
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

EqualWrites: Reducing Intra-set Write Variations
for Enhancing Lifetime of Non-Volatile Caches

Sparsh Mittal, Member, IEEE, and Jeffrey S. Vetter, Senior Member, IEEE

Abstract— Driven by the trends of increasing core-count and
bandwidth-wall problem, the size of last level caches has greatly
increased, and hence the researchers have explored non-volatile
memories (NVMs) that provide high density and consume
low-leakage power. Since NVMs have low write endurance and
the existing cache management policies are write variation (WV)
unaware, effective wear-leveling techniques (WLTs) are required
for achieving reasonable cache lifetimes using NVMs. We present
EqualWrites, a technique for mitigating intra-set WV. Our
technique works by recording the number of writes on a block
and changing the cache-block location of a hot data item to
redirect the future writes to a cold block to achieve wear leveling.
Simulation experiments have been performed using an x86–64
simulator and benchmarks from SPEC06 and high-performance
computing field. The results show that for single-, dual-, and
quad-core system configurations, EqualWrites improves cache
lifetime by 6.31×, 8.74×, and 10.54×, respectively. In addition,
its implementation overhead is very small and it provides larger
improvement in lifetime than three other intra-set WLTs and a
cache replacement policy.

Index Terms— Cache memory, device lifetime, intra-set write
variation (WV), non-volatile memory (NVM or NVRAM), wear
leveling.

I. INTRODUCTION

RECENT years have witnessed remarkable growth in
research on the use of non-volatile memory (NVM)

devices, such as spin transfer torque RAM (STT-RAM),
resistive RAM (ReRAM), and phase change memory (PCM)
for designing on-chip caches [1], [2]. Compared with static
RAM (SRAM), these NVMs are expected to provide
much higher density and consume very low-leakage power.
In addition, by virtue of their non-volatile operation, these
devices do not require refresh operations for maintaining data
integrity, which is a limitation in the use of embedded dynamic
RAM (eDRAM) caches [3], [4]. A crucial limitation of NVMs,
however, is that their write endurance is significantly smaller
than that of DRAM and SRAM. For example, the write
endurance of ReRAM and PCM are only 1011 and 108,
respectively [4]–[6]. For STT-RAM, although a write-
endurance value of greater than 1015 has been projected, the
actual prototypes have demonstrated a write-endurance value
of only up to 4 × 1012 [7]–[10]. Due to process variations,
these values may be further reduced by an order of
magnitude [11]. In contrast, the write endurance of SRAM
and DRAM is above 1015 [4], [6].

Manuscript received August 26, 2014; revised November 23, 2014; accepted
December 31, 2014. This work was supported by the Office of Advanced
Scientific Computing Research in the U.S. Department of Energy.

The authors are with the Oak Ridge National Laboratory, Future Technolo-
gies Group, Oak Ridge, TN 37831 USA (e-mail: sparsh0mittal@gmail.com;
vetter@computer.org).

Digital Object Identifier 10.1109/TVLSI.2015.2389113

Further, traditional cache management policies, which have
been designed in the context of SRAM, aim to optimize
performance and energy efficiency and do not consider the
limited write endurance of the device. For example, cache
replacement policies [e.g., least recently used (LRU)] aim to
exploit temporal locality by increasing the number of hits to
the existing cache blocks. This, however, increases the number
of writes to a few cache blocks, which may cause those blocks
to fail much earlier than the anticipated cache lifetime, which
assumes a uniform write distribution. Thus, the limited write
endurance of NVMs along with the write variation (WV)
introduced by cache management policies necessitates the use
of effective wear-leveling techniques (WLTs).

A. Contributions

To address this issue, in this paper, we present EqualWrites,
a technique for improving cache lifetime by mitigating intra-
set WV. EqualWrites works on the key idea that if the
difference between the number of writes to two blocks in
a cache set is larger than a threshold (say �), it indicates
large intra-set WV and to mitigate it, the data item in these
blocks can be swapped so that future writes can be redirected
from a hot block to a cold block to achieve wear leveling
(Section III). This leads to improvement in cache lifetime.
Note that in this paper, we refer to a hot or cold block based
on the frequency of writes (and not reads) to it. Modern
processors use caches of large associativity, for example, both
AMD’s Opteron processor and Intel’s Itanium 9500 series of
processors have 32-way last level cache (LLC) [12], [13]. For
caches of such large associativity, an intra-set WLT, such as
EqualWrites, is highly useful.

EqualWrites does not require offline profiling or modifica-
tion of program binary (unlike [14]) or including set-index
bits as part of the tag (unlike [15]) or any floating-point
hardware for computation of coefficient of WV (unlike [16]).
Further, it can be easily extended to further improve lifetime
by tolerating errors and mitigate security threats to NVM
caches (Section VII). In this paper, we assume an ReRAM L2
cache, although our technique can be easily applied to a cache
designed with other NVMs. For the sake of convenience, in the
remainder of this paper, we use the term NVM and ReRAM
interchangeably.

B. Implementation and Evaluation

The storage requirement of EqualWrites is less than 0.8%
of the L2 cache storage size and thus its overhead is small
(Section IV). We conduct microarchitectural simulations using

U.S. Government work not protected by U.S. copyright.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

a state-of-the-art x86-64 simulator and benchmarks from
SPEC CPU2006 suite and high-performance computing (HPC)
field (Section V). In addition, we compare EqualWrites
with three different intra-set WLTs, viz., probabilistic
line flush (PoLF) [6], its variant named probabilistic
line swap (PoLSwap) and WriteSmoothing (WrSm) [16]
(see Section V-C for more details of these techniques). We also
perform simulations by changing cache replacement policy
from LRU to random to study whether randomizing replace-
ment decisions alone can achieve wear leveling. Results have
shown that EqualWrites provides the largest improvement
in cache lifetime at much smaller performance and energy
overhead than other approaches (Section VI).

C. Summary of Results

For single-core system, EqualWrites improves cache
lifetime by 6.31× with a relative performance and an energy
loss of 0.99× and 0.74%, respectively. In comparison, PoLF
(which, in turn, provides larger lifetime improvement than
PoLSwap, WrSm, and the use of random replacement policy)
improves cache lifetime by 5.18×, with a relative perfor-
mance and an energy loss of 0.97× and 13.01%, respectively.
For dual-core system, EqualWrites improves cache lifetime
by 8.74× with a relative performance and an energy loss
of 0.99× and 0.76%, respectively. By comparison, PoLF
improves cache lifetime by 8.12× with a relative perfor-
mance and an energy loss of 0.97× and 14.62%, respectively.
For quad-core system, EqualWrites improves lifetime by
10.54× with a relative performance and an energy loss
of 0.99× and 0.94%, respectively. In comparison, PoLF
improves lifetime by 10.23× with a relative performance and
an energy loss of 0.97× and 23.16%, respectively. Additional
experiments show that EqualWrites works well for a wide
range of system and algorithm parameters (Section VI-C).

