

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

SAND2006-6847C
UCRL-PROC-224894

Repassivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvanostatic-Potentiostatic Method

Kenneth J. Evans, Raul B. Rebak

October 2, 2006

2006 Materials Research Society Fall Meeting
Boston, MA, United States
November 27, 2006 through December 1, 2006

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

18 September 2006

Paper prepared for the proceedings of the Fall 2006 meeting of the Materials Research Society (MRS) in the symposium NN: Scientific Basis for Nuclear Waste Management XXX in Boston, MA, 27 November to 01 December 2006

Repassivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvanostatic-Potentiostatic Method

Kenneth J. Evans and Raul B. Rebak

Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of repassivation potential (E_{R1}) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of repassivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast and because many times the presence of transpassivity may hinder the nucleation and propagation of crevice corrosion. To circumvent this, the repassivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvanostatic-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible repassivation potential values, especially when the environment is not aggressive. The values repassivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions was measured using the THE and CPP methods. For practical purposes, especially under the most aggressive conditions, both methods yield similar values of repassivation potential.

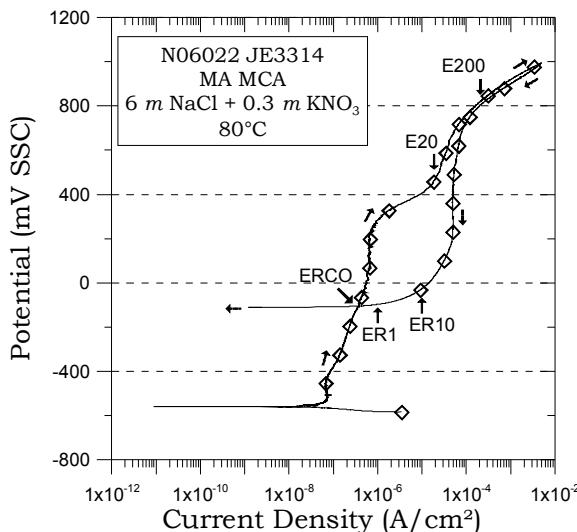
INTRODUCTION

Alloy 22 (N06022) is a nickel base alloy designed to be resistant to all forms of corrosion. Alloy 22 contains approximately 56% nickel (Ni), 22% chromium (Cr), 13% molybdenum (Mo), 3% tungsten (W) and 3% iron (Fe) (ASTM B 575). ¹ Because of its high level of Cr, Alloy 22 remains passive in most industrial environments and therefore has an exceptionally low general corrosion rate. ²⁻⁶ The combined presence of Cr, Mo and W imparts Alloy 22 with high resistance to localized corrosion such as pitting corrosion and stress corrosion cracking even in hot high chloride (Cl^-) solutions. ⁷⁻¹² It has been reported that Alloy 22 may suffer localized corrosion such as crevice corrosion when it is anodically polarized in chloride containing solutions. ^{8-10,13-15} It is also known that the presence of nitrate (NO_3^-) in the solution minimizes or eliminates the susceptibility of Alloy 22 to crevice corrosion. ^{8-10,16-23} The value of the ratio ($[NO_3^-]/[Cl^-]$) has a strong effect of the susceptibility of Alloy 22 to crevice corrosion. ¹⁶⁻²⁵ The higher the nitrate to chloride ratio the stronger the inhibition by nitrate. This ratio may depend on other experimental variables such as total concentration of chloride or temperature. Other anions in solution were also reported to inhibit crevice corrosion in Alloy 22. ^{19-20,26-28}

