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Abstract

In this work, a crystal plasticity-finite element (CP-FE) model is used to investigate the ef-

fects of microstructural variability at a crack tip in tantalum single crystals and polycrystals. It

is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to

the crystallographic orientation while the response of polycrystals shows relatively small suscep-

tibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity

of the crack tip are completely determined by the local crystallographic orientation at the crack

tip for both single and polycrystalline specimens with similar mechanical field distributions. Vari-

ability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3 %

deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 de-

pending on the local crystallographic texture. Comparison with experimental data shows that the

CP model captures variability in stress-strain response of polycrystals that can be attributed to

the grain-scale microstructural variability. This work provides a convenient approach to investigate

fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology

and crystallographic orientations.
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1. Introduction

Most engineering-scale materials exhibit some inherent variability in their mechanical response,

mainly due to an heterogeneous microstructure composed of disparate crystallographic texture,

grain shapes and sizes, initial defect density, chemical compositions and phases. These microstruc-

tural variations affect both the local and global materials mechanical response. Quantitative study
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of material’s variability is challenging since the number of materials features is large and avail-

able experimental and computational modeling tools generally provide incomplete and uncertain

information on the phenomena of interest. Additionally, from a computational point of view, most

conventional continuum-scale models are deterministic in nature, e.g. averaged, homogeneous ma-

terial property of a polycrystal is assigned to represent the macroscopic behavior. Thus, localized

stress and strain values arising from the microstructural features are ignored.

Crystal plasticity-finite element (CP-FE) models are becoming a powerful technique to predict

microstructure-aware mechanical behaviors of polycrystalline materials in realistic time and length

scales. Conventional crystal plasticity models use single crystal constitutive equations based on

a dislocation slip on a pre-defined slip systems. In particular, CP-FE models have been directly

applied to consider the effects of grain-scale microstructure to predict texture evolution and plastic

anisotropy [1, 2, 3, 4, 5], inter- and intra-grain strain fields [6, 7, 8, 9, 10, 3, 11, 4, 5, 12], deformed

specimen shapes [4, 5] and activated slips [13, 14, 6, 1]. Recently, CP-FE formulations have been

used to investigate variability in materials’s response, i.e. crack formation and growth [15] and

fatigue [16]. In order to capture stochastic polycrystalline responses within a CP framework,

stochastic plasticity deformation modes have been formulated [17, 18, 19] or microstructure is

represented using probability density function (PDF) of grain morphology [20].

Alternatively, iterative simulations with many realizations of varying microstructure can be used

to investigate material’s variability [21, 22]. This approach eliminates assumptions on probabilistic

distributions of materials behavior or plasticity processes. However, this method requires intensive

computational expense to obtain reasonable statistics and becomes more taxing as the number of

grains/elements are increased to represent realistic polycrystalline specimen dimensions.

In the present analysis, the iterative strategy mentioned above is used to investigate the effects

of microstructural variability in a tantalum single crystals and polycrystals specimens. In partic-

ular, we focus on the effects of initial crystal orientations on materials’ variability. One hundred

realizations of single and polycrystalline notched specimens are generated and used in CP-FEM

model to simulate plastic deformations upon uniaxial loading. Predicted grain scale variability from

iterative simulations with varying microstructure is then used to compare with experimental mea-

surements. This procedure allows more detailed investigation of stochastic mechanical responses in

local stress and strain values as well as macroscopic behavior.
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2. Crystal plasticity framework: Simulation procedures

In this work, a BCC crystal plasticity finite element model, developed at Sandia National Labo-

ratories, was used to simulate deformation of single and polycrystalline tantalum specimens [23, 24].

The model is based on a well-established continuum formulation by Peirce et al. (PAN) [25] that

follows multiplicative decomposition [26] of the deformation gradient F into a plastic component,

Fp, representative of the motion of dislocations on active slip systems leaving the crystal lattice

unrotated, and an elastic component, Fe, depicting the rotation and elastic stretching of the lattice.