II. BACKGROUND AND RELATED WORK

A. Brief Background on NVMs

Since SRAM provides high performance and write
endurance, it has been conventionally used for designing
on-chip caches. However, SRAM also has low density and
high leakage power consumption, and hence, caches designed
with SRAM consume a significant fraction of processor power.
For example, in both Niagara and Niagara-2 processors,
L2 cache consumes nearly 24% of the total power consump-
tion [17]. With increasing system core count, the size of
on-chip caches has also grown and modern multicore proces-
sors employ tens of megabytes of LLC. For instance, Intel
Itanium 9560 processor uses 32-MB LLCs [18]. Although,
it is possible to address the leakage power consumption of
SRAM at architecture level [19], the requirements of energy-
efficiency imposed on future extreme-scale computing systems
demand a fundamental redesign of on-chip caches.

These trends have motivated the researchers to use NVM
devices. NVMs rely on change in the physical state of matter to
store the information [1], [20]. By virtue of this, NVMs have
several features, such as high density, good scalability, and
low leakage power consumption; and also limitations, such

as high write energy and latency, and low write endurance.
Several previous works have shown that the near-zero leakage
power consumption of NVMs can compensate for the higher
write-energy/latency and thus, NVM caches can achieve higher
energy efficiency than the SRAM caches [1], [21]. Thus,
limited write endurance of NVMs remains a crucial bottleneck
in their use as on-chip caches, and in this paper, we propose
a technique to address this.

Due to its very small write endurance and high latency,
PCM is considered less suitable for designing on-chip caches.
However, some researchers have proposed SRAM-PCM
hybrid caches [2], [22], while others have proposed using PCM
as an L4 cache [2], just as it is currently used as main memory.
Since intra-set WV can be detrimental in these caches also,
EqualWrites can be useful for these PCM caches.

B. Addressing Write Endurance Issue in NVMs

Write-endurance issue can be addressed by either or both
of the write-minimization techniques (WMTs) or the WLTs.
We first briefly discuss the techniques proposed for main
memory, and then discuss the techniques proposed for caches
in detail.

1) Techniques for NVM Main Memory: Cho and Lee [23]
propose a WMT named Flip-N-Write for non-volatile main
memory. Their technique provisions writing a bit only if it is
different from the one originally written. Further, if storing
the flipped value of data requires less number of bit-write
operations, their technique stores the data in flipped form
and signals (remembers) this using an additional bit.
Zhou et al. [20] propose a WLT for main memories that works
by periodically swapping memory segments of high and low
write accesses. Writes to caches show both inter-set and intra-
set variation, while those to main memory show only inter-set
variation and hence, the WLTs proposed for main memory
cannot be applied to address intra-set WV in caches.

2) Techniques for NVM Caches: Several researchers have
proposed WMTs for caches that use write coalescing
buffers [24], additional levels of caches [25] or read-before-
write scheme to avoid redundant writes [26]–[28]. These
approaches are orthogonal and complementary to our
technique and, hence, can be synergistically integrated with it.

a) Classification of cache WLTs: Based on their gran-
ularity, the WLTs can be classified as inter-color [29],
inter-set [6], [15], intra-set [6], [16], [30]–[32], and memory
cell level [27], [28], [33]. We propose an intra-set WLT
and compare our technique to other intra-set WLTs
(see Sections V and VI for more details). In addition, our
technique can be combined with inter-set/inter-color WLTs for
further improving the lifetime of caches.

The WLTs can also be divided as whether they use
data-invalidation (also called flushing) [6], [15], [29], [30]
or in-cache data movement (also called data migration
or shifting) (see [16] and PoLSwap shown in Section V).
Data invalidation increases off-chip accesses, leading to con-
tention and endurance issues in main memory. Our technique
uses in-cache data movement and thus incurs smaller overhead.
The limitation of in-cache data movement is that it may require
additional hardware such as swap buffer.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MITTAL AND VETTER: EQUALWRITES: A TECHNIQUE FOR REDUCING INTRA-SET WRITE-VARIATIONS 3

b) Discussion of a few cache WLTs: We discuss a few
intra-set WLTs in Section V-C. Here, we discuss some of the
inter-set WLTs. The inter-set WLT proposed in [15] remaps
all set indices after a certain length of time. For this, a
register, called remap register is used which is XORed with the
set-index bit of the cache address. By periodically changing
this register, randomization is introduced, which helps in
uniformly distributing writes to different sets. The inter-set
WLT proposed in [6] aims to distribute the write traffic evenly
to different cache sets by shifting the mapping of cache
physical sets. Since shifting all cache sets at once would incur
a large overhead, their technique swaps only two sets at a time
and after multiple swaps, all the cache sets are automatically
shifted.

III. SYSTEM ARCHITECTURE

A. Notations

Let N denote the number of cores. Let S, A, B , and T
denote the number of cache sets, associativity, block size, and
tag size, respectively. In this paper, we assume, B = 64 B
and T = 40 bits. In addition, let wi, j denotes the number
of writes on any block at set i and way index j . Further, let
Wavg denotes the average number of writes on all the blocks.
Then, the coefficient of intra-set WV (IntraV) [6] is defined
as follows:

IntraV = 100

S · Wavg

S∑

i=1

√√√√√√
∑A

j=1

(
wi, j −

A∑
r=1

wi,r

/
A

)2

A − 1
. (1)

Note that EqualWrites does not require computing the value
of IntraV. We use it only as a figure of merit for evaluating
the effectiveness of EqualWrites. In what follows, we use the
terms shifting and redirection synonymously.

B. Key Idea

EqualWrites works on the key idea that if the difference
between the number of writes to two blocks in a cache set
is larger than a threshold (say �), it indicates the presence
of large intra-set WV. In a set-associative cache, a data item
mapped to a set can be placed in any of its ways. Using this
fact, we can reduce the intra-set WV by swapping the data item
in those blocks. Thus, future writes can be redirected from a
write-intensive block to a cold block. This leads to uniform
distribution of writes, which improves the cache lifetime.

