

Recent Developments in Spectral Image Analysis

Future Technologies Conference II

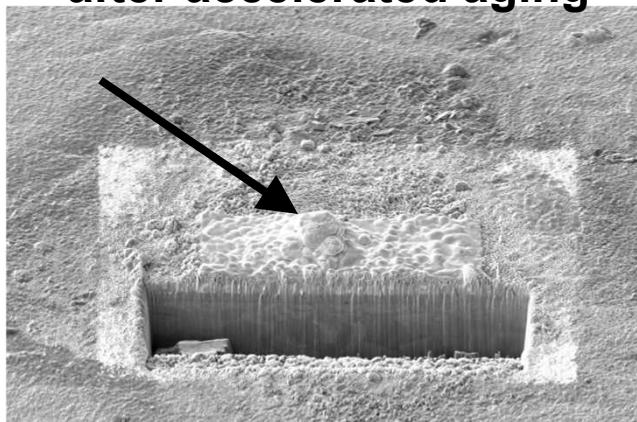
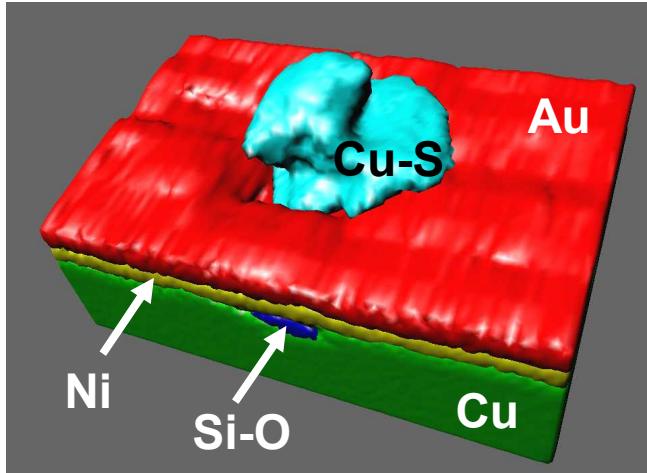
Track 4: Future Trends in Analysis and Characterization
Session # 2, October 11, 2006

Michael R. Keenan and Paul G. Kotula
Members of the Technical Staff
Sandia National Laboratories

Outline of the Problem

- Materials performance, failure and degradation are often governed by local chemistry
 - Corrosion
 - Interfacial adhesion
 - Impurities, etc.
- Spectral imaging is quickly becoming the tool of choice for comprehensive materials characterization from the nano- to micro- scales
- How do we extract the chemical information from the mountain of spectral data?

Analysis of corrosion product after accelerated aging

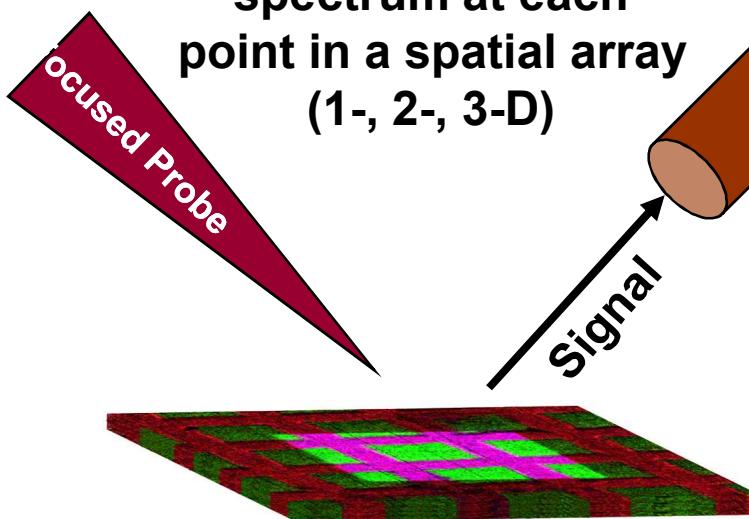
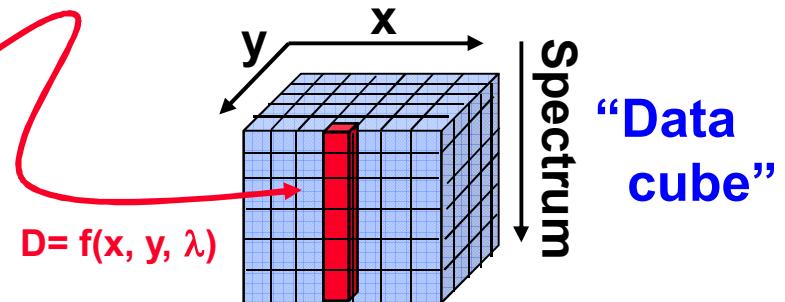