For isothermal conditions,

F = Fe · Fp . (1)

Assuming plastic deformation is caused by dislocation slip, the plastic part of the velocity gradient,

Lp, can be written as [25]:

Lp =
∑
α

γ̇αsα0 ⊗ nα0 , (2)

where sα0 and nα0 are the initial slip direction and the slip plane normal direction on the α-th

slip system, respectively. The slip rate on the α-th slip system, γ̇α, is represented as a power-law

function of resolved shear stress, τα and slip resistance, gα [27]:

γ̇α = γ̇α0

(
τα

gα

)1/m

. (3)

Here, γ̇α0 is the reference shear rate and m is the rate sensitivity factor. In this work, 24 {110} 〈111〉

slip systems were used. The slip resistance, gα, is composed of thermal and athermal parts as

follows [24]:

gα = min (τ∗EI , τ
∗
LT ) + τobs , (4)

where, min (τ∗EI , τ
∗
LT ) is the temperature and strain rate dependent lattice resistance based on

dislocation kink-pair theory [28, 29, 30, 31, 24] while τobs is the resistance due to obstacles. τ∗EI and

τ∗LT denote lattice resistances at different temperature/ stress regimes using the dislocation elastic

interaction (EI) model and the dislocation line tension (LT) model, respectively. Note that EI and

LT models correspond to thermal parts of the flow stress at high temperature/ low stress regime

and low temperature/ high stress regime, respectively.
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τ∗EI and τ∗LT can be represented as follows:

τ∗αEI = τEI0

(
1− kBT ln(ε̇0/γ̇

α)

2Hk

)2

, (5)

τ∗αLT = τLT0

(
1−

[
kBT ln(ε̇0/γ̇

α)

2Hk

]1/2)
, (6)

where T is the temperature, Hk is the formation enthalpy of an isolated kink, kB is Boltzmann’s

constant and ε̇0 is the reference shear rate and τEI0 and τLT0 are material parameters.

The resistance due to obstacles, τobs, in Equation (4) is assumed to be athermal and is governed

by dislocation-dislocation or dislocation-obstacle interactions. In commercially pure tantalum with

large grains, the main contribution to this resistance should be from dislocation-dislocation inter-

actions. Thus, the obstacle strength hardens and is formulated using forest dislocation densities as

follows [32, 33]:

τobs = Aµb

√√√√ NS∑
β=1

ρβ . (7)

Here, A is a material constant usually in the range of 0.3–0.6 [34], µ is the shear modulus, b is the

Burger’s vector, NS is the total number of slip systems, and ρβ is the dislocation density on slip

system β. It is assumed that initial dislocation densities are identical for all 24 slip systems and the

evolution of dislocation density for the α-th slip system is obtained by a standard phenomenological

equation [35]:

ρ̇α =

κ1
√√√√ NS∑

β=1

ρβ − κ2ρα
 · |γ̇α| , (8)

where, κ1 and κ2 are material parameters representing generation and annihilation of dislocations,

respectively. Parameters κ1 and κ2 determine the shape of the strain hardening curve and can be

obtained by fitting the model to measured stress-strain data.

Material constants used in the simulations are listed in Table 1. Note that τLT0 , τEI0 , ε̇0 and

2Hk were obtained by fitting the EI and LT models to tantalum single crystal experiments [37, 24]

while hardening parameters, κ1 and κ2, and the initial obstacle strength, τobs,0 were parameterized

from the measured stress-strain data [38]. Elastic constants and the Burger’s vector for tantalum

were obtained from the literature [36]. More detailed description of the model are discussed in a

recent paper by [38].
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Table 1: Material parameters used in the tantalum oligocrystal simulations [36, 24].

Parameters Values Parameters Values Parameters Values Parameters Values

m 0.012 τLT
0 406 MPa C11 267 GPa κ1 1.4 × 106 m−1

γ̇0 0.001 s−1 τEI
0 320 MPa C12 161 GPa κ2 14

A 0.4 2Hk 0.85 eV C44 82.5 GPa τobs,0 27 MPa

b 2.87 Å ε̇0 2.99×106 s−1 µ 70.7 GPa

Using CP-FE model for tantalum, plastic deformations of notched specimens having different

microstructures are simulated. Figure 1 shows the dimension of the notched tantalum specimen.