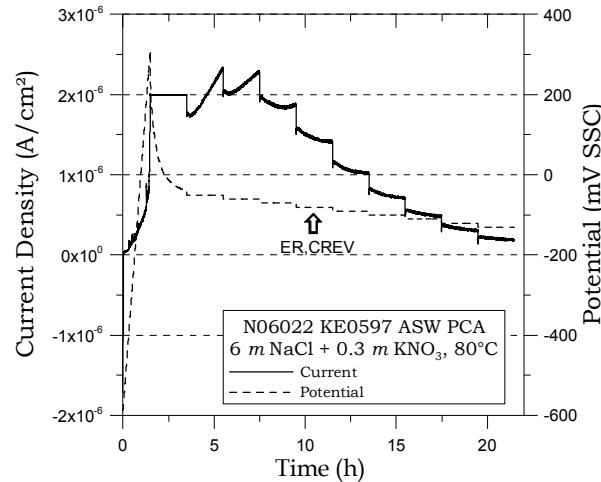
The susceptibility of Alloy 22 to suffer crevice corrosion is generally measured using the cyclic potentiodynamic polarization (CPP) technique, which is described in ASTM G 61 standard.²⁹ This is a fast technique that gives rather accurate and reproducible values of repassivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of repassivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast and because many times the presence of transpassivity may hinder the nucleation and propagation of crevice corrosion. To circumvent this, the repassivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvanostatic-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method).^{15,30} The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible repassivation potential values, especially when the environment is not aggressive.

EXPERIMENTAL TECHNIQUE

Alloy 22 specimens were mainly prepared from 1-inch thick plate. The specimens were creviced using a ceramic washer and PTFE tape.^{15,30} There are two types of specimens, multiple crevice assemblies (MCA)²³ or lollipops and prism crevice assemblies (PCA).¹⁵ All the tested specimens had a finished grinding of abrasive paper number 600 and were degreased in acetone and treated ultrasonically for 5 minutes in de-ionized (DI) water 1 hour prior to testing. Specimens were non-welded (MA) base plate or in the as-welded (ASW) condition. The weld was produced with matching filler metal using Gas Tungsten Arc Welding (GTAW). The welded specimens were not all weld metal but contained a weld seam which varied in width from approximately 8 to 15 mm.


Electrochemical tests were carried out in nine different NaCl and KNO₃ electrolytes. The following solutions were used: 1 m NaCl + 0.05 m KNO₃, 1 m NaCl + 0.15 m KNO₃, 1 m NaCl + 0.5 m KNO₃, 3.5 m NaCl + 0.175 m KNO₃, 3.5 m NaCl + 0.525 m KNO₃, 3.5 m NaCl + 1.75 m KNO₃, 6 m NaCl + 0.3 m KNO₃, 6 m NaCl + 0.9 m KNO₃ and 6 m NaCl + 3 m KNO₃. These solutions correspond to three molar ratios of nitrate over chloride: 0.05, 0.15 and 0.5. The testing temperatures were 60°C, 80°C and 100°C. The pH of the solutions was not adjusted and they were near neutral. Nitrogen (N₂) was purged through the solution at a flow rate of 100cc/min for 24 hours while the corrosion potential (E_{corr}) was monitored. Nitrogen bubbling was continued throughout all the electrochemical tests. The electrochemical tests were conducted in a one-liter, three-electrode, borosilicate glass flask (ASTM G 5).²⁹ A water-cooled condenser combined with a water trap was used to avoid evaporation of the solution and to prevent the ingress of air (oxygen). All the tests were carried out at ambient pressure. The reference electrode was saturated silver chloride (SSC) electrode, which at ambient temperature has a potential of 199 mV more positive than the standard hydrogen electrode (SHE). The reference electrode was connected to the solution through a water-jacketed Luggin probe so that the electrode was maintained at near ambient temperature. The counter electrode was a flag (36 cm²) of platinum foil spot-welded to a platinum wire. All the potentials in this paper are reported in the SSC scale.