C. Algorithm Description

We use counters for recording the number of writes on
each block in the current generation, where the pth generation
begins immediately after the pth miss to that cache block,
when a new data item is brought into that block [34]. We do
not record global write history, since this would require very
large number of bits in each counter and, hence, would incur
high overhead. As shown next, updating of the counters is
done in an intelligent manner to record the number of writes
to a block relative to other blocks in the same set, while
minimizing the storage requirement of the counters.

Algorithm 1 Algorithm for Handling a Write Hit in Set i

Let � denote the maximum number of writes that can differ
between two blocks in a set, after which a write-redirection
operation is triggered. To avoid dealing with negative numbers
and also provide more intuitive explanation of the algorithm,
we provision that the counters are initialized with �/2. Thus,
the value of counters varies from 0 to �−1, and �log2 �� bits
are sufficient to store each counter. A counter is initialized at
the beginning of a new generation to �/2.

Algorithm 1 shows the logic for handling a write hit and
updating the counters. The algorithm works as follows. On a
write hit, the value of write counter of a block is compared
with the threshold. If the threshold is not reached, the counter
of the block is simply incremented. If the threshold is reached,
a target for write redirection is searched from the other ways
in the same set. For such a target, write-counter value is equal
to zero, indicating a difference of � from the block which
has seen a write hit. Depending on the state of the candidate,
either a single write or write with a data transfer is performed.
When the target for write redirection is an invalid block, only
a single write is required. This case is called Case-I. On the
other hand, when the target is a valid block (either clean or
dirty), the data of the block need to be swapped with that of
the source block. This is referred to as Case-V.

On a write redirection, the value of both the source and
destination blocks are set to �/2. If no candidate for write
redirection exists, it implies that the difference in writes among
different blocks is less than the threshold. In such a case, the
write-counter value of all blocks (except one seeing write hit)
is decreased by one. Fig. 1 shows the updating of counter
values assuming an example cache access sequence.

Fig. 2 shows the cache structure with EqualWrites. The
tunable parameter of EqualWrites is �, which is stored in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Example of the update of counters in EqualWrites technique for
� = 8 for an arbitrary write sequence. The counters that are changed are
highlighted as X.

a register. The comparison operation can be implemented
using XOR and redirection is performed using data-movement
instructions and swap buffer.

IV. IMPLEMENTATION AND OVERHEAD ASSESSMENT

In this section, we discuss the hardware implementation and
overhead of EqualWrites.

A. Storage and Area Overhead

We assume that swapping is achieved using a centralized
swap buffer [2] or a similar scheme. The swap buffer is
designed using SRAM. Due to the presence of inter-set vari-
ation and possibility of also using Case-I, all the sets are not
expected to perform Case-V simultaneously and hence, only
few swap-buffer entries are sufficient. In this paper, we assume
64 swap-buffer entries, each of which is 64 B in size. Thus,
the storage overhead of EqualWrites includes the overhead of
write counters and swap buffer. Using this, we compute storage
overhead of EqualWrites relative to L2 cache (�) using an
approach similar to previous works [1], [16]. We obtain

� = (log2(�) × S × A) + 64 × 64 × 8

S × A(B + T )
× 100. (2)

As an example, for � = 16, we obtain � = 0.7% and
thus, the overhead of EqualWrites is very small. Access to
write counter does not lie on critical path and hence, they
can be optimized for low area and low leakage. Assuming
that they are implemented using a technology 1/2× to 1/3×
dense than ReRAM, we get the area overhead of EqualWrites
as nearly 2% of the L2 cache, which is small. The counters

TABLE I

PARAMETERS FOR A 16-WAY ReRAM L2 CACHE

themselves are not stored in NVM and hence, they do not have
write-endurance issue.

B. Latency Overhead

We estimate the latency overhead of our technique following
a procedure similar to that of [2] and [16]. We use Lw to show
the cache write latency and its value is shown in Table I.
Then, we assume that checking the counter takes one cycle,
incrementing the counter takes another cycle, and when the
remaining counters are changed, additional 3 cycles are taken.
In addition, Case-I takes Lw + 2 cycles (Lw cycles for
writing the data and 2 cycle for setting appropriate valid/dirty
bits and counters) and Case-V takes 4 + 2Lw + 2 cycles
(4 cycles for transferring a 64-B block on a 32-B bus to and
from the swap buffer, 2Lw cycles for writing both blocks, and
2 cycles for setting appropriate bits and counters). Case-V
shifting incurs an additional write compared with the normal
case, which is included in total number of L2 writes. We have
incorporated these latency overheads in our performance
simulator in Section V. The results presented in Section VI
show that EqualWrites provides nearly 0.99× performance
compared with the baseline. This confirms that the latency
overhead of EqualWrites is small.

C. Energy Overhead

We first discuss the dynamic energy overhead of counters.
From [35], we note that a 5-bit counter consumes 0.96 pJ
in each access. To cross check, from [34], we note that a
2-bit counter consumes 0.1 pJ in each access, thus a 5-bit
counter would consume 0.25 pJ, which is in the same ballpark.
We take the case of single-core and assume each write counter
is 5-bits (since � < 32). Since a write counter is incremented
on a write, we compare the energy of writing a single cache
block to that of incrementing a write counter. For this, we
assume an ReRAM L2 cache and obtain its parameters using
NVSim [36]. We assume sequential cache access, 32-nm
CMOS process, 16-way set-associativity, and write energy
delay product optimized cache design. In addition, we assume
H-tree routing, internal sensing, 350 K temperature, and area-
optimized buffer design. The output parameters are shown
in Table I.

From Table I, we note that for a 4-MB cache, write
energy is 0.85 nJ. In comparison with it, 0.96 pJ incurred in
accessing a write counter is three orders of magnitude smaller.
To minimize the dynamic energy of counters even further, gray
coding can be used so that only one bit changes when a counter
is incremented.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MITTAL AND VETTER: EQUALWRITES: A TECHNIQUE FOR REDUCING INTRA-SET WRITE-VARIATIONS 5

Fig. 2. Cache diagram with extensions for EqualWrites (assuming that the write hit happens to way 0).

Further, redirections happen infrequently and swap buffer
is accessed only in Case-V and thus, it is accessed even less
frequently than the counters. Thus, the dynamic energy of
swap buffer is small. Using a similar analysis, the leakage
energy of counters and swap buffer can be shown to be
negligible. On including the energy of main memory and read
energy of cache, the fractional contribution of counters/swap
buffer in total energy becomes even smaller. Thus, the energy
consumed by counters and swap buffer is orders of magni-
tude smaller than that of (L2 cache + main memory) and
hence, it is ignored. To account for the energy consumed in
data movement, we assume 0.5 nJ energy overhead for each
Case-V shifting [32].

