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SUMMARY & CONCLUSIONS

This paper presents a brief overview of a PHM system, 
where consequence analysis performed by the Real Time 
Consequence Engine (RTCE) fits into a PHM system, and the 
basic capabilities and architecture of the RTCE.  Also, an 
example of consequence analysis results as applied to a past 
prototype development effort and the results of ongoing 
modification efforts to RTCE are presented.  By varying 
operational settings, maintenance schedules, and other 
parameters of interest, the RTCE can be used to examine the 
consequences of such actions in terms of common 
performance metrics; such as, mean time between failures 
(MTBF), mean time to repair (MTTR), system availability, 
maintenance cost, downtime cost, etc.  In its final form, the 
RTCE will provide the capability to evaluate the potential cost 
/ benefit of an embedded PHM system, considered to be a 
precursor to implementing a PHM system; and, provide the 
capability for real-time consequence analysis, typically viewed 
as the final step in the development of a complete PHM 
system.  

1 INTRODUCTION

Prognostic and Health Management (PHM) systems are 
being developed at an increased rate due to potential cost 
savings and because the DoD is mandating a prognostic 
capability be implemented in all new major weapon systems.  
A capable PHM system should be able to predict component 
failure far enough in advance to allow the modification of 
operations and maintenance schedules in order to minimize 
downtime, while obtaining the maximum useful life of a 
component.  The focus of PHM implementation has been in 
the analysis of the sensor and inspection data necessary to 
identify impending failure modes and in the development of  
the data fusion and trend detection algorithms to predict 
impending failures.  However, relatively little work has been 
accomplished on consequence analysis.  Consequence analysis 
is defined here as the capability to take prognostic information 
and apply it to the operations and maintenance schedules in an 
optimal manner so as to maximize the availability of a system 
while minimizing maintenance and supply costs. 

This paper will describe the capabilities of the Real-Time 
Consequence Engine (RTCE) being developed by Sandia 
National Laboratories.  The purpose of the RTCE is to conduct 

consequence analysis based on the new information made 
available by updated failure mode end-of-life predictions.  
More specifically, the RTCE will predict in real-time the 
effect that operational strategies, as well as repair / replace / 
inspect / wait strategies, will have on the modeled system, if 
that action is taken at the time changes in the reliability of the 
system are detected.  The following paragraphs will first 
provide a general description of a PHM system.  Second, an 
in-depth description of RTCE will be presented.  Third, a past 
application of the prototype RTCE is presented which 
evaluates a fixed-wing aircraft’s accessory drive gearbox 
(ADG) time change interval.  In addition, a current 
application, which examines briefly the improvements made 
to the RTCE in support of an ongoing implementation of a 
PHM system on the Air Force Airborne Laser (ABL), is 
reviewed.  Finally, a summary with future work is presented. 

2 PHM SYSTEM

A PHM system can be broken down into three general 
areas:  data extraction and sensor feature characterization (data 
analysis), data fusion and system health analysis (evidence 
analysis), and operational / maintenance impact analysis 
(consequence analysis) based on updated time-to-failure 
(TTF) or remaining useful life predictions as shown in Figure 
1.  Data extraction may involve the collection of sensor data 
such as vibration, temperature, or load and/or inspection data; 
such as oil sample analysis, fluid levels, and visual damage.  
Since the amount of data coming from the sensors may be 
considerable, sensor feature extraction techniques may be used 
such as statistical moments, vibration signatures, etc.  Sensor 
feature interpretation techniques, to include determination of 
failure modes, are being actively researched and may include 
methods such as sequential probability ratio test (SPRT), 
multivariate state estimation technique (MSET), neural 
networks (NN), self organizing maps, etc.  
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Figure 1.  PHM System 

Evidence analysis incorporates data fusion techniques 
such as Bayesian Belief Networks, case-based and model-
based reasoning, etc., for each component to provide an 
overall component level health estimate.  These estimates are 
then rolled up to the next level to provide a subsystem health 
estimate.  Then, subsystem health estimates are rolled up to 
the system level to provide some form of system health.  
Finally, updated failure mode time-to-failure distributions 
and/or remaining useful life predictions are passed on for 
consequence analysis, the focus of this paper.