Cyclic Potentiodynamic Polarization - CPP: In these tests the potential scan was started 150 mV below E_{corr} at a set scan rate of 0.167 mV/s. The scan direction was generally reversed when the current density reached 5 mA/cm² in the forward scan. In a few tests the maximum applied potential was 600 mV. Depending on the range of applied potentials, each CPP test could last between 1 h and 3 h. This is a fast and efficient method to determine crevice corrosion resistance of commercial alloys. In the forward scan of the CPP, the potentials for which the current density is 20 and 200 µA/cm² are called E20 and E200. These parameters represent values of breakdown potentials (Figure 1). In the reverse scan of the CPP the values of potentials for which the current


density is 10 and 1 $\mu\text{A}/\text{cm}^2$ are called ER10 and ER1. The potential at which the reverse scan intersects the forward scan is called repassivation potential cross over (ERCO) (Figure 1). ER10, ER1 and ERCO represent values of repassivation potentials.

The Tsujikawa-Hisamatsu Electrochemical test - THE: The second test used to assess the susceptibility of Alloy 22 to localized corrosion and passive stability was the Tsujikawa-Hisamatsu Electrochemical test, which currently does not have an approved ASTM standard. The potential scan was started 150 mV below E_{corr} at a set potentiodynamic scan rate of 0.167 mV/s. Once the current density reached a predetermined value (for example 20 $\mu\text{A}/\text{cm}^2$ or 2 $\mu\text{A}/\text{cm}^2$), the controlling mode was switched from potentiodynamic to galvanostatic and the predetermined current density was usually applied for 2 h. The resulting potential at the end of the galvanostatic treatment was recorded. After the galvanostatic step, the treatment was switched to a potentiostatic mode. The potentiostatic steps were applied for 2 h starting at the potential recorded at the end of the galvanostatic treatment minus 10 mV and applying as many steps as necessary until crevice repassivation was achieved. Each subsequent potentiostatic step was 10 mV lower than the previous step. Generally 10 steps (or a total of 100 mV) were necessary to achieve repassivation of an active crevice-corrosion. The repassivation potential is determined as the potential for which the current density decreased as a function of time in the period of treatment of 2 h (Figure 2). Depending on the applied time and number of potentiostatic steps, each THE test could last between 24 h and 30 h. This is a lengthy test, which yields only one parameter, the crevice repassivation potential (ER, CREV). Determination of ER,CREV from the data may be subjective.

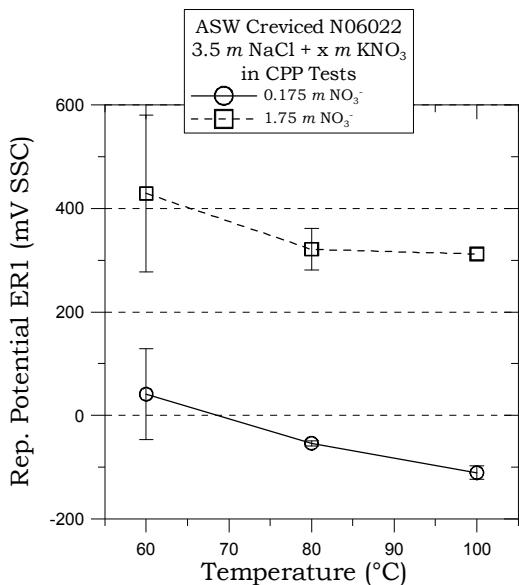
After the CPP and THE tests, the specimens were examined in an optical stereomicroscope at a magnification of 20 times to establish the mode and location of the attack.

Figure 1 – Cyclic potentiodynamic polarization or CPP of specimen JE3314

Figure 2 – Tsujikawa Hisamatsu Electrochemical or THE of specimen KE0597

REPASSIVATION POTENTIAL USING CPP and THE

Most of the results from the CPP tests were published before.^{21,23} Figure 1 shows a typical cyclic potentiodynamic polarization curve for Alloy 22 and also the explanation of the parameters E20, ER1 and ERCO in Table 1.


