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Outline of the Problem

Analysis of corrosion product
* Materials performance, failure te elerated agi
and degradation are often
governed by local chemistry
— Corrosion
— Interfacial adhesion

— Impurities, etc.

» Spectral imaging is quickly
becoming the tool of choice for
comprehensive materials
characterization from the nano-
to micro- scales

« How do we extract the chemical
information from the mountain of
spectral data?
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Goals of Spectral Image Analysis

* Unbiased, comprehensive, rapid, routine analysis
— Find all sources of chemical variation
* Major phases to single-pixel impurities
— No foreknowledge of constituents
— Computation time ~ data acquisition time
— Use commonly available lab computers
- Easily interpretable representation of the data
— Spectral pure components look like spectra, etc.
— Useful to the non-expert (hon-chemometrician)
— Solve the chemical problem at hand
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Spectral imaging and Factor Analysis

A spectral image
comprises a complete
spectrum at each
point in a spatial array
(1-, 2-, 3-D)
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The goal of FA it to estimate:

p, “how many components?”
S, “what are they?”
A, “where are they and how much?”
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pectral images are often acquired with

low S/N, statistical aggregation is essential

Energy Dispersive X-ray Spectroscopy (EDS)
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%ctor models suffer “rotational ambiguity,”

additional criteria are needed for uniqueness

n channels p factors

 Principal Component Analysis (PCA)

— Factors are orthogonal
— Factors serially maximize variance
2 — Provides best LS fit to data
= D = A x ST — Non-physical constraints:
& Spectral — Factors are abstract
compenents . PCA + factor rotation
— Rotate factors to “simple structure”
Unfolded Spatial * Alternating Least Squares (ALS)
j r::geecgjlloe components « MCR-ALS
— Non-negativity of A and/or S
Analysis goal: Obtain an — Simplicity/sparsity
easily interpretable — Equality, closure and others

representation of the data @ Noora
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%A simple example: Energy Dispersive

X-ray Analysis of a Braze Interface

RGB Composite Image
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Where’s the Hafnium?

£ [(1-Cusil braze

Red=Al, 0O,
Green = Ag
Blue = Cu

Yelloyy = &It
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Hafnium was found as an interfacial
inclusion by spectral imaging

Silver
Hafnium

~50 pixels in

Hf component
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}i Spectral imaging can solve the

“needle-in-a-haystack” problem

Red = C-support

Green = alumina Fe
Blue = FeCo* Co
Black = shadowed support & 810
6 8 10
keV
Ca
Unexpected Ca-S-Si-O 6 8 10

. . . keV Sandia
particle is ~40 pixels 0 10 20 30 40 @Naﬁmal
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} Improved performance can be

achieved through compression

« Spatial compression using wavelets

y

\ n J
« Spectral compression using principal components

— ~100-fold compression for chemical images

» Least squares algorithms can be written in terms of the
compressed coefficients.

- Larger-than-core-memory data sets can be analyzed
« Compression is a filtering operation which leads to improved

S/N and sensitivity
@ Eaé}ﬂ‘.??..
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Spatial Compression yields improved
performance with no loss of detail

X-ray analysis of

tellurium ore As analyzed

(256 X
compression)
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MEMS test device with a beam and
an occluded volume (ToF-SIMS)

* Device processed with beam inserted
* Device imaged with beam retracted
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16x spatial compression prior to PCA
was required to develop chemical contrast

Original data 256 x 256 Compressed data 64 x 64
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t-of-core algorithms enable the analysis of
data sets that are larger than computer memory

Large-area m.icrostructure 3-D microstructure of Cu/Ag eutectic
of a turbine blade