The dimension of the specimen is 1000 µm× 1000µm× 2µm and the notch has a rounded tip with

a radius of 8 µm. Figures 2 (a)–(d) show four different microstructures having 1, 204, 483 and

Figure 1: Dimension of the notched tantalum specimen. Uniaxial tension is applied along x-direction at a nominal
strain rate of 10−4 s−1.

1184 equiaxed grains. The three polycrystalline microstructures in Figs. 2 (b)–(d) were obtained

from two-dimensional Monte Carlo Potts grain growth simulations. A splined mesh was created by

fitting cubic splines to the vertices to mitigate artificial stress/ strain localizations that could occur

from voxelated mesh. A single finite element was used through the thickness and total numbers of

111696, 115579, 111696 and 83657 eight-boded hexahedral finite elements were used to present four

microstructures. The displacements along x-direction were applied on the nodes at the x surfaces of

the mesh. The total displacement of 30 µm which correspond to 3% engineering strain was applied

at the normal strain rate of ε̇ = 10−4 s−1. Plane strain boundary conditions in z-surfaces were

applied. The total of 100 simulations were conducted for each case with varying crystal orientations.

For each simulation, random initial crystal orientations are assigned. Note that the grain shapes,
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(a) Single crystal  (b) 204 grains 

(c) 483 grains (d) 1184 grains 

Figure 2: (a) Four microstructures of the notch specimen having (a) single grain, (b) 204 grains, (c) 483 grains and
(d) 1184 grains.

material parameters, boundary conditions and geometries of the specimens were identical for each

microstructure.

3. Macroscale vs. microscale variability at the crack tip

Figures 3 (a)–(d) show simulated the load-displacement curves from 100 realizations by varying

the initial crystallographic orientations (random texture) for each microstructure. It is shown that

the variability in the macroscopic flow curve is large in the case of single crystals, it decreases as

the number of grains are increased. For a single crystal, the load at the displacement of 30 µm (3

% deformation) ranges from 0.198 to 0.402 N while it ranges from 0.253 to 0.292 N for 1184 grains.

Thus the ratios between the maximum and minimum load from 100 simulations at a macroscopic

deformation of 3 %, attributed solely to the initial grain orientation, is 2.03 for a single crystal

while 1.21, 1.18 and 1.16 for specimens having 204, 483 and 1184 grains, respectively. Note that

the single crystals represent extreme textures in polycrystals and thus variation from single crystal

data can be used as upper and lower limits of the macroscopic behavior that arises from varying

crystallograhic texture. On the other hand, average loads at 3 % deformation from 100 simulations

are similar for single and polycrystals: 0.259 N for a single crystal case and 0.259–0.270 N for
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(a) Single crystals (b) Polycrystals (204 grains) 

(c) Polycrystals (483 grains) (d) Polycrystals (1184 grains) 

Figure 3: Load-displacement curves from 100 realizations by varying initial crystal orientations having (a) single
grain, (b) 204 grains, (c) 483 grains and (d) 1184 grains. Specimens were deformed up to 3 %.

polycrystalline simulations. In order to quantify the localized stress and strain values, von Mises

stress (σVM) and equivalent plastic strain (ε̄p) metrics are being used.

σVM =

√
3

2
σijσij −

1

2
(σkk)

2 , (9)

ε̄p =

∫ t

0

√
2

3
Fp : Fpdt . (10)

For each simulation, the maximum σVM and ε̄p values within the whole specimen,σmax
VM and ε̄max

p ,

are obtained. Obviously, these maxima are located in the vicinity of the crack tip regardless of

the realization and correspond to stress concentration at the crack tip. Figures 4 (a)–(c) compare

probabilities of load, maximum σmax
VM and maximum ε̄max

p distributions for each microstructure at

3 % deformation. Here, probabilities of simulated values are plotted using a Gaussian distribu-

tion. It is shown that the single crystal has a wider distribution of load compared to polycrystals
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1 grain  
204 grains 
483 grains 
1184 grains 

1 grain  
204 grains 
483 grains 
1184 grains 

1 grain  
204 grains 
483 grains 
1184 grains 

(a) 

(b) 

(c) 

Figure 4: Probabilities of (a) load, (b) maximum von Mises stress (σmax
VM ), and (c) equivalent plastic strain (ε̄max

p )
distributions at 3 % deformation from 100 realizations.
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Table 2: Predicted load, maximum von Mises (VM) stress,σmax
VM , and equivalent plastic strain (EQPS), ε̄max

p , within a
whole specimen at 30 µm displacement from 100 realizations. Here, max./min. represents ratio between the largest
and smallest values from 100 simulations.