Table 1 – Typical potentials from the CPP curves

Electrolyte	Temp. (°C)	E_{corr} 24-h ± SD	E20 ± SD	ER1 ± SD	ERCO ± SD	Mode of Attack
1 m NaCl + 0.05 m KNO ₃	60	-408 ± 54	NA (>600)	258 ± 149	221 ± 180	No CC
	80	-411 ± 105	NA (>600)	34 ± 18	-14 ± 54	CC
	100	-539 ± 61	366 ± 61	-89 ± 20	-94 ± 25	CC
1 m NaCl + 0.15 m KNO ₃	60	-326 ± 174	NA (>600)	424 ± 150	425 ± 174	No CC
	80	-455 ± 53	NA (>600)	305 ± 21	312 ± 30	No CC
	100	-509 ± 8	404 ± 0 ^A	-49 ± 0 ^A	-65 ± 0 ^A	CC-II
1 m NaCl + 0.5 m KNO ₃	60	-397 ± 55	NA (>600)	436 ± 101	348 ± 0 ^A	No CC
	80	-438 ± 35	NA (>600)	329 ± 25	325 ± 27	No CC
	100	-529 ± 63	601 ± 13	306 ± 71	310 ± 79	No CC
3.5 m NaCl + 0.175 m KNO ₃	60	-472 ± 53	659 ± 28	41 ± 88	-40 ± 47	CC-II
	80	-491 ± 10	477 ± 30	-54 ± 5	-81 ± 6	CC
	100	-506 ± 57	390 ± 0	-111 ± 13	-118 ± 20	CC
3.5 m NaCl + 0.525 m KNO ₃	60	-381 ± 126	583 ± 16	360 ± 107	467 ± 220	No CC
	80	-433 ± 63	NA (>600)	410 ± 91	406 ± 119	No CC
	100	-417 ± 118	405 ± 47	-59 ± 29	-32 ± 88	CC
3.5 m NaCl + 1.75 m KNO ₃	60	-375 ± 132	NA (>600)	429 ± 152	411 ± 154	No CC
	80	-480 ± 19	516 ± 0 ^A	321 ± 40	328 ± 53	No CC
	100	-491 ± 20	453 ± 0 ^A	312 ± 0 ^A	319 ± 0 ^A	No CC
6 m NaCl + 0.3 m KNO ₃	60	-353 ± 259	NA (>600)	213 ± 220	177 ± 276	No CC
	80	-496 ± 19	451 ± 20	-80 ± 24	-103 ± 9	CC
	100	-474 ± 103	260 ± 29	-84 ± 18	-88 ± 19	CC
6 m NaCl + 0.9 m KNO ₃	60	-326 ± 196	678 ± 0 ^A	442 ± 123	350 ± 0 ^A	No CC
	80	-485 ± 31	597 ± 67	127 ± 155	64 ± 167	CC-II
	100	-372 ± 206	495 ± 70	-60 ± 24	-73 ± 18	CC
6 m NaCl + 3 m KNO ₃	60	-446 ± 59	731 ± 0 ^A	480 ± 156	346 ± 0 ^A	No CC
	80	-441 ± 71	719 ± 0 ^A	419 ± 159	285 ± 0 ^A	No CC
	100	-435 ± 110	473 ± 0 ^A	309 ± 0 ^A	299 ± 0 ^A	No CC
SD = Standard deviation, NA = Not Available (some of the polarization tests were conducted to maximum of 600 mV, ^A Single value. For CC and CC-II see Reference 21.						