Goals of Spectral Image Analysis

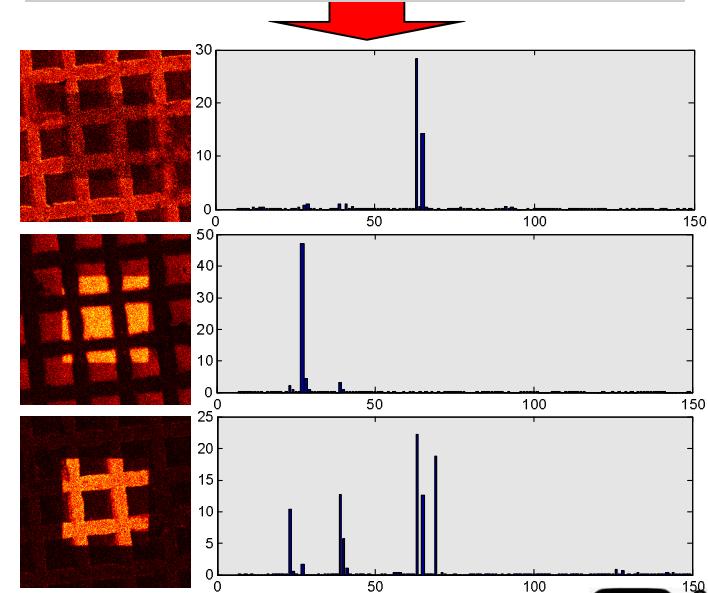
- **Unbiased, comprehensive, rapid, routine analysis**
 - **Find all sources of chemical variation**
 - Major phases to single-pixel impurities
 - **No foreknowledge of constituents**
 - **Computation time ~ data acquisition time**
 - **Use commonly available lab computers**
- **Easily interpretable representation of the data**
 - **Spectral pure components look like spectra, etc.**
 - **Useful to the non-expert (non-chemometrist)**
 - **Solve the chemical problem at hand**

Spectral imaging and Factor Analysis

A spectral image comprises a complete spectrum at each point in a spatial array (1-, 2-, 3-D)



Factor Analysis, $D = AS^T$



The goal of FA is to estimate:

p, "how many components?"

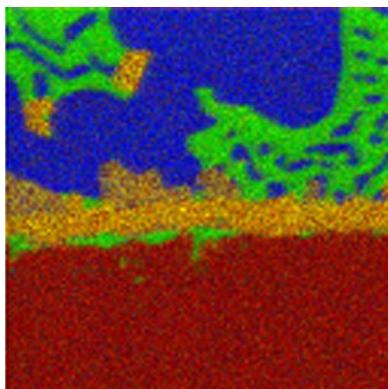
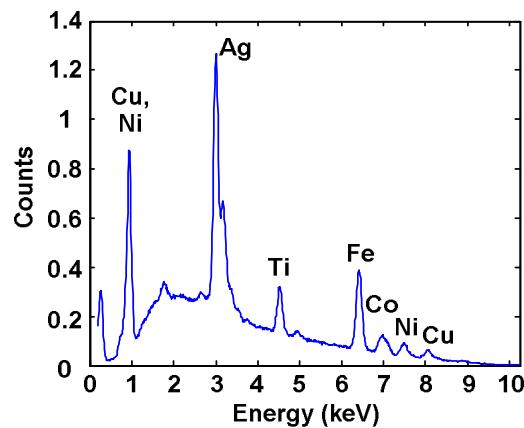
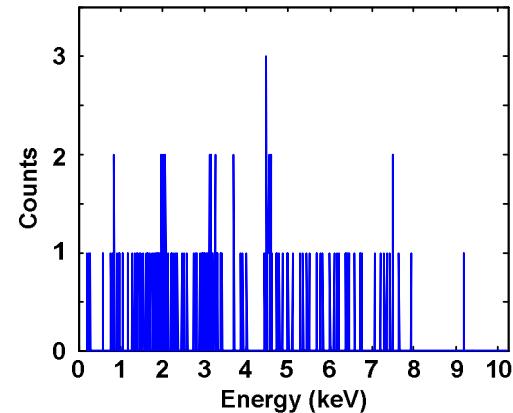
S, "what are they?"

A, "where are they and how much?"