D. Discussion

It is noteworthy that wear leveling provided by EqualWrites
has the additional benefit of providing thermal density mini-
mization [37], which may reduce the temperature of the chip
and reduce the energy consumption. On using EqualWrites,
read operations are not affected, Case-I is almost same as
regular write and Case-V adds only one extra write. A small
increase in latency of LLC is easily hidden by techniques such
as out-of-order execution and write buffers, and thus,
EqualWrites has only minimal effect on application perfor-
mance, as confirmed by the results. In addition, by choosing
a suitable value of �, the shifting overhead can be amortized
over a large instruction window. In Section VI-C, we also eval-
uate our technique assuming 2× and 4× overhead compared
with the above mentioned latency and energy overhead and
observe that the performance and energy loss of EqualWrites
still remains small. From this, we conclude that the complexity
of our technique is small.

V. EXPERIMENTAL METHODOLOGY

A. Simulation Infrastructure

We use interval-core model in Sniper x86-64 multicore
simulator. The frequency of processor is 2 GHz. L1 I/D caches

TABLE II

WORKLOADS USED IN THIS PAPER

are 32-kB four-way LRU caches and are private to each core.
L2 cache is shared among cores and its parameters are shown
in Table I. Main memory latency is 220 cycles and peak
memory bandwidth is 10 GB/s for single-core system, 15 GB/s
for dual-core system, and 25 GB/s for quad-core system.
Queue contention is also modeled.

B. Workloads

All 29 SPEC CPU2006 benchmarks with reference inputs
and six benchmarks from HPC field (shown as italics in Table
II) are taken as single-core workloads. Using these, 18 dual-
core and 9 quad-core multiprogrammed workloads are ran-
domly created such that each benchmark is used exactly once
(except for fulfilling the left-over group). These workloads are
shown in Table II.

C. Comparison With Other Techniques

We compare EqualWrites with three techniques for
improving NVM lifetime.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

1) PoLF: In PoLF [6], after a fixed number of write hits
[called flush threshold (FT)] in the entire cache, a write
operation is skipped; instead, the data item is directly written
back to memory and the cache block is invalidated without
updating the LRU age information. Probabilistically, the block
selected is expected to be hot and hence, based on LRU
replacement policy, the hot data item will be loaded in another
cold block leading to intra-set wear leveling. The latency
of incrementing the write counter and comparison with the
threshold are taken as 1 and 2 cycles, respectively.

2) PoLSwap: PoLSwap is the same as PoLF, except that
it works by migrating the hot data to the LRU block within
same set, instead of flushing it to the main memory. PoLSwap
handles hot data in the same manner as EqualWrites does
(i.e., using in-cache data movement), while both PoLF and
PoLSwap identify hot data differently from EqualWrites. Thus,
our motivation in designing and testing this variant of PoLF
is to separate the effect of identification and handling of hot
data as we compare PoLF/PoLSwap with EqualWrites. We
test PoLSwap with same threshold as PoLF and hence use the
same term FT, although it is noteworthy that PoLSwap swaps
hot data item and does not flush it.

3) WriteSmoothing: WrSm [16] logically divides the cache-
sets into multiple modules, for example, in a cache with
4096 sets and 32 modules, each module contains 128 sets.
For each module, the coefficient of intra-set WV is computed,
and when it is larger than a threshold, the most frequently
written way in a module is made unavailable to shift the write
pressure to other ways in the sets of the module. This helps
in achieving wear leveling.

Further, to evaluate the impact of cache replacement policy
on cache lifetime, we also study the case where L2 replace-
ment policy is changed from LRU to random.

D. Evaluation Metrics

Our baseline is a cache that uses LRU replacement policy,
but does not use any scheme for improving cache lifetime.
Using ‘technique’ to refer to EqualWrites, PoLF, and so on,
we show results on the following metrics.

1) Relative cache lifetime (Lifetimetechnique/Lifetimebaseline)
[lifetime with a technique (or baseline) is defined as the
inverse of the maximum number of writes on any cache
block on using that technique (or baseline)].

2) IntraV (discussed in Section III).
3) Weighted speedup (called relative performance) [38].
4) Percentage energy loss (energy model shown below).
5) Absolute increase in miss per kilo instructions (MPKI).

We have used raw cache lifetime, since it provides useful
insights and also forms the basis of error-tolerant lifetime.
Note that we present the results on both maximum number of
writes on any block and IntraV. The former considers the worst
case writes on any block, while the latter considers the average
writes and accounts for writes on all the blocks of the cache.
Taken together, they evaluate a technique in comprehensive
manner. These metrics have been used by other research works
also [6], [15], [16], [27], [30], [32].

TABLE III

RESULTS WITH WrSm

We model the energy of algorithm execution (shown
in Section IV), L2 cache, and main memory. Parameters
for L2 cache are shown in Table I. Dynamic energy and
leakage power for main memory are 70 nJ/access and 0.18
W, respectively [38], [39]. For multicore system, we have
also computed fair speedup [38] on using our technique
and have found fair speedup to be almost the same as
weighted speedup. Thus, our technique does not cause unfair-
ness. Speedup values are averaged using geometric mean and
the remaining metrics are averaged using arithmetic mean
[38]. Simulations are performed till each core runs 500M
instructions. In multicore system, the program that finishes
earlier is allowed to run, but its instruction per cycle is
only recorded for the first 500M instructions. Remaining
metrics are computed for the entire simulation (following
well-established simulation methodology [38], [40]), since
they are system-wide metrics. To provide additional insights,
we also present the data on the number of shifting operations
in EqualWrites and the number of flushes in PoLF.

VI. EXPERIMENTAL RESULTS

A. Main Results

Figs. 3–5 show the results for single-, dual-, and quad-core
systems, respectively. These experiments have been conducted
using the following parameters: 16-way set-associativity,
4-MB L2 with � = 10 for single-core system, 8-MB L2 with
� = 16 for dual-core system, and 16-MB L2 with � = 24
for quad-core system. PoLF and PoLSwap are simulated with
FT = 10, following the original work [6]. Discussion on the
choice of � is presented in Section VI-C. Per-workload figures
for the increase in MPKI are omitted for brevity and their
average value are discussed in the following sections. Results
on number of migrations/invalidations are shown in Table IV.