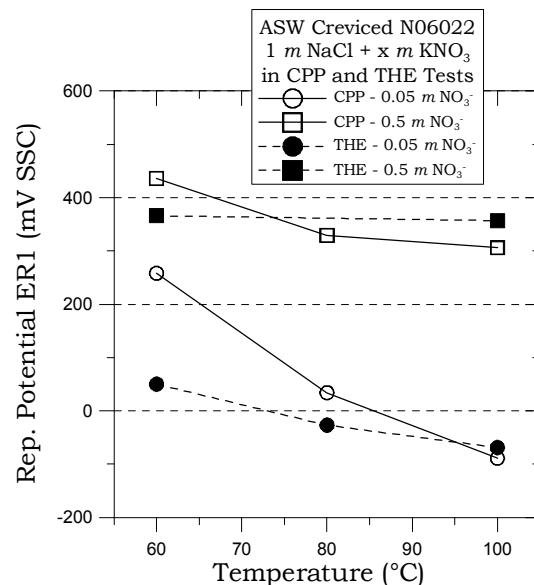

Figure 3 shows the representation of the average ER1 from Table 1 as a function of the temperature for Alloy 22 in 3.5 m NaCl solution at two concentrations of NO₃⁻ to obtain ratios R = 0.05 and 0.5. For the higher nitrate content, the higher the repassivation potential ER1. As the temperature increases, ER1 decreases. Figure 1 also shows that as the system is more aggressive (higher temperatures and lower ratio R) the standard deviation decreases.

Table 2 shows the repassivation potentials ER,CREV obtained for Alloy 22 using the THE method. Fewer data are available since this method is more time consuming than the CPP method. Figure 2 shows a typical THE test result with a repassivation potential of -71 mV (Table 2). Figure 4 shows comparatively the repassivation potentials ER1 and ER,CREV obtained using CPP and THE, respectively. Figure 4 show that both tests yield similar repassivation potentials. When the system is not highly aggressive, for example at the lower temperatures, the repassivation potential using THE could be slightly lower than the repassivation potential using CPP. However, for the most aggressive electrolytes the repassivation potential using both methods are practically undistinguishable from each other.

Comparing the results in Tables 1 and 2 it is apparent that using the CPP method crevice corrosion was clearly observed at the nitrate over chloride ratio of 0.05 at 80 and 100°C and at the ratio of 0.15 at 100°C (Table 1). At all the other six tested conditions the specimens suffered mostly transpassivity and Type II CC because the potential was driven to high values in a fast manner. Type II CC is slight and dull (non-crystalline).²¹ Table 2 shows that using the THE test, crevice corrosion was also observed for the conditions reported in Table 1 plus at the nitrate over chloride ratio of 0.05 and 0.15 at 60°C and at the ratio of 0.15 at 80°C. Using the THE method, at the only nitrate over chloride ratio for which crevice corrosion was not observed was at 0.5, at all the tested temperatures.

Figure 3 – ER1 for Alloy 22 as a function of temperature and nitrate concentration

Figure 4 – Comparative repassivation potentials between CPP and THE methods

SUMMARY

1. Cyclic potentiodynamic polarization (CPP) curves are a fast method to determine the repassivation potential of Alloy 22
2. The Tsujikawa-Hisamatsu electrochemical (THE) method is more time consuming and it is designed to promote crevice corrosion in Alloy 22 without taking the alloy into transpassivity
3. For practical purpose, both the CPP and the THE methods yield similar values of repassivation potentials