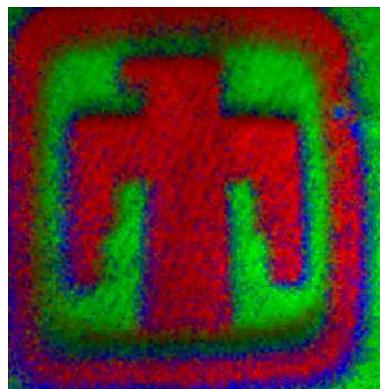
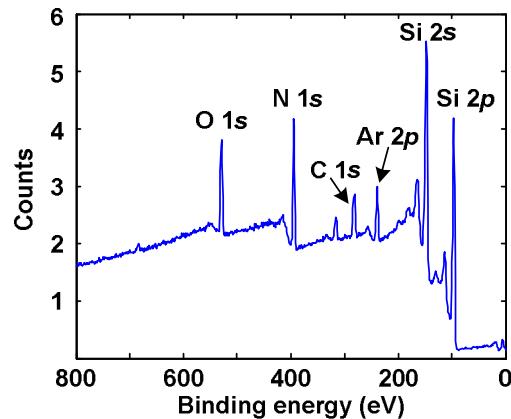
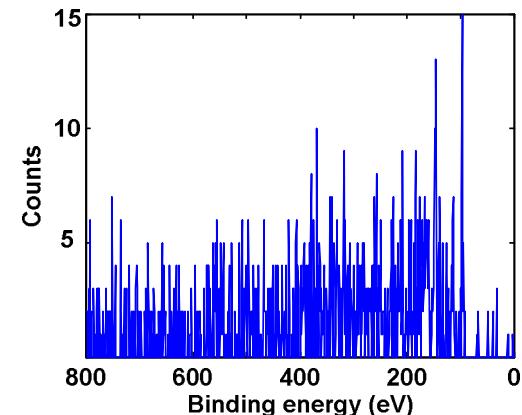


Spectral images are often acquired with low S/N, statistical aggregation is essential

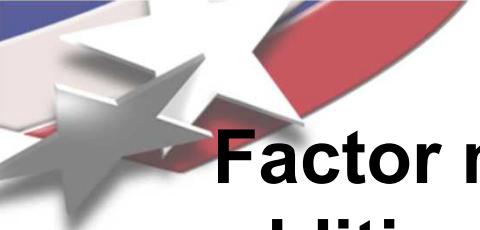
Energy Dispersive X-ray Spectroscopy (EDS)



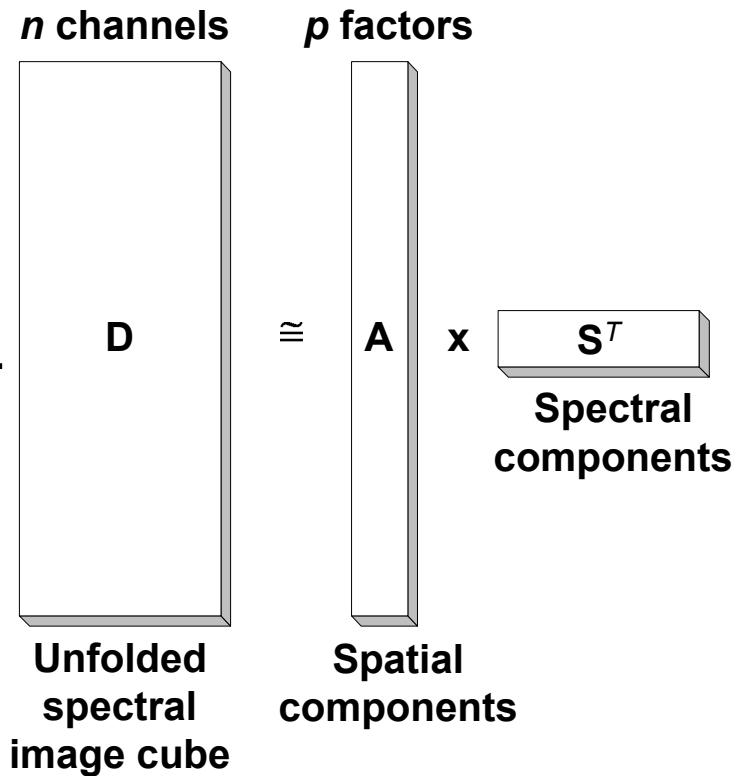
X-ray Photoelectron Spectroscopy (XPS)



Analysis accounts for Poisson Statistics

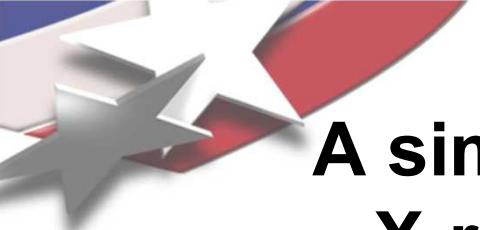


Factor models suffer “rotational ambiguity,” additional criteria are needed for uniqueness



