MPI for inter-node communication. It adds the complexity of
programming, and leads to lower productivity.

In this paper, we propose an OpenACC-based unified program-
ming model for multiple-accelerator systems. It is a SPMD pro-
gramming model of OpenACC. It expresses several levels of paral-
lelism, from vector-level parallelism to node-level parallelism. The
major contributions of this paper are the following:

e Our model extends the OpenACC execution model to the dis-
tributed heterogeneous systems. It provides a uniform way for
programmers to program heterogeneous systems with multiple
accelerators, in both single and multi-node configurations.

e Our runtime API provides a set of uniform syn-
chronous/asynchronous communication routines to transfer
data between host-to-host, host-to-accelerator, accelerator-to-
host, and accelerator-to-accelerator either within a node or
across nodes.

The tight integration of message passing programming, mul-
tithreading programming and accelerator programming in our
model allows various architecture-specific optimizations, trans-
parent to users, such as 1) seamless streamlining of asyn-
chronous intra-node/inter-node communication between accel-
erators, 2) data sharing and P2P direct transfers between pro-
gram instances in the same node, and 3) dynamic mapping of
logical tasks onto the hardware units.

2. Programming Model

Figure 1 illustrates the overview of our framework. The framework
consists of two parts, a compiler and a runtime. Figure 2 shows the
Jacobi code using our programming model. The programmer com-
piles the source codes using our compiler. The compiler is a source-
to-source translator. It takes source codes and generates the host
codes and the accelerator-specific kernel codes such as CUDA and
OpenCL kernels. Then, the underlying backend compiler builds an
output executable with CUDA/OpenCL, OpenMP, MPI, and our
runtime libraries.

The executable runs in SPMD fashion. When a user launches the
executable in a multi-accelerator system such as a heterogeneous
cluster, a number of program instances, called tasks, execute in
parallel on the cluster. Our runtime on each node creates the same
number of lightweight user-level threads, called task threads, as the
number of available accelerators in the local node. The runtime
assigns a distinct accelerator to each task thread. Each of these
task threads executes the same main function in the executable
program using the assigned accelerator simultaneously in parallel.
They follow different execution paths to work on different data
using available language constructs.



. [RAM
[P Executable
Communication 1/0

Accelerator 0

Accelerator 1

N I

[T Executable
—I Accelerator 2

1 1 T
PCl Express
Interconnection

Ve
CUDA/OpenCL 4
OpenMP
MPI Intra-node
Toolchains communication queue
1 Inter-node Task thread I—
communication queue
Our Executable » [(T11] Task thread I—
Compiler @
Task thread |—
Our Runtime
Source codes Nod
ode
A\

J InfiniBand Run

Figure 1. Our framework overview.

: double (*xlocal)[MAXN], (*xnew)[MAXN];
: double diffnorm, gdiffnorm;

: #pragma acc data localshared(temp)

: double temp[MAXN];

: void main() {

: int myid = acc_get_task_num();

: int ntasks = acc_get_num_tasks();

: size_t size = ((MAXN / ntasks) + 2) * MAXN * sizeof(double);
: xlocal = (double(*)[MAXN]) malloc(size);

: xnew = (double(*)[MAXN]) malloc(size);

N
®OVLONOUAWN R

R
NP

: ;ﬂ.ar.'agma acc data create(xnew[@:(MAXN/ntasks)+2][@:MAXN]) \
copyin(xlocal[@: (MAXN/ntasks)+2][@:MAXN])

PR
n bW

: do {

: if (myid < ntasks - 1)

acc_mem_send(myid + 1, acc_deviceptr(xlocal[MAXN / ntasks]),
MAXN * sizeof(double), ©);

PR R e
[CR NN

: if (myid > @)
acc_mem_recv(myid - 1, acc_deviceptr(xlocal[e]),
MAXN * sizeof(double), ©);

NNNN
W R e

: #pragma acc kernels loop independent reduction(+:diffnorm)

cfor (L) { ...

: acc_mem_allreduce(&diffnorm, &gdiffnorm, 1, acc_double, acc_sum);
: } while (gdiffnorm > 1.0e-2)

NNNN
Nouwu s

Figure 2. Jacobi code using our programming model.

Each task has a unique ID assigned by the runtime through-
out the whole system. The unique ID for each task and the to-
tal number of tasks in the whole system can be retrieved by
acc_get_task num and acc_get_num_tasks runtime API func-
tions, respectively (line 7 and 8 in Figure 2).

Our model preserves the semantics of the standard OpenACC
directives and runtime APIs, but it extends the OpenACC mem-
ory model by introducing logically distributed task address space;
by default, all data (both global and local variables) in a pro-
gram are private to each task. However, global variables annotated
with #pragma acc data localshared directive (line 3) can be
shared between tasks in the same node. This logically distributed
task address space will be dynamically mapped to the underlying
physical system by the runtime.

Our runtime API provides a set of uniform routines to trans-
fer data between tasks in the system (e.g., acc_mem_send and
accmem_recv in Figure 2), where data can reside in either host
memory or device memory. The tasks associated with a data trans-
fer can be in the same node or different nodes.

The communication thread in each node runtime manages all
intra-node/inter-node communications related to the node. It seam-
lessly integrates the low-level accelerator APIs and inter-node com-
munication APIs. This enables streamlining of asynchronous inter-
node communication between accelerators, resulting in both high
performance by full overlapping of computation and communica-
tion, and higher programming productivity. Also, it provides effi-
cient data transfer such as P2P direct transfer between accelerators
in the same node.

3. Preliminary Evaluation

65536
8l | epeEMM
16384
WEPE

2 4096 A
kS “®-jacobi
g 1024 ~
3 --DGEMM (MPI+ACC)

256
61 7% CHEP.E (MPI+ACC)

o )
16 : : : : : : Jacobi (MPI+ACC)

T
1 3 6 12 24 48 96 192384
Number of GPUs

Figure 3. Speedup over a single CPU core.

We have built a prototype framework of our model using an
open-source research compiler called OpenARC[1]. We have eval-
uated its performance with a GPU-based supercomputer using three
benchmark applications. The cluster consists of 264 nodes. Each
node has three NVIDIA M2090 GPUs and a Mellanox FDR Infini-
Band interconnect.

Figure 3 shows the speedup of our framework over a single
CPU core for each application. The y-axis has a logarithmic scale.
We compare our applications with the MPI+OpenACC versions
(MPI+ACC). Our applications show competitive performance with
MPI14ACC versions. Especially, Jacobi shows better performance
than Jacobi (MPI4+ACC) when it runs with a small number of
GPUs. This performance gain comes from the P2P direct transfer
in NVIDIA GPUDirect between GPUs in the same node in our
framework.

Acknowledgments

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research.

This manuscript has been authored by UT-Battelle, LLC, under
Contract No. DE-AC05000R22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for the United States
Government purposes.

References

[1] S. Lee and J. S. Vetter. OpenARC: Open Accelerator Research
Compiler for Directive-based, Efficient Heterogeneous Computing. In
Proceedings of the 23rd International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’ 14, pages 115-120, 2014.