1) Results With WriteSmoothing: We simulate WrSm with
default parameters, following the original work [16]. Lifetime
improvement with WrSm is significantly lower compared with
other techniques and hence, to reduce the clutter of figures,
we omit the per-workload results with WrSm and only present
the average results in Table III. For all core configurations, the
relative performance is 0.99× and hence, it is omitted from
the table.

WrSm performs intra-set wear leveling, but it does so at
a coarse-level of modules and not individual sets as done by
other techniques. Since the most frequently written ways in
different sets of a module may not have the same index, the
effectiveness of wear leveling becomes limited. WrSm also
requires additional hardware to periodically compute the
coefficient of WV. Other techniques use simpler approaches
to estimate the amount of WV.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MITTAL AND VETTER: EQUALWRITES: A TECHNIQUE FOR REDUCING INTRA-SET WRITE-VARIATIONS 7

Fig. 3. Results for single-core system. Results with WrSm and random cache replacement policy are separately presented in Table III and discussed
in Section VI-A to reduce the clutter of graphs and also because their effectiveness is significantly lower. (a) Relative lifetime (more is better). (b) IntraV
(less is better). (c) Relative performance (more is better). (d) Percentage loss in energy (less is better, negative value implies saving).

2) Results With Random Replacement Policy: On changing
the replacement policy from LRU to random, for single-,
dual-, and quad-core systems, we observe a relative lifetime
of 1.31×, 1.62×, and 2.33×, respectively, and relative per-
formance of 0.99×, 0.97×, and 0.98×, respectively. It is
clear that use of random replacement policy provides neg-
ligible improvement in cache lifetime and thus, it cannot
address the issue of WV. The reason behind this is that a
replacement policy is invoked only on a miss. When the
cache hit rate is reasonably high, hardly few replacements
take place and, a single or few cache block(s) may still get
repeatedly written, which leads to high WV and small cache
lifetime. Compared with using random cache replacement
policy, EqualWrites provides equal or better performance and
much larger improvement in lifetime. This clearly highlights
the need of using an intelligent technique, such as EqualWrites
for improving cache lifetime. In the remainder of this paper,
we do not discuss WrSm technique or results with random
replacement policy due to their limited effectiveness. We now
analyze the results in detail.

3) Results on Lifetime and IntraV: On average,
EqualWrites provides better results than PoLF on all
the metrics for all system configurations. Using EqualWrites
(resp., PoLF and PoLSwap), the average improvement in
lifetime for single-, dual-, and quad-core systems are 6.31×
(resp., 5.18× and 5.01×), 8.74× (resp., 8.12× and 7.94×),
and 10.54× (resp., 10.23× and 9.62×), respectively. For
N = 1, EqualWrites reduces IntraV from 133.2% to 17.2%,
while PoLF reduces it to only 40.7%. For N = 2, EqualWrites
reduces IntraV from 125.4% to 15.7%, while PoLF reduces it

to only 32.7%. For N = 4, EqualWrites reduces IntraV from
127.4% to 19.2%, while PoLF reduces it to only 26.5%. The
value of IntraV with PoLSwap is almost similar to that with
PoLF. Clearly, EqualWrites is more effective in mitigating
intra-set WV. For several workloads, EqualWrites improves
cache lifetime by more than 10×, e.g., Po, Ga, AsDl, HmH2,
LsPoGmH2, and PoAmXbNe.

On using a WLT, the maximum possible increase in
the cache lifetime depends on the variation present in the
workload. Thus, the largest improvement in lifetime is
obtained for workloads that show high WV in the baseline
case, for example, Ga, Po, Sj, Nd, Am, SjWr, and PoAmXbNe.
Conversely, for workloads such as Lq, Mi, and So, the intra-set
WV in the baseline execution is close to zero, and hence, the
scope of improvement in lifetime using wear leveling is also
negligible. Cache lifetime improvement for these workloads
can be achieved using other techniques such as the use of
write buffers and filter cache.

4) Results on Performance, Energy, and Miss Rate: On
average, for all systems, the relative performance on using
EqualWrites and PoLSwap is 0.99× and for PoLF, it is 0.97×.
Further, the average loss in energy on using EqualWrites
(resp., PoLF and PoLSwap) for single-, dual-, and quad-core
systems are 0.74% (resp., 12.92% and 0.77%), 0.76%
(resp., 14.61% and 1.27%), and 0.94% (resp., 23.20% and
2.82%), respectively.

Clearly, EqualWrites incurs negligible loss in performance
and energy, while PoLF incurs large loss in these parameters.
Compared with EqualWrites, PoLSwap incurs larger loss in
energy. EqualWrites does not use data invalidation, instead



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 4. Results for dual-core system. (a) Relative lifetime (more is better). (b) IntraV (less is better). (c) Relative performance (more is better). (d) Percentage
loss in energy (less is better, negative value implies saving).

it performs write redirection within the same set and hence,
avoid costly off-chip accesses. On using EqualWrites and
PoLSwap, the increase in MPKI is negligible (<0.03), and
on using PoLF, the increase in MPKI for single, dual and
quad-core systems is 0.56, 0.57 and 0.55, respectively. Clearly,
EqualWrites does not increase memory traffic or cause queue
contention.

5) Results on Shifting/Flushing Operations: Table IV shows
the number of shifting (write-redirection) operations for
EqualWrites and the number of flush operations for PoLF.
It is clear that the shifting operations are much smaller in
number in EqualWrites than the number of flush operations
in PoLF. This is because, EqualWrites accurately identifies a
hot block by virtue of using write-frequency counters. Hence,
a shifting operation in EqualWrites is only triggered when
the difference between writes to different blocks is high, or
in other words, the write variation is high. For PoLF and
PoLSwap, higher number of flush operations indicate that
the write intensity is high, and this may happen even if the
WV itself is small. For example, for Lb (lbm), IntraV is
low [Fig. 3(b)], and thus, the scope of lifetime improvement
is low. Hence, EqualWrites only performs 418 redirections,
while PoLF flushes nearly 2 219 000 blocks (Table IV), which
leads to high performance loss without achieving appreciable
improvement in lifetime. This clearly shows that EqualWrites
performs wear leveling in much more intelligent manner.
In addition, its operational overhead is very small.