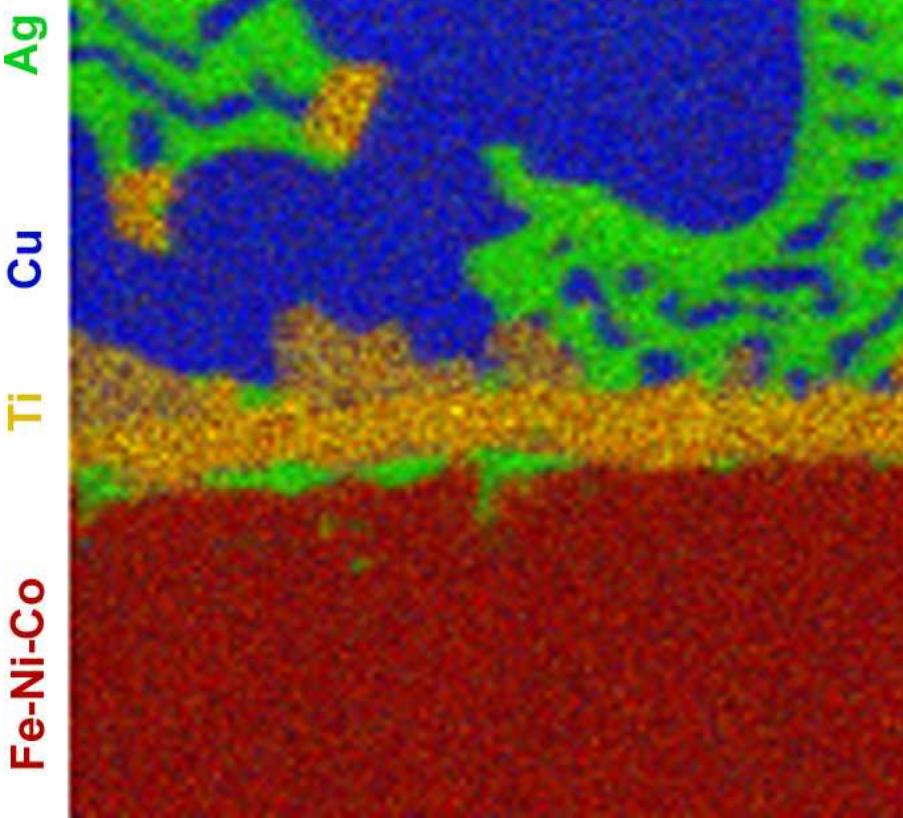
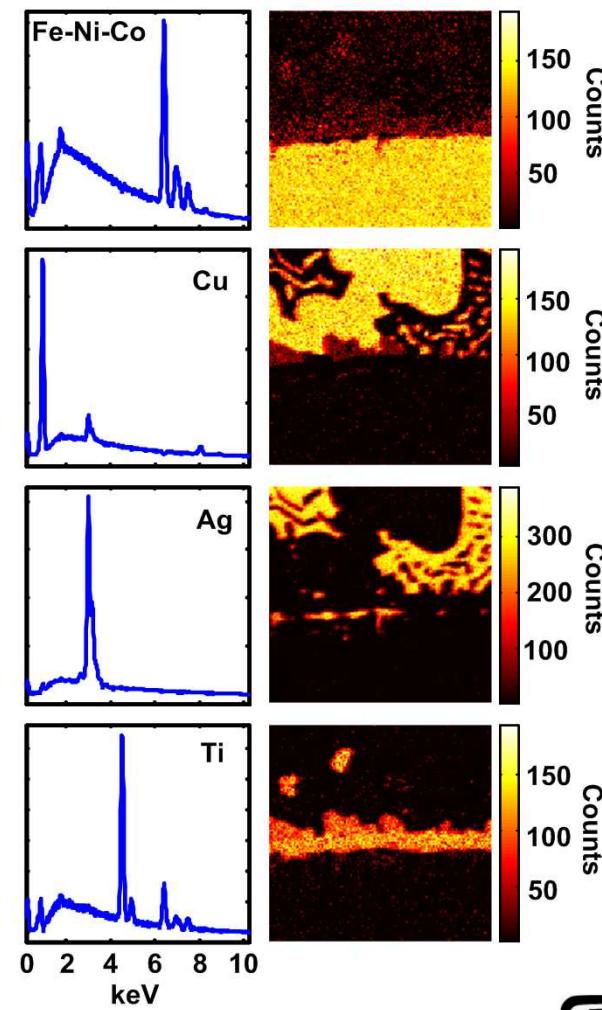
*Analysis goal: Obtain an
easily interpretable
representation of the data*

- Principal Component Analysis (PCA)
 - Factors are orthogonal
 - Factors serially maximize variance
 - Provides best LS fit to data
 - Non-physical constraints:
 - Factors are abstract
- PCA + factor rotation
 - Rotate factors to “simple structure”
- Alternating Least Squares (ALS)
- MCR-ALS
 - Non-negativity of A and/or S
 - Simplicity/sparsity
 - Equality, closure and others