3 REAL TIME CONSEQUENCE ENGINE

The purpose of consequence analysis, using a tool such as 
RTCE, is to look forward in time to help analyze the 
consequences of various operational and maintenance 
strategies once a change in a component’s time-to-failure or 
remaining useful life has been detected.  The RTCE 
simulation takes the system health predictions from evidence 
analysis and develops projections into the future, i.e., what 
will be the overall impact on the system if a certain impending 
failure mitigation action is taken.  Performance metrics such 
as mean time between failures (MTBF), mean time to repair 
(MTTR), availability, maintenance cost, downtime cost, etc., 
are calculated.  Thus, by running the simulation with different 
operational and maintenance schedules, the consequences of 
alternative equipment use and maintenance scenarios can be 
examined.

Possible actions as a result of the consequence analysis 
might be to modify current operating parameters, shut down 
immediately and repair the problem, ignore the problem and 
deal with the failure when it occurs, or schedule maintenance 
at an appropriate time in the future.  For the operator or 
maintenance personnel to make the best decision, they need to 
know the consequences of all the possible actions.  

Consequences might be measured in terms of mission impact, 
expected downtime, or cost.  The intent is to enable this 
decision making process to occur in real-time, ultimately, as 
an onboard fully integrated system.  

The RTCE can also be used to support PHM cost / benefit 
assessments such as evaluating the potential effectiveness of a 
PHM system.  PHM systems, no matter how well designed, 
may either fail to detect a pending problem (false negative) or 
report a problem when none exists (false positive).  False 
negatives can allow failures to occur that should have been 
caught.  False positives can result in unnecessary (and 
expensive) maintenance.  The end user version of RTCE 
should help analysts understand the cost / benefit tradeoffs for 
a PHM system depending on false positive and false negative 
rates.  

3.1 Description

The RTCE, shown in Figure 2, takes as input the updated 
time-to-failure or remaining useful life predictions, component 
age and maintenance history, maintenance and operational 
planned use schedules, and spares availability data.  Then, the 
simulation generates possible maintenance schedules based on 
predicted failure events which may alter the original 
maintenance schedules and the operational schedule.  Since 
the failure events are modeled stochastically and maintenance 
schedules change depending upon predicted failure events, 
multiple iterations are analyzed and data is collected for 
calculating the performance measures.  An enumeration 
scheme is then used to develop multiple scenarios in which 
different aspects of the model, such as repair now or later 
strategy, repair time duration, combine maintenance event 
strategies, and spares availability, are varied to provide a 
collection of all the possible combinations of interest.  An 
optimization scheme is then used to determine the best 
operational and maintenance strategy based on the user’s 
objectives and the calculated performance measures.   
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Figure 2.  Real Time Consequence Engine

A graphic depicting the current modular architecture of 
the Virtual System Simulation Engine is shown in Figure 3.  
Simulation was chosen as the basis for the RTCE because of 
its flexibility.  The simulation mimics the reliability behavior 
of equipment in terms of simulated equipment failures, 



repairs, preventive maintenance, and inspections.  The 
simulation is based on user-definable maintenance and 
inspection schedules and a system reliability model with time-
to-failure and time-to-repair distributions for all failure modes.  
The simulation integrates and drives several modules:  
schedule, cost, system, and spares.    
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Figure 3.  RTCE Simulation Architecture

3.2 Schedule Module

Equipment failures are, by definition, unplanned and are 
interruptions of the planned scheduled use of the equipment.  
Simulation of equipment reliability behavior can be viewed as 
creating a chronology of equipment operational state changes 
and must begin with the planned use for the equipment.  An 
example of such a chronology is shown in Table 1 where 
equipment operational states are changing based on the use of 
the equipment. 

Date/Time Equipment State Status
01/01/05 12:00 AM Other Up Time Weekend
01/03/05 08:00 AM Standby Preparation
01/03/05 10:00 PM Operational Normal Ops
01/05/05 01:00 PM Operational 1 Accelerated Ops
01/06/05 01:00 PM Operational Normal Ops
01/07/05 12:00 PM Preventive Maint. Weekly Maint.