Load (N) σmax
VM (MPa) ε̄max

p

Microstructure max./min. avg. std. dev. max./min. avg. std. dev. max./min. avg. std. dev.

1 grain 2.03 0.259 0.040 2.30 792 185 6.83 1.60 0.73

204 grains 1.21 0.266 0.011 2.16 791 151 4.29 1.33 0.39

483 grains 1.18 0.259 0.009 2.00 820 153 6.55 1.66 0.62

1184 grains 1.16 0.270 0.008 2.21 801 152 3.21 1.55 0.43

(Fig. 4 (a)), while the maximum σmax
VM and maximum ε̄max

p show similar distributions for single

and polycrystalline specimens (Fig. 4 (b) and (c)). Table 2 summarizes predicted load, σmax
VM and

ε̄max
p values at 3 % deformation. The ratios between the largest and smallest (max/min) load from

100 simulations decreases as the number of grains increases. Additionally, no correlation is found

between the number of grains and the max./min. values of σmax
VM and ε̄max

p . Interestingly enough,

all four curves in Figs. 4 (b) and (c) show almost identical distributions.

Results displayed in Fig. 4 suggest that the variability in macroscopic response is relatively

small for a polycrystals while the local properties show large variations depending on the local

microstructure. It is shown that the maximum von Mises stress or equivalent plastic strain can be

varied by up to a factor of 2–7 depending on the local crystal orientations. This implies that localized

events such as failure and fracture that significantly depend on the local state of stress and strain

will be affected by the grain scale microstructure. It should be noted that most damage metrics

in a continuum damage mechanics (CDM) are composed of local stress or strain measures [39, 40].

Thus, it can be assumed that the damage metrics would have similar variations depending on

the microstructure. This may explain relatively large variability in ductility (see experimental

validation in Section 4) compared to yield stress or ultimate tensile stress in polycrystalline tensile

tests. Figures 5 (a) and (b) illustrate the variation of the load versus the maximum von Mises

stress values (σmax
VM ) for a single and polycrystals having 204 grains at 3% deformation. A linear

correlation between the macroscopic load and the localized maximum von Mises stress for a single

crystal case is observed whereas polycrystals do not show such correlation. Figure 5 suggests that

the crystal orientation in a single crystal directly determines the macroscopic response as well as

the local stress. However, in polycrystals, local microstructure at the tip determines the local stress

but does not have significant influence on the global response. Figure 6 shows the variation of σmax
VM
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(a) Single crystals 

(b) Polycrystals (204 grains) 

Figure 5: Plots of load versus the maximum von Mises stress (σmax
VM ) at 3% deformation for (a) single crystal and (b)

polycrystal having 204 grains.

1 grain  
204 grains 
483 grains  
1184 grains 

Figure 6: A plot of maximum von Mises stress versus the distance from the notch.
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as a function of the distance away from the notch. Here, maximum values from 100 simulations are

chosen. Similar to probability distribution, all four cases show similar local stress profile except for

some peaks that arise from elastic incompatibilities arising from two adjacent grains.

4. Comparisons with experiments

In order to compare simulated materials’ grain scale variability with observed experimental

measurements, iterative tensile tests were conducted using polycrystalline tantalum specimens.

Polycrystalline tantalum sheet, provided from HC Starck, was clock rolled and asymmetric tilt

rolled to obtain uniform texture [41]. The average grain size is 32 µm. Three ASTM E08 sub-

size samples and 45 samples scaled to 1/2 size of the ASTM E08 sub-size samples were machined

from various locations of a single tantalum plate. Note that there was slight variation of the

microstructure at different locations of the plate. The average grain sizes near the center of the

plate were around 24–27 µm while the grains near the edge were 38–40 µm. Aspect ratios of the

grains were larger near the center (aspect ratio=1.6) compared to edge of the plate where grains

were close to equiaxed (aspect ratio=1.1). Figure 7 shows the SEM image of tantalum specimen

obtained from the various locations of the plate. Forty-eight tensile tests were performed at a

center 

edge 

ND 

RD 

ND RD 

Figure 7: SEM images of the tantalum specimen in RD and ND from various locations of the plate.

nominal strain rate of 1.33 × 10−3s−1 at room temperature on a servo-hydraulic MTS load frame
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equipped with a 5000 lb load cell. Strain measurements were performed using both a non-contact

Epsilon Tech LE-01 laser extensometer and a MTS 100 % 0.5 in. clip extensometer to capture both

high resolution strain data and strain measurement throughout the whole strain range.