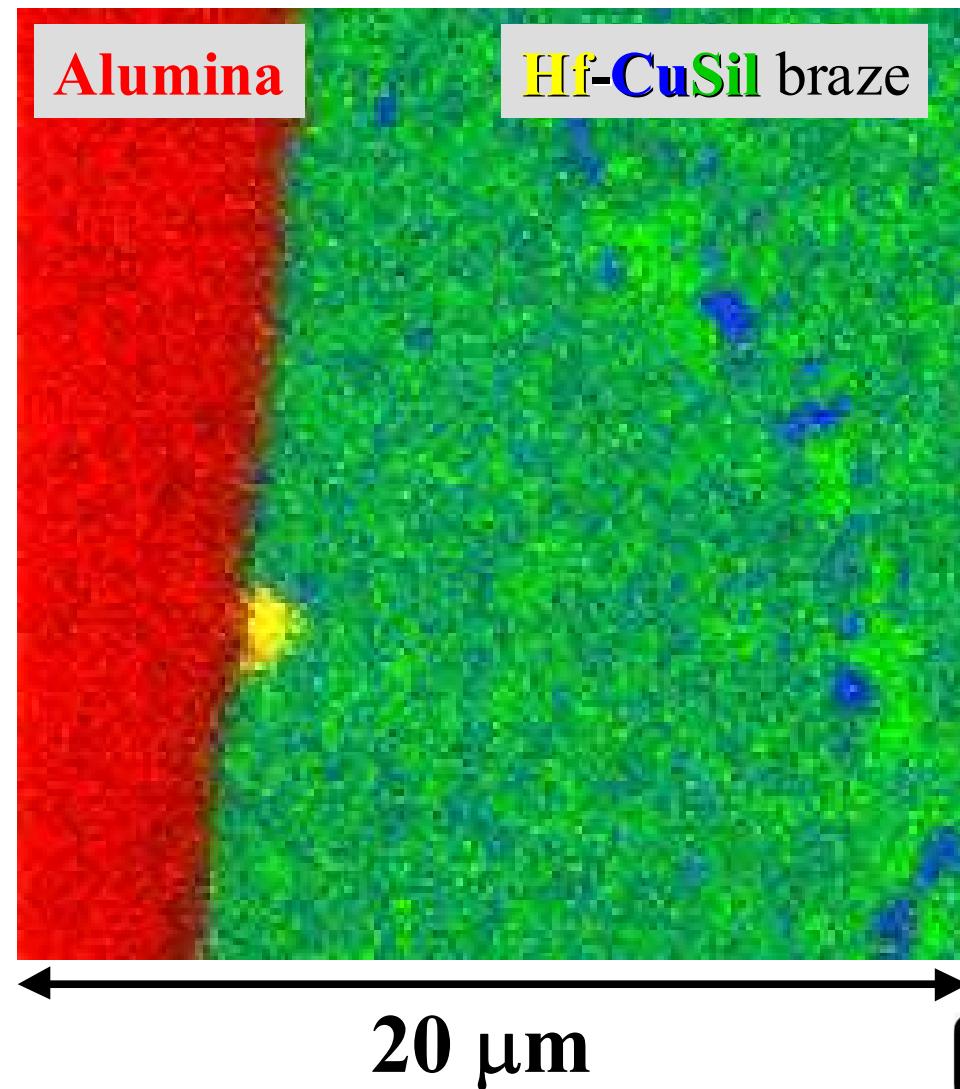
A simple example: Energy Dispersive X-ray Analysis of a Braze Interface

RGB Composite Image



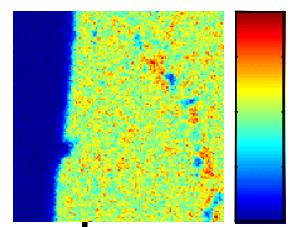
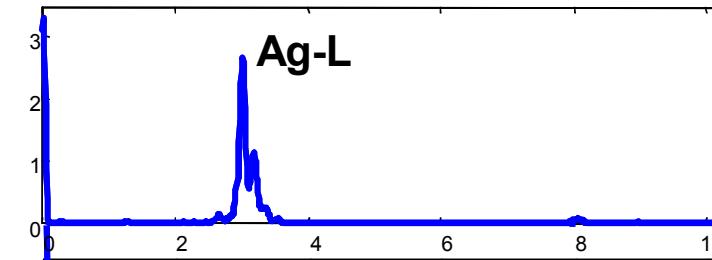
Where's the Hafnium?

Red=Al₂O₃
Green = Ag
Blue = Cu
Yellow = Hf

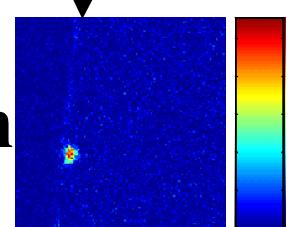
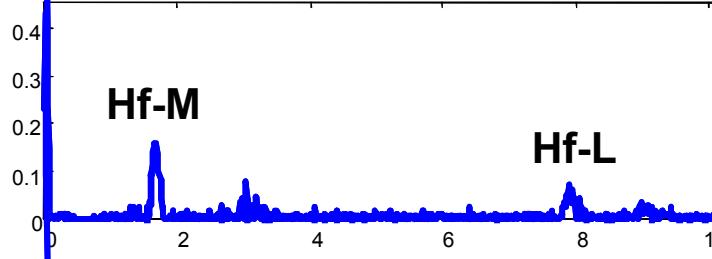