6) Analysis of Features/Limitations of WLTs: PoLF and
PoLSwap do not use write-frequency counters, instead they
identify a hot block in probabilistic manner. However, this
approach may not select a hot block in all circumstances;

in fact, PoLF can flush a newly installed block also. For
PoLF, this is especially harmful since it flushes data blindly
and hence, in the cases where the write intensity is high
but intra-set WV is small, PoLF would still invalidate large
number of cache blocks, leading to large performance and
energy loss. This is especially evident with some workloads
such as So and Lb. In addition, using PoLF, the increase
in MPKI is greater than 0.55; thus, data invalidation in
PoLF increases memory traffic and power consumption, which
may be unacceptable for the given bandwidth-wall problem.
Further, in the case where the main memory is itself designed
using NVM (such as PCM), this technique may worsen
the write-endurance issue in main memory. PCM also has
higher write latency than DRAM and hence, the overhead
of extra misses introduced due to PoLF will be higher with
PCM memory.

PoLSwap partially addresses the limitation of PoLF by
migrating data, instead of flushing it and hence, it incurs
smaller loss. PoLSwap achieves a smaller lifetime improve-
ment than PoLF. The reason for this is that swapping of
data within a set in PoLSwap leads to an extra write and
hence, PoLSwap increases the writes to the cache. The benefit
of PoLF and PoLSwap is that they only require a single
global counter. In addition, PoLF does not use in-cache data
movement or swap buffer.

Note that EqualWrites provides larger lifetime improvement
than both PoLF and PoLSwap. Thus, it is clear that the superi-
ority of EqualWrites over PoLF is not merely because of using
data migration (versus data invalidation), since EqualWrites
performs better than PoLSwap, which also uses data migration.
EqualWrites uses a better method of detecting hot data items



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MITTAL AND VETTER: EQUALWRITES: A TECHNIQUE FOR REDUCING INTRA-SET WRITE-VARIATIONS 9

Fig. 5. Results for quad-core system. (a) Relative lifetime (more is better). (b) IntraV (less is better). (c) Relative performance (more is better). (d) Percentage
loss in energy (less is better, negative value implies saving).

TABLE IV

DATA ON THE NUMBER OF CASE-I AND CASE-V OPERATIONS IN EQUALWRITES AND FLUSHES IN PoLF (THE NUMBER OF MIGRATIONS IN PoLSWAP

ARE ALMOST SIMILAR TO THE FLUSHES IN PoLF AND HENCE ARE OMITTED)

than PoLF, PoLSwap, and WrSm and further, EqualWrites
handles the hot data item in a better manner than PoLF.

B. Sensitivity of PoLF and PoLSwap Toward
Their Respective Thresholds

We henceforth omit the detailed figures and only present
the average results. Table V shows the results for PoLF and
PoLSwap at different values of thresholds. For brevity, results
on only lifetime and energy are presented.

From the results in Table V, we note that except for
FT = 6 for quad-core system, the lifetime improvement
of PoLF remains smaller than EqualWrites for all cases.
For FT = 6 for quad-core system, although PoLF improves
lifetime by 10.68×, which is higher than 10.54× for
EqualWrites, PoLF also incurs an unacceptably high energy
loss of 38%, compared with 0.39% for EqualWrites. The
lifetime improvement of PoLSwap remains smaller than that of
EqualWrites for all cases. In addition, note that with increasing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V

RESULTS WITH PoLF AND PoLSWAP FOR DIFFERENT

VALUES OF THRESHOLDS

threshold value, the lifetime improvement reduces, although
the energy loss also reduces.

C. Parameter Sensitivity Results

We now focus exclusively on EqualWrites and evaluate its
sensitivity for different parameters. Each time, we change just
one parameter from the default configuration and summarize
the results in Table VI. The increase in MPKI is always less
than 0.05 and hence, its value is omitted.

1) Change in �: We first discuss the reasoning behind
choice of � (write redirection threshold). First, � is chosen
to be even, although it is trivial to extend the algorithm for
odd values of �. The value of � is chosen to be large enough
such that redirections do not happen frequently, rather they
happen only when the WV exceeds a lower limit (redirections
themselves involve writes and hence, need to be controlled).
For this reason, � < 6 values are avoided. At the same time,
� is chosen to be small enough such that the overhead of
counters remains small and aggressiveness of wear leveling is
not low. Further, with increasing number of cores, the write-
intensity increases and hence, the best (or optimal) value of
� is also increased, since at lower value of �, redirections
happen more frequently, and lead to lower improvement in
the cache lifetime.

From Table VI, we note that smaller values of � lead
to more fine-grain wear leveling, as seen from the value of
IntraV. However, reducing the value of � below a certain point
has adverse effect on the cache lifetime, as evident from the
value of lifetime improvement. The reason for this is that for
small values of �, extra writes due to write redirection are
significantly increased, which lead to reduced improvement in
lifetime. In addition, for small values of �, energy loss and
MPKI are slightly increased.

TABLE VI

PARAMETER SENSITIVITY RESULTS. DEFAULT PARAMETERS ARE SHOWN

IN SECTION VI-A. BASE = BASELINE, EqWr = EQUALWRITES,

REL. PERF. = RELATIVE PERFORMANCE, nSHIFTING = TOTAL

SHIFTING OPERATIONS (CASE-I + CASE-V). � = 2×
SHOWS 2× OVERHEAD OF SHIFTING OPERATIONS

COMPARED WITH THAT MENTIONED

IN SECTION IV

2) Higher Redirection Overhead: We experiment with
values of latency and energy overhead of shifting operations,
which are 2× and 4× of those mentioned in Section IV.
From the results in Table VI (referring to the rows � = 2×
and � = 4×), we observe that performance and energy
are minimally affected. This confirms that shifting overhead
incurred in EqualWrites is minimal.

3) Change in Associativity (A): Caches with smaller asso-
ciativity show smaller value of intra-set WV and vice versa.
This is evident from the value of IntraV for baseline cache
in Table VI and is also confirmed by previous works [16], and
can be explained as follows. For the fixed cache size and fixed
working set size of the application, the hit-rate of application
increases with increasing cache associativity due to reduced
conflict misses. Due to increased hit-rate, same blocks get
repeatedly accessed and evictions due to miss reduce. Due
to temporal locality, only few most recently used ways absorb
most of the accesses [39]. With higher-associativity, this is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MITTAL AND VETTER: EQUALWRITES: A TECHNIQUE FOR REDUCING INTRA-SET WRITE-VARIATIONS 11

even more true and this leads to higher WV. For smaller
associativity value, the number of replacement candidates is
smaller and miss rate is higher. Hence, the number of evictions
is higher and repeated writes to a few cache blocks are less
likely to occur.