Table 1. Example Equipment State Chronology

The scheduling module provides the means to specify the 
planned equipment usage schedule so that component aging, 
simulated failures, maintenance, etc. can occur in the context 
of the planned schedule.  Setting up an equipment schedule 
involves the following steps.  
1.  Identify special periods.  Special periods are time intervals 

during which the equipment is scheduled to be in a state 
other than its default state.  Special periods typically model 
the equipment usage or operational states.  Special periods 
do not include preventive maintenance.  

2.  Specify preventive maintenance (PM) schedules.  For each 
preventive maintenance activity, the failure modes to be 
addressed are identified and the schedule is specified.  
Preventive maintenance can be modeled based on calendar 
time and/or equipment usage time.

3.3 Cost Module

The cost module assumes that the cost of downtime can 
be characterized by a function that is piecewise constant.  The 
downtime cost function is characterized by a start date, an end 
date, and the downtime cost per hour which, for example, can 
represent revenue lost as a result of unplanned equipment 
failure.  In addition to downtime costs, each event (scheduled 
or unscheduled) can incur additional costs.  Each failure mode 
has an optional cost property including a parts replacement 
cost.  Each scheduled maintenance action includes a cost to 
perform the maintenance, which is added to the cost to repair 
any failure modes addressed by the maintenance.

3.4 Reliability Module

The reliability module contains reliability data including 
time-to-failure and time-to-repair distributions for the failure 
modes.  The model is based on a collection of equipment 
failure modes.  The possibility of redundancy or non-critical 
system elements is treated through the use of success paths.  A 
success path is a collection of elements (failure modes, 
components or subsystems) that, if all are operating, determine 
the operational state of the system.  For example, consider the 
following simple block diagram model in Figure 4.

A B C

D

E

F

Figure 4.  Simple Block Diagram Model

The elements A, B, C and F are in series while D and E 
are in parallel.  If the functionality of the system is unaffected 
by whether D or E or both are operating, then two success 
paths would be needed to characterize the system.  They are 
ABCDF and ABCEF, both of which support full functionality.  
On the other hand, if the functionality of the system in Figure 
4 is reduced by the failure of either D or E, then three success 
paths are needed.  Success path ABCDEF supports full 
functionality while ABCDF and ABCEF support reduced 
functionality.  Of course, series elements do not need to be 
included in any specific success path since they are, by 
definition, included in all success paths.

Success paths are defined by a collection of references to 
failure modes in the reliability model and a reference to the 
equipment operational state that results from the success path.  
When a success path is active, the system is in an operational 
state (note that the user must define these operational states 
and the groups of failure modes that lead to various 
operational states).  Operational states may differ from the 
default operational state in terms of the effect on the system 
being simulated.  For example, a helicopter maneuvering at 
low altitude is subject to more stress than one flying straight 
and level at higher altitude.  During intervals of increased (or 



decreased) operational stress, selected components and 
subsystems may effectively age more or less rapidly than 
normal.  RTCE allows alternate equipment operational states 
that provide a means to treat such effects.  Operational states 
are characterized by a collection of affected failure modes and 
an “acceleration factor” which causes the failure mode to age 
more or less rapidly than normal during the alternate 
operational state.

3.5 Spares Module

The spares module provides the impact of a spares 
inventory on the system being simulated.  If a part fails during 
the simulation and requires replacement, the spares inventory 
is queried to see if a spare part that fixes that component 
exists, and if it does, how long it takes to acquire that spare.  
The spares inventory is a collection of spare parts each of 
which has properties such as restock time, withdraw time, 
purchase cost, storage cost, reorder level, usage rate, etc.  A 
spares model is included since the availability of spares may 
be a major factor in decision-making when a pending failure is 
identified. 