Hafnium was found as an interfacial inclusion by spectral imaging

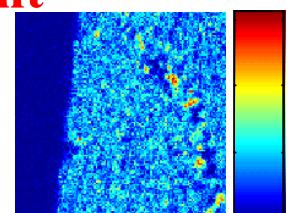
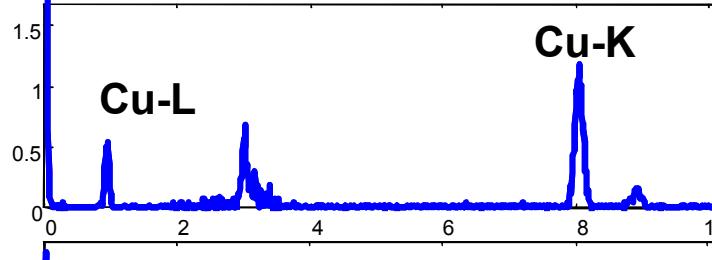
Silver



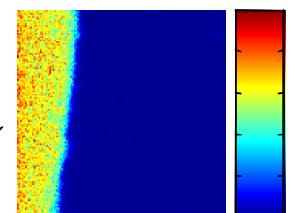
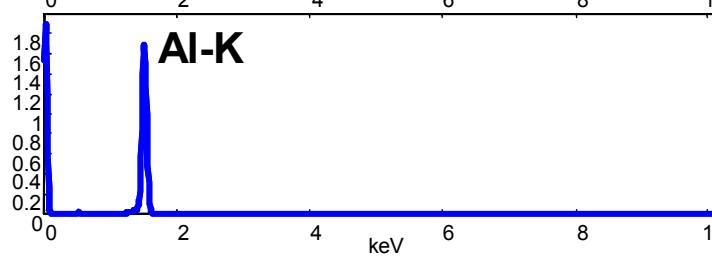
Hafnium
~50 pixels in
Hf component



Copper



Alumina





Spectral imaging can solve the “needle-in-a-haystack” problem

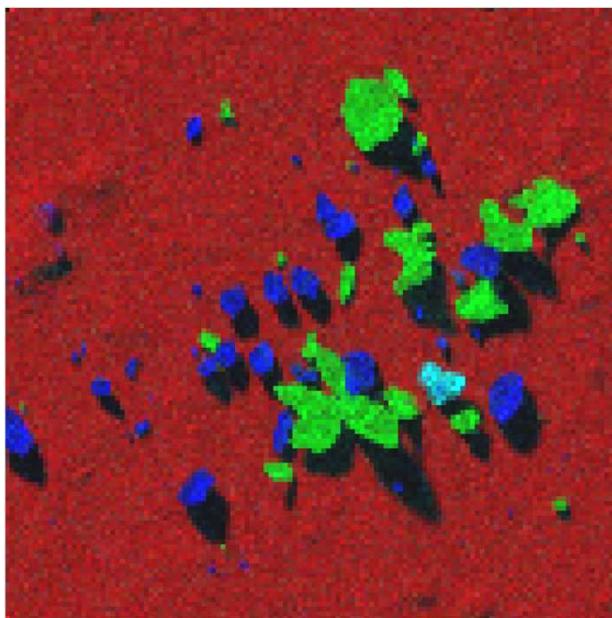
Red = C-support

Green = alumina

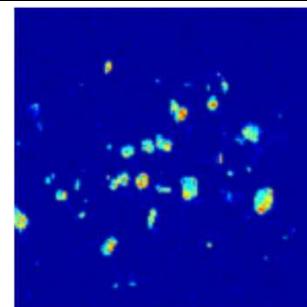
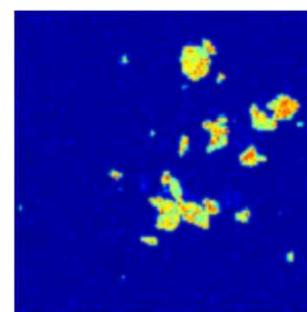
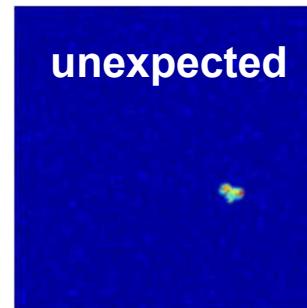
Blue = FeCo*

Cyan = Ca-Si-O

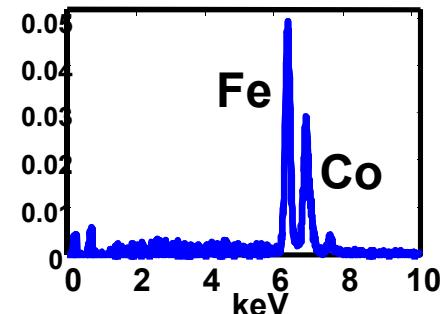
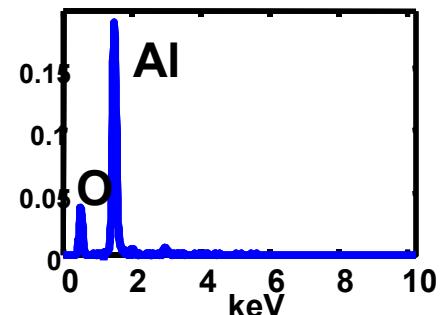
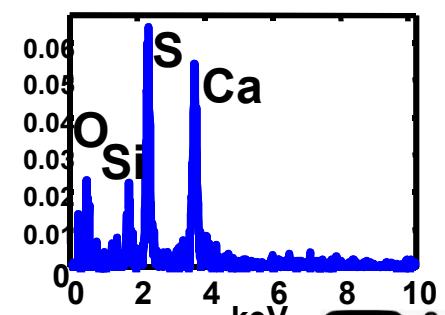
Black = shadowed support