Table 2 – Repassivation Potentials with the THE method

Electrolyte	Temp. (°C)	Specimen Designation	ER,CREV (mV SSC), THE	Mode of Attack
1 m NaCl + 0.05 m KNO ₃	60	KE0176	49	CC
	60	KE0179	58	CC ^A
	60	KE0183	44	CC ^B
	80	KE0184	-27	CC
	100	KE0173	-69	CC
1 m NaCl + 0.15 m KNO ₃	60	KE0628	264	CC
	80	KE0596	(<333)	CC
	80	KE0600	(>0)	CC ^C
	80	KE0624	19	CC
	100	KE0180	-22	CC
1 m NaCl + 0.5 m KNO ₃	60	KE0119	366	No CC
	100	KE0752	(>357)	No CC
3.5 m NaCl + 0.175 m KNO ₃	60	KE0177	20	CC
	80	KE0185	-42	CC
	100	KE0174	-93	CC
3.5 m NaCl + 0.525 m KNO ₃	80	KE0629	3	CC
	100	KE0181	-55	CC
3.5 m NaCl + 1.75 m KNO ₃	60	KE0120	340	No CC
	100	KE0753	330	CC
6 m NaCl + 0.3 m KNO ₃	60	KE0178	2	CC
	80	KE0597	-71	CC
	100	KE0175	-103	CC
6 m NaCl + 0.9 m KNO ₃	80	KE0630	-26	CC
	100	KE0182	-71	CC
6 m NaCl + 3 m KNO ₃	60	KE0751	379	No CC
	100	KE0754	379	CC
CC = Crevice Corrosion. ^A Galvanostatic step at 1 µA/cm ² for 2 h. ^B Galvanostatic step at 0.5 µA/cm ² for 2 h. ^C Galvanostatic step at 1 µA/cm ² for 8 h. Values in brackets = test terminated before repassivation potential was reached.				

ACKNOWLEDGMENTS

This work was performed under the auspices of the U. S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract N° W-7405-Eng-48. The work was supported by the Yucca Mountain Project, which is part of the DOE Office of Civilian Radioactive Waste Management (OCRWM)

REFERENCES

- 1 ASTM International, Standard B575, Vol. 02.04 (ASTM, 2002: West Conshohocken, PA).
- 2 Haynes International, “Hastelloy C-22 Alloy”, Brochure H-2019E (Haynes International, 1997: Kokomo, IN).
- 3 R. B. Rebak in Corrosion and Environmental Degradation, Volume II, p. 69, Wiley-VCH, Weinheim, Germany (2000).