This can be further understood by considering two extreme
examples, viz., direct-mapped cache and fully-associative
cache. For a direct-mapped (i.e., single-way) cache, all
the writes happen to the same way and the WV is zero. On the
other hand, for a fully-associative cache (i.e., single-set), the
associativity is equal to the number of blocks in the cache, of
which only few ways will be written. Thus, the WV will be
highest.

The results in Table VI show that EqualWrites provides
lifetime improvement in proportion to the amount of variation
present in the baseline. Moreover, for 32-way associative
cache, the lifetime improvement in single-, dual-, and
quad-core systems are 9.10×, 14.67×, and 17.26×,
respectively. This clearly highlights that a WLT is extremely
important for caches with large associativity value.

4) Change in Cache Capacity: For a fixed working set
size, the increase in cache capacity improves the hit-rate
and increases repeated accesses to a few cache blocks. This
increases the intra-set WV, as evident from the value of IntraV
for caches with different capacities. From Table VI, we also
conclude that depending on the WV originally present in the
application, EqualWrites provides corresponding improvement
in cache lifetime.

The results presented in this section confirm that
EqualWrites works well for a wide range of system and
algorithm parameters and incurs negligible loss in performance
and energy.

VII. FUTURE WORK: EXTENSION OF EQUALWRITES

FOR SPECIAL CASES

In this section, we show the manner in which EqualWrites
can be extended for handling special cases.

A. Improving Lifetime by Tolerating Errors

In this paper, we have evaluated raw cache lifetime, which
is defined by the first failure of any cache block. This lifetime
can be easily extended if the system can tolerate the failure of
a few cache blocks, which decides the error-tolerant lifetime.
Use of error-correction codes (ECCs) allows for correcting
and thus tolerating a given number of failures. The number
of errors which can be corrected depends on the strength
of ECC. The cache lifetime is then determined by the time
it takes for the number of failed bits in a memory reference to
become larger than the number of errors that can be corrected.
Several researchers have proposed techniques that achieve this
by adding data redundancy [41], [42] and these techniques can
be synergistically integrated with EqualWrites, since they are
orthogonal to our work.

B. Mitigating Security Threats in NVMs

The limited write endurance of NVMs presents a crucial
security threat, since using a simple attack, a malicious

attacker can write a cache block repeatedly, leading to the
failure of the system. A greedy user may also run such codes
to get a new system in the warranty period. Conventional
endurance-unaware cache management policies do not provide
a mechanism for preventing such attacks and thus leave a
serious security vulnerability. EqualWrites can be useful for
mitigating such attacks. In EqualWrites, the attacked data item
is most likely to be migrated and by randomizing the value
of � within a predetermined range, the location of the hot
data can be changed in a manner that makes it difficult for
the attacker to predict the new location. Using this, the raw
lifetime of the system can be significantly extended and within
this time, any unusual access sequence can be easily detected.

VIII. CONCLUSION

Addressing the limitations posed by low write endurance
of NVMs is essential for making them a universal memory
solution. In this paper, we presented EqualWrites as a
technique for improving the lifetime of non-volatile caches by
minimizing intra-set WV. EqualWrites achieves wear leveling
by redirecting a hot data item to a cold block using in-cache
data movement. The experimental results have shown that
EqualWrites is effective in improving the cache lifetime and
works well for a wide range of system and algorithm
parameters. In addition, it provides better results than three
other WLTs and the use of random replacement policy.
Our future work will focus on integrating EqualWrites with
bit-level WMTs and error correction/detection techniques to
further improve the improvement in cache lifetime.

ACKNOWLEDGMENT

This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

REFERENCES

[1] A. Jog et al., “Cache revive: Architecting volatile STT-RAM caches for
enhanced performance in CMPs,” in Proc. 49th Annu. Design Autom.
Conf., 2012, pp. 243–252.

[2] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie,
“Hybrid cache architecture with disparate memory technologies,” ACM
SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 34–45, 2009.

[3] S. Iyer et al., “Embedded DRAM: Technology platform for the Blue
Gene/L chip,” IBM J. Res. Develop., vol. 49, nos. 2–3, pp. 333–350,
2005.

[4] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches
for managing embedded DRAM and non-volatile on-chip caches,” IEEE
Trans. Parallel Distrib. Syst., 2015, doi: 10.1109/TPDS.2014.2324563.

[5] Y.-B. Kim et al., “Bi-layered RRAM with unlimited endurance
and extremely uniform switching,” in Proc. IEEE Symp. VLSI
Technol. (VLSIT), Jun. 2011, pp. 52–53.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[6] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i2WAP: Improving non-
volatile cache lifetime by reducing inter-and intra-set write variations,”
in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2013, pp. 234–245.

[7] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects,” AAPPS Bull., vol. 18, no. 6, pp. 33–40, 2008.

[8] Grandis. (2010). Latest Advances and Future Prospects of STTRAM.
[Online]. Available: http://nvmw.ucsd.edu/2010/documents/Driskill-
Smith_Alexander.pdf

[9] Y. Joo and S. Park, “A hybrid PRAM and STT-RAM cache architecture
for extending the lifetime of PRAM caches,” IEEE Comput. Archit. Lett.,
vol. 12, no. 2, pp. 55–58, Jul./Dec. 2013.

[10] J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun, and H. H. Li,
“A coherent hybrid SRAM and STT-RAM L1 cache architecture for
shared memory multicores,” in Proc. Asia South Pacific Design Autom.
Conf. (ASP-DAC), Jan. 2014, pp. 610–615.

[11] W. Zhang and T. Li, “Characterizing and mitigating the impact of
process variations on phase change based memory systems,” in Proc.
IEEE/ACM Int. Symp. Microarchitecture, Dec. 2009, pp. 2–13.

[12] J. Dorsey et al., “An integrated quad-core Opteron processor,” in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2007, pp. 102–103.

[13] Intel Itanium Processor 9500 Series: Reference Manual, Intel Corp.,
Santa Clara, CA, USA, 2014.

[14] Y. Li, Y. Chen, and A. K. Jones, “A software approach for combating
asymmetries of non-volatile memories,” in Proc. Int. Symp. Low Power
Electron. Design (ISLPED), 2012, pp. 191–196.