Unexpected Ca-Si-O
particle is ~40 pixels



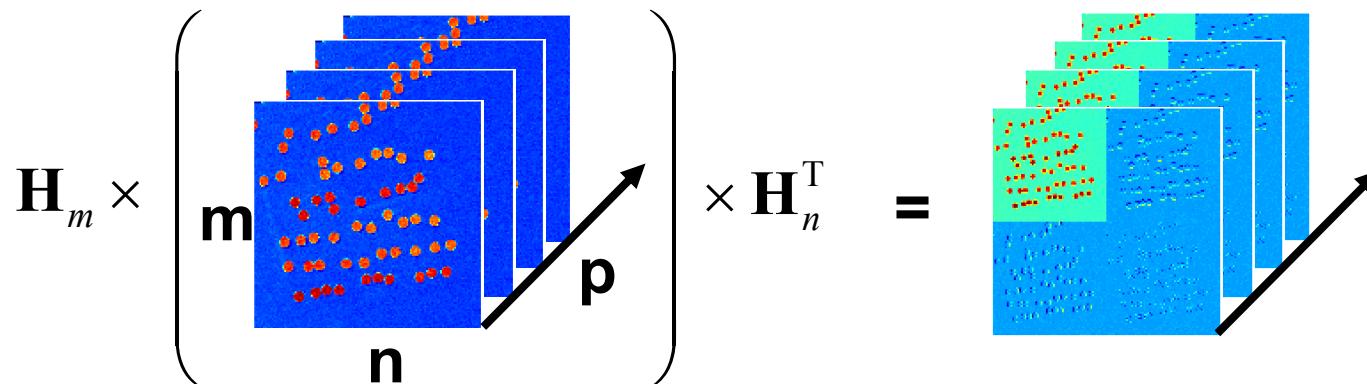
0 10 20 30 40



Sandia
National
Laboratories

Improved performance can be achieved through compression

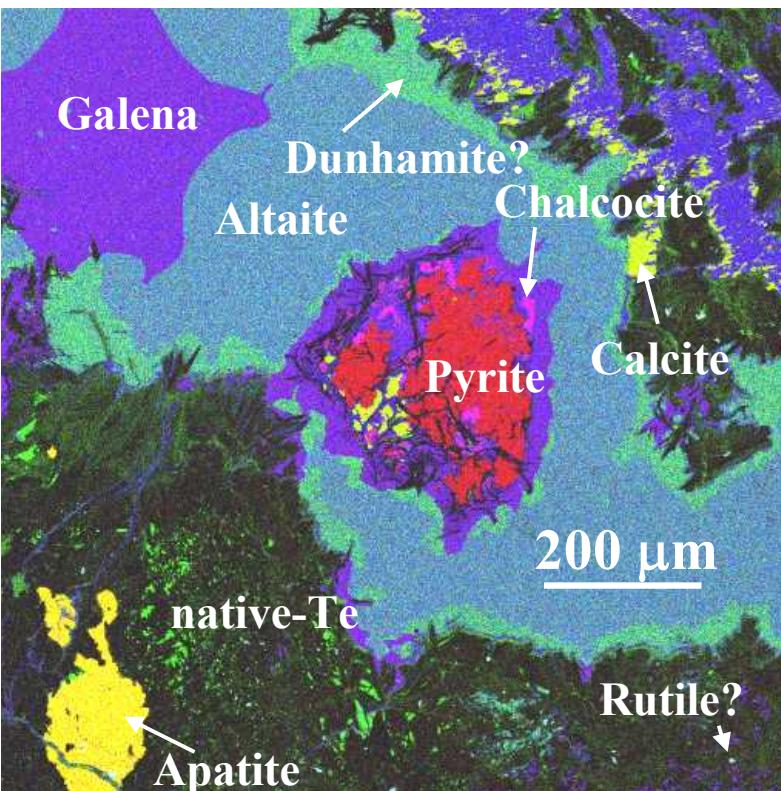
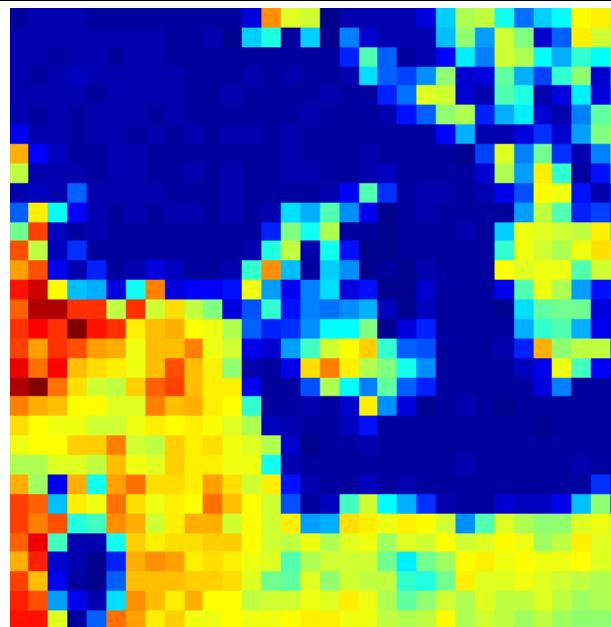
- Spatial compression using wavelets