Iterative CP-FE simulations of polycrystalline tantalum were conducted using a polycrystalline

mesh having 201 grains, as shown in Figure 7 (b). A total of 60297 hexahedral finite elements

were used. In order to accurately reproduce the experiment, the specimen was deformed up to 20

% at the strain rate of 1.33 ×10−3 s−1. In addition, the hardening parameters were adjusted to

reproduce averaged engineering stress-strain curves; τobs,0 = 10MPa, κ1 = 106 m−1 and κ2 = 10

were used. Similar to simulation procedures in the previous section, random crystal orientations

were assigned to each grain and 100 realization of the the microstructure by varying initial crystal

orientations were generated and simulated. Figures 8 (a) and (b) show measured and predicted

(b) Simulations 

(a) Experiments 

Figure 8: Stress-strain responses of polycrystalline tantalum obtained from (a) 48 tensile experiments and (b) 100
CP-FE simulations and corresponding microstructures.

stress-strain responses of the polycrystalline tantalum. The CP-FE model was unable to reproduce

the upper and lower yield phenomenon observed in experiments. However, the variability of the
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simulated stress-strain response at high strain regimes agree relatively well with measured data.

Also note that the failure strains from the experiments had large variation, from 0.20–0.85, while

the deviation in ultimate tensile strength (UTS) were within 10 % deviation. This can be correlated

to and put in parallel with the results from the previous section that model predicts larger variation

in local σmax
VM and ε̄max

p , and small deviation in global stress.

5. Discussion and Conclusions

Although the current approach is suitable to study the effects of grain scale microstructure vari-

ability on mechanical behaviors of single and polycrystalline metals, detailed physics or mechanisms

can be incorporated into crystal plasticity model to understand the materials’ stochastic behavior

of interest. For example, dislocation-grain boundary interaction model is required to introduce the

length scale, i.e. grain size effects. Furthermore, effects of other heterogeneous microstructural

features such as grain shapes, initial defect density and chemical composition should be considered

to fully quantify the uncertainties in materials response.

In this work, crystal plasticity finite element model was used to investigate the influence of

initial crystal orientations on mechanical behaviors of polycrystalline tantalum. In particular, it

is shown that the single crystal simulations may provide extreme cases for polycrystals in macro-

scopic mechanical behavior. Furthermore, localized stochastic behaviors were similar in single and

polycrystals. Although the current work neglects some detailed microstructural features, this work

provides an insight to stochastic analysis and uncertainty quantification that attribute to grain-scale

microstructure using crystal plasticity simulations. Here are the main conclusions of the work.

• Single crystals showed large variation in macroscopic responses depending on the grain ori-

entation. As the number of grains is increased, smaller variation is observed.

• Single crystal simulations provide upper and lower bounds of macroscopic yield behavior for

polycrystals.

• Distribution of localized stress and strain are similar for both single and polycrystals.

• Localized stress and strain values are determined by the local crystal orientation. Thus, there

is little correlation between the maximum stress/ strain values and macroscopic response.

• Predicted variations in flow stress agree well with experimental measurements.
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[11] C. Badulescu, M. Grédiac, H. Haddadi, J.-D. Mathias, X. Balandraud, H.-S. Tran, Applying

the grid method and infrared thermography to investigate plastic deformation in aluminium

multicrystal, Mech. Mater. 43 (2011) 36–53.

[12] T. J. Turner, P. A. Shade, J. C. Schuren, M. Groeber, The influence of microstructure on

surface strain distributions in a nickel micro-tension specimen, Modell. Sim. Mater. Sci. Eng.

21 (2013) 015002.
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