[15] Y. Chen, W.-F. Wong, H. Li, C.-K. Koh, Y. Zhang, and W. Wen,
“On-chip caches built on multilevel spin-transfer torque RAM cells
and its optimizations,” J. Emerg. Technol. Comput. Syst., vol. 9, no. 2,
pp. 16:1–16:22, May 2013.

[16] S. Mittal, J. S. Vetter, and D. Li, “WriteSmoothing: Improving lifetime
of non-volatile caches using intra-set wear-leveling,” in Proc. 24th ACM
Great Lakes Symp. VLSI (GLSVLSI), 2014, pp. 139–144.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2009,
pp. 469–480.

[18] Intel. (2013). Product Brief: Intel Itanium Processor 9500
Series. [Online]. Available: http://download.intel.com/newsroom/
archive/Intel-Itanium-processor-9500_ProductBrief.pdf

[19] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustain. Comput., Informat. Syst., vol. 4, no. 1,
pp. 33–43, 2014.

[20] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proc. Int.
Symp. Comput. Archit. (ISCA), 2009, pp. 14–23.

[21] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, and
M. Kandemir, “Design space exploration of workload-specific last-level
caches,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED),
2012, pp. 243–248.

[22] S. Guo, Z. Liu, D. Wang, H. Wang, and G. Li, “Wear-resistant hybrid
cache architecture with phase change memory,” in Proc. IEEE 7th Int.
Conf. Netw., Archit. Storage (NAS), Jun. 2012, pp. 268–272.

[23] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” in
Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2009,
pp. 347–357.

[24] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3D stacked MRAM L2 cache for CMPs,” in Proc. Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2009, pp. 239–249.

[25] J. Ahn and K. Choi, “Lower-bits cache for low power STT-RAM
caches,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2012,
pp. 480–483.

[26] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for STT-
RAM using early write termination,” in IEEE/ACM Int. Conf. Comput.-
Aided Design-Dig. Tech. Papers (ICCAD), Nov. 2009, pp. 264–268.

[27] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-
and endurance-aware design of phase change memory caches,” in Proc.
Conf. Design, Autom. Test Eur., 2010, pp. 136–141.

[28] G. Duan and S. Wang, “Exploiting narrow-width values for improving
non-volatile cache lifetime,” in Proc. Conf. Design, Autom. Test Eur.,
2014, Art. ID 52.

[29] S. Mittal and J. S. Vetter, “Addressing inter-set write-variation
for improving lifetime of non-volatile caches,” in Proc. 5th Annu.
Non-Volatile Memories Workshop, 2014.

[30] S. Mittal, J. S. Vetter, and D. Li, “LastingNVCache: A technique for
improving the lifetime of non-volatile caches,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2014, pp. 534–540.

[31] J. Li, C. J. Xue, and Y. Xu, “STT-RAM based energy-efficiency
hybrid cache for CMPs,” in Proc. IEEE/IFIP 19th Int. Conf. VLSI
Syst.-on-Chip (VLSI-SoC), Oct. 2011, pp. 31–36.

[32] S. Mittal and J. S. Vetter, “AYUSH: A technique for extending lifetime
of SRAM-NVM hybrid caches,” IEEE Comput. Archit. Lett., 2015,
doi: 10.1109/LCA.2014.2355193.

[33] S. Yazdanshenas, M. R. Pirbasti, M. Fazeli, and A. Patooghy, “Coding
last level STT-RAM cache for high endurance and low power,” IEEE
Comput. Archit. Lett., vol. 13, no. 2, pp. 73–76, Jul./Dec. 2014.

[34] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gener-
ational behavior to reduce cache leakage power,” in Proc. 28th Annu.
Int. Symp. Comput. Archit. (ISCA), 2001, pp. 240–251.

[35] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin, and M. Kandemir,
“Exploiting program hotspots and code sequentiality for instruction
cache leakage management,” in Proc. Int. Symp. Low Power Electron.
Design (ISLPED), 2003, pp. 402–407.

[36] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

[37] J. C. Ku, S. Ozdemir, G. Memik, and Y. Ismail, “Thermal management
of on-chip caches through power density minimization,” in Proc. 38th
Annu. IEEE/ACM Int. Symp. Microarchitecture, Nov. 2005, pp. 283–293.

[38] S. Mittal, Y. Cao, and Z. Zhang, “MASTER: A multicore cache energy-
saving technique using dynamic cache reconfiguration,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1653–1665,
Aug. 2014.

[39] S. Mittal, Z. Zhang, and J. S. Vetter, “FlexiWay: A cache energy saving
technique using fine-grained cache reconfiguration,” in Proc. 31st IEEE
Int. Conf. Comput. Design (ICCD), Oct. 2013, pp. 100–107.

[40] M. Chaudhuri, “Pseudo-LIFO: The foundation of a new family of
replacement policies for last-level caches,” in Proc. 42nd Int. Symp.
Microarchitecture (MICRO), Dec. 2009, pp. 401–412.

[41] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi,
and M. Erez, “FREE-p: Protecting non-volatile memory against both
hard and soft errors,” in Proc. IEEE 17th Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2011, pp. 466–477.

[42] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar,
and S.-L. Lu, “Reducing cache power with low-cost, multi-bit error-
correcting codes,” ACM SIGARCH Comput. Archit. News, vol. 38, no. 3,
pp. 83–93, 2010.

Sparsh Mittal (S’12–M’14) received the B.Tech. degree in electronics and
communications engineering from IIT Roorkee, Roorkee, India, and the Ph.D.
degree in computer engineering from Iowa State University, Ames, IA, USA.

He is currently a Post-Doctoral Research Associate with the Oak
Ridge National Laboratory, Oak Ridge, TN, USA. His current
research interests include nonvolatile memory, memory system power
efficiency, cache architecture, and CPU-GPU (graphics processing unit)
heterogeneous computing.

Jeffrey S. Vetter (SM’11) received the Ph.D. degree from the Georgia
Institute of Technology (GT), Atlanta, GA, USA.

He holds a joint appointment between the Oak Ridge National Laboratory
(ORNL), Oak Ridge, TN, USA, and GT. At ORNL, he is currently a
Distinguished Research and Development Staff Member, where he is the
Founding Group Leader of the Future Technologies Group. At GT, he is
a Joint Professor with the Computational Science and Engineering School,
the Project Director of the NSF Track 2-D Experimental Computing Facility
for large-scale heterogeneous computing using graphics processors, and the
Director of the NVIDIA CUDA Center of Excellence. His current research
interests include massively multithreaded processors, nonvolatile memory, and
heterogeneous multicore processors.