- Spectral compression using principal components
 - **~100-fold compression for chemical images**
- Least squares algorithms can be written in terms of the compressed coefficients.
- Larger-than-core-memory data sets can be analyzed
- Compression is a filtering operation which leads to improved S/N and sensitivity

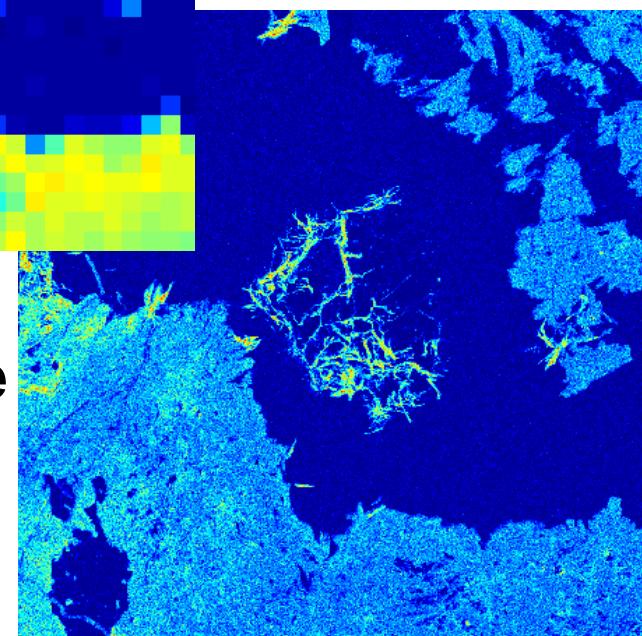
Spatial Compression yields improved performance with no loss of detail

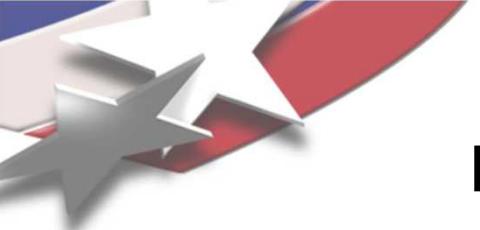
X-ray analysis of tellurium ore



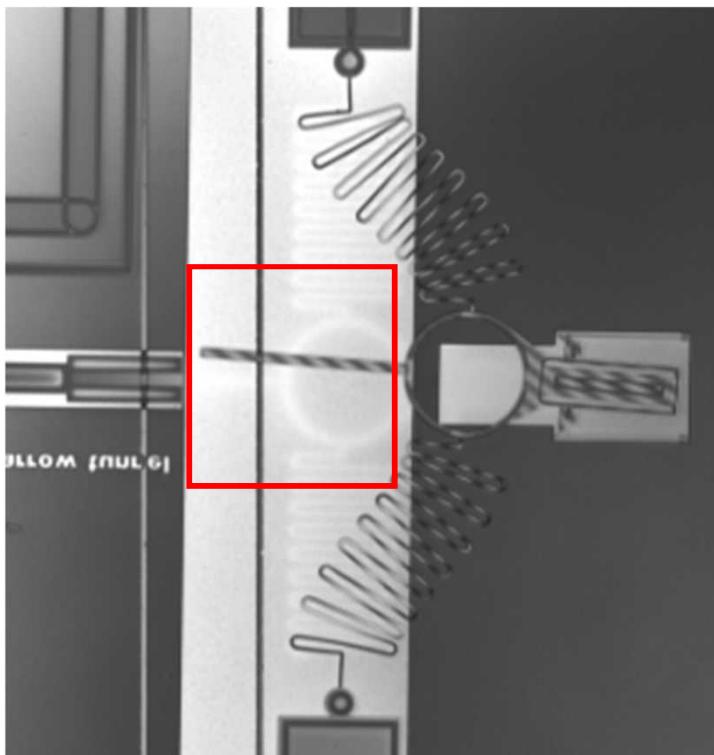