3.6 RTCE Simulation Engine

The RTCE simulation logic represents a discrete-event 
simulation which executes an evolving schedule of preventive 
maintenance actions and failure and repair events.  Failure and 
repair events are generated by drawing from time-to-failure 
and time-to-repair distributions.  A “master clock” looks at 
each event, calculates the state the system is in given that 
event, and then finds the next event that will happen.  The first 
step in preparing the simulation is to set up the planned 
schedule.  The simulation event's start and end dates define the 
period to be simulated while the planned schedule might 
include preventive maintenance (PM), scheduled shut down 
periods, etc.  The simulation maintains the planned schedule 
(which can be delayed somewhat during the simulation), the 
actual schedule (which is the result of events being added 
during the simulation), and a collection of current events 
(which are events that started prior to the current date but have 
not yet ended).  Events are allowed to overlap and can be 
modeled to reflect efficiencies in combining maintenance 
actions. 

At any time during the simulation there are three 
possibilities for the next system state change:  1) the end of a 
current event, 2) the occurrence of a failure mode, or 3) the 
beginning of a planned event.  The simulation engine 
determines which of these occurs next and takes the 
appropriate action.  If the next event is a failure mode or a 
planned event, the event is added to the actual schedule and to 
the current events collection.  If the end of a current event 
causes the next state change, that event is removed from the 
current events collection.  Time is then advanced to the next 
state change and the process continues.  At the end of the 
simulation, statistics on system performance measures such as 
system MTBF, availability, downtime, and cost are calculated 

and presented to the user.  If desired, the user can view the 
history of events in the simulation.  

4 APPLICATIONS

The following paragraphs describe two applications of the 
RTCE to help further demonstrate its potential for use in 
evaluating PHM systems and optimally modifying operations 
and maintenance schedules.  

4.1 Application 1  

The first application illustrates the potential effectiveness 
of a PHM system based on a time-change interval 
optimization analysis performed on a typical Accessory Drive 
Gearbox (ADG) for a fixed wing aircraft.  The ADG provides 
a main engine starting capability on the ground or in flight and 
provides power from the aircraft engine to the accessories
such as hydraulic pumps and generators.  It was assumed that 
the ADG had a 5% probability of burn-in failure during the 
first 100 hours of operation, a 10% probability of random 
failure occurring between burn-in and onset of end-of life, and 
the end-of-life characterized by a normal distribution with a 
mean of 4000 hours and a standard deviation of 500 hours.  

The Consequence Engine (an earlier prototype of the 
RTCE) simulates inspections in significant detail.  The 
simulation looks ahead to the next scheduled inspection and 
generates a probability that the component will fail before the 
next inspection.  A failure event is predicted for that 
component based on its projected usage, its time to failure 
distribution, and a random number draw.  If a failure is 
predicted before the next inspection, there is a probability that 
the current inspection will not detect this impending failure.  
This is considered a “false negative” probability, which in 
some sense constitutes a failure of the PHM system.  If a 
failure will not occur before the next inspection, there is a 
probability that the current inspection will indicate an 
impending failure.  This is considered a “false positive’ 
probability, meaning that the inspection indicated a pending 
failure when there was none, and the component was replaced 
prematurely.  In this analysis, the false negative input value 
was varied while the false positive rate was set at 1%. 

The results of this analysis are shown in Figure 5.  The 
probability of a false negative is the X-axis with the larger 
numbers meaning that the inspection (i.e. prognostics) is not 
that good at detecting onset of failure.  The probability of 
ADG failure per year, per aircraft is on the Y-axis.  The 
different lines show the results of the analysis, parametrically 
varying the time-change interval Tc from 2500 hours to 4000 
hours.  
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Figure 5. Annual ADG Failures per Year per A/C

The bottom line shows that with the current replacement 
interval of about 2500 hours, there is approximately a 0.3% 
chance of failure per aircraft per year, assuming a perfect 
inspection (this is the baseline failure rate primarily due to 
infant mortality, or failures that occur before an inspection is 
scheduled.)   Even with a false negative rate of 40%, the 
probability of ADG failure is still under 1% because the time 
change is at the 3 limit on the wear out portion of the 
assumed time-to-failure distribution (4000-3*500).  As the 
time change interval is lengthened, the probability of ADG 
failure increases; however, the assumption that many of the 
failures are caught at the 300 hour inspections means that 
overall, the ADG failure rate does not increase significantly.  
In the worst case scenario, with a 40% false negative rate and 
a time change at 4000 hours, the failure probability is around 
2.2% per aircraft per year.  