1.2 million pixels x 2048 channels

9 GByte data set

12.5 minutes on 4-year-old desktop

computer with 2 GByte main memory prmlod




Accelerated Aging of Au-plated Cu
Sulfide Bloom on Corrosion Coupon

Second trench for
X-Tays

_After first cut/polish

R S

Sandia
National
Laboratories

10 ym




Accelerated Aging of Au-plated Cu
Sulfide Bloom on Corrosion Coupon

Red=Au Green=Cu Blue = Si, O, Cl -
Cyan = Cu-S Yellow = Ni National
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?‘ Different spectroscopic problems

require different optimization approaches
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* Observation: many samples are “simple” in the sense
that only one or a few chemical components are present
at any particular spatial location

* New idea: maximize “spatial simplicity”
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}‘ EEL Spectral Image Analysis a-Diamond
In collaboration with Tom Friedman

Sandia National Labs, Albugquerque (a-D material)

ADF STEM image

« Laser ablation grown a-D Pt from FIB

* Growth interrupts for
annealing

* Moving shield in vacuum sys.

 Bands of apparently less
dense material

* FIB Specimen with slight
gradient in thickness

» Ex-situ lift out sample placed
on polymer film

* Tecnai F30-ST with TIA Si-O
(Emispec) spectral imaging

- High- and low-frequency high 200 _nm

voltage drift/instability SI: 200x800 nm, 25x100 pixels
100 msec/pixel @ Sandia
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Maximization of “spatial simplicity”
enabled identification of graphitic layers
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Alternative constraints can yield
additional analytical insight

NN constraint Simplicity constraint

6 different alloys composed Spectrally simple Spatially simple
of 6 different elements

What are the pure components?

99.9% Ni

70% Cu, 30% Zn

16% Cr, 84% Fe

Laboratories
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XPS example: putting it all together

Optical Image
> * Polysilicon on silicon nitride
MEMS device

« Sputtered with Ar ions to
remove surface oxide

* Has 3-D structure
 Some edges are shadowed
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tandard MCR-ALS vyields results that are
more difficult to interpret than expected
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The major effect is a
spatially correlated
energy shift
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* X-axis shift can be accommodated by
adding derivatives to the spectral matrix

A shifted peak can be approximated by a Taylor series

+ AE X

Q

Partition A and S into chemical and shift components
A=[A° A°| s=/s8° s”|

Incorporate derivatives by using equality constraints

@ Sandia
National
Laboratories



MCR-ALS with simplicity and derivative-
equality constraints yields excellent results
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Often, it is the small, unexpected
things that will bite you

e = - @ Sandia
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Addressing significant characterization
problems of the future will rely upon ...

* Ever greater spectroscopic sensitivity

* Ever increasing spectral and spatial resolution
« Combining data from multiple techniques

* Incorporating new dimensions, e.g. time
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#i Spectral imaging hardware has advanced

rapidly; image analysis software has lagged

The goals of future software development include:

- Enabling routine use of spectral imaging techniques
Develop numerically efficient, rigorous and robust spectral
image analysis algorithms suitable for day-to-day use.

« Accommodating ever larger data sets
Develop novel approaches to analyzing extremely large data
sets from large-area and multi-dimensional spectral images.

* Broadening the application of spectral image analysis
Exploit additional qualities of spectral data to enable the
successful application of methods to new imaging modalities.

Ultimately, develop tools to help us assess the
significance of our analytical findings
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A 4
%or picture: a 3-channel spectral image with

spectral variables red, green, and blue

4 One spectrum

N\

Blue image

spectrum
Intensity I

. Sandia
RED GREEN BLUE @ﬁﬁ"&?éﬁes



Color Picture =
(Intensity) x (Spectral characteristic)”

note the linearity assumption o
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Method transforms RGB into a
reduced-dimension color space JW

J (Jelly-color)

1 —

| I W (Water-color)

J and W are linear combinations of R, G and B Nofiow
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Jelly-color and water-color are the “pure
components” in the JW color space

2-component Original image
reconstruction @ .
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Single-pixel detection is possible, even
for low S/N spectrum images

FIB-prepared specimen with Average 55 total counts/pixel
1x1um by 3 um deep ‘pixel’ of Pt 7
in Si matrix

= Typical Si spectrum
= Maximum Pt spectrum

Si-K

Pt-M
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