- 4 R. B. Rebak and P. Crook, "Nickel Alloys for Corrosive Environments," *Advanced Mater. & Proc.*, 157, 37, 2000
- 5 R. B. Rebak and P. Crook "Influence of the Environment on the General Corrosion Rate of Alloy 22," *PVP-Vol 483* pp. 131-136 (ASME, 2004: New York, NY).
- 6 R. B. Rebak and Joe H. Payer, "Passive Corrosion Behavior of Alloy 22," *ANS Conf. International High Level Radioactive Waste Management*, Las Vegas 30Apr-04May 2006.
- 7 R. B. Rebak and P. Crook "Improved Pitting and Crevice Corrosion Resistance of Nickel and Cobalt Based Alloys," *ECPV 98-17*, pp. 289-302 (The Electrochemical Society, 1999: Pennington York, NJ).
- 8 B. A. Kehler, G. O. Ilevbare and J. R. Scully, *Corrosion*, 1042 (2001).
- 9 K. J. Evans and R. B. Rebak in *Corrosion Science – A Retrospective and Current Status in Honor of Robert P. Frankenthal*, *PV 2002-13*, p. 344-354 (The Electrochemical Society, 2002: Pennington, NJ).
- 10 K. J. Evans, S. D. Day, G. O. Ilevbare, M. T. Whalen, K. J. King, G. A. Hust, L. L. Wong, J. C. Estill and R. B. Rebak, *PVP-Vol. 467, Transportation, Storage and Disposal of Radioactive Materials – 2003*, p. 55 (ASME, 2003: New York, NY).
- 11 Y-M. Pan, D. S. Dunn and G. A. Cagnolino in *Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment and Structures*, *STP 1401*, pp. 273-288 (West Conshohocken, PA: ASTM 2000).
- 12 R. B. Rebak in *Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment and Structures*, *STP 1401*, pp. 289-300 (West Conshohocken, PA: ASTM 2000).
- 13 C. S. Brossia, L. Browning, D. S. Dunn, O. C. Moghissi, O. Pensado and L. Yang "Effect of Environment on the Corrosion of Waste Package and Drip Shield Materials," *Publication of the Center for Nuclear Waste Regulatory Analyses (CNWRA 2001-03)*, September 2001.
- 14 D. S. Dunn, L. Yang, Y.-M. Pan and G. A. Cagnolino "Localized Corrosion Susceptibility of Alloy 22," Paper 03697 (NACE International, 2003: Houston, TX).
- 15 K. J. Evans, A. Yilmaz, S. D. Day, L. L. Wong, J. C. Estill and R. B. Rebak "Comparison of Electrochemical Methods to Determine Crevice Corrosion Repassivation Potential of Alloy 22 in Chloride Solutions," *JOM*, p. 56, January 2005.
- 16 G. A. Cagnolino, D. S. Dunn and Y.-M. Pan "Localized Corrosion Susceptibility of Alloy 22 as a Waste Package Container Material," *Scientific Basis for Nuclear Waste Management XXV*, Vol. 713 (Materials Research Society 2002: Warrendale, PA).
- 17 D. S. Dunn and C. S. Brossia "Assessment of Passive and Localized Corrosion Processes for Alloy 22 as a High-Level Nuclear Waste Container Material," Paper 02548 (NACE International, 2002: Houston, TX).
- 18 J. H. Lee, T. Summers and R. B. Rebak "A Performance Assessment Model for Localized Corrosion Susceptibility of Alloy 22 in Chloride Containing Brines for High Level Nuclear Waste Disposal Container," Paper 04692 (NACE International, 2004: Houston, TX).
- 19 D. S. Dunn, L. Yang, C. Wu and G. A. Cagnolino, *Material Research Society Symposium*, Spring 2004, San Francisco, Proc. Vol. 824 (MRS, 2004: Warrendale, PA)
- 20 D. S. Dunn, Y.-M. Pan, L. Yang and G. A. Cagnolino and X. He "Localized Corrosion Resistance and Mechanical Properties of Alloy 22 Waste Package Outer Containers" *JOM*, January 2005, pp 49-55.
- 21 R. B. Rebak, "Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22," Paper 05610, *Corrosion/2005* (NACE International, 2005: Houston, TX)
- 22 D. S. Dunn, Y.-M. Pan, L. Yang and G. A. Cagnolino, *Corrosion*, 61, 11, 1076, 2005
- 23 G. O. Ilevbare, K. J. King, S. R. Gordon, H. A. Elayat, G. E. Gdowski and T. S. E. Gdowski, *Journal of The Electrochemical Society*, 152, 12, B547-B554, 2005
- 24 D. S. Dunn, Y.-M. Pan, L. Yang and G. A. Cagnolino, *Corrosion*, 61, 1078 (2005)
- 25 D. S. Dunn, Y.-M. Pan, L. Yang and G. A. Cagnolino, *Corrosion*, 62, 3 (2006)
- 26 G. O. Ilevbare, *Corrosion*, 62, 340 (2006)
- 27 R. M. Carranza, M. A. Rodriguez and R. B. Rebak, "Inhibition of Chloride Induced Crevice Corrosion in Alloy 22 by Fluoride Ions," Paper 06622, *Corrosion/2006*, NACE International, March 12-16, 2006, San Diego, CA (NACE International, Houston, TX)
- 28 R. B. Rebak, "Mechanisms of Inhibition of Crevice Corrosion in Alloy 22," in proceedings of *Scientific Basis for Nuclear Waste Management XXX*, (MRS, 2006: Warrendale, PA)
- 29 ASTM International, Volume 03.02 "Wear and Erosion; Metal Corrosion" (ASTM International, 2003: West Conshohocken, PA)
- 30 K. J. Evans, L. L. Wong and R. B. Rebak "Determination of the Crevice Repassivation Potential of Alloy 22 by a Potentiodynamic-Galvanostatic-Potentiostatic Method," *PVP-ASME Vol. 483*, pp. 137-149 (American Society of Mechanical Engineers, 2004: New York, NY)