This graph also shows how the RTCE can be used to 
determine the required precision of a prognostic system to 
maintain a certain reliability level.  If, for example, an annual 
failure probability for the ADG per aircraft was desired to be 
0.5% or less, the accuracy of a prognostic system with a 3500 
hour time change interval would require a false negative 
probability of about 3% or less.  If an annual failure 
probability for the ADG per aircraft was desired to be 1% or 
less, the accuracy of a prognostic system with a 4000 hour 
time change interval would require a false negative probability 
of no more than 13%.

4.2  Application 2  

In the second application, the RTCE is part of a complete 
PHM system that is being prototyped in support of the ABL’s 
chemical-oxygen iodine laser (COIL).  ACTA Corporation is 
developing the evidence engine that will interface with 
Sandia’s RTCE to demonstrate the feasibility and capability 
for a real time, on-board, complete PHM system [2]. The 
prototype is being applied to the iodine fluid flow system, 
which is considered to be problematic.  It will support PHM 
for the ABL by recommending an appropriate change in 
scheduled operations and/or maintenance actions.  Possible 

actions might be to modify current operating parameters, shut 
down immediately and repair the problem, ignore the problem 
and deal with the failure when it occurs, or schedule 
maintenance at an appropriate time in the future.  The intent is 
to enable this decision making process to occur in real-time, 
ultimately, as an on-board fully integrated system to model 
multiple ABL platforms.  

As part of this effort, several improvements are being 
made.  The most significant improvement is the new user 
interface.  With multiple screens, the user can input operations 
and maintenance schedules, update component failure 
information, etc., much quicker than in the original data input 
file.  In addition, a schedule viewer screen allows the user to 
visualize the current operations schedule, calendar-based 
preventive maintenance schedule, the predicted use-based 
maintenance schedule based on the current operations 
schedule, and predicted failures based on the operations, 
calendar-based maintenance and use-based maintenance 
schedules.  Once the RTCE is run, the schedule viewer screen 
provides the resulting or optimized schedule on the same 
screen as the original as shown in Figure 6.  Now the user can 
clearly determine what failures are about to occur, what 
changes in both the calendar-based and use-based maintenance 
schedules should be considered, and what changes in the 
operations and maintenance schedules may provide the 
maximum availability for the minimum cost. 

Implementation of the RTCE on the ABL would proceed 
as follows.  Prior to a mission, anticipated operations, 
scheduled maintenance, and use-based maintenance events 
would be updated in the RTCE.  In addition, time to failure 
distributions and component age would be updated depending 
upon parts maintenance and / or replacements that occurred 
prior to mission start.   An evidence engine would monitor the 
condition of critical components and as failure / wear-out 
indications are prognosed, pass the updated time-to-failure 
distributions to the RTCE.  The RTCE would use the updated 
time-to-failure distributions to determine changes in the 
operations, scheduled maintenance, and use-based 
maintenance schedules and provide the onboard operator / 
technician an updated recommended  schedule that maximizes 
the mission’s effectiveness.  Mission effectiveness may be 
maximized by implementing such options as:  continue 
operating as planned, operate the laser at a reduced readiness 
or output, shorten the mission, abort the mission, etc.   
Monitoring multiple ABL platforms simultaneously with a 
PHM system that included both an evidence engine and a 
RTCE would provide the greatest flexibility for operations 
while maximizing overall mission effectiveness.



Figure 6. RTCE Schedule Viewer Screen

5 NEXT STEP

In reality, there is an additional step in the process which 
has yet to be implemented.  This step will have the 
consequence analysis provide direct feedback to the operating 
system to allow automated changes to component / system use 
in response to changes in component health.  For example, 
when evidence analysis determines that a power supply is 
beginning to malfunction, the consequence analysis will 
evaluate different options such as shut down the power supply 
and terminate the operations immediately, operate the power 
supply at a lower power output to allow the system to ”limp 
home”, or continue to operate as originally scheduled, but 
shorten operations commensurate with failure predictions.  
This is the future direction for the RTCE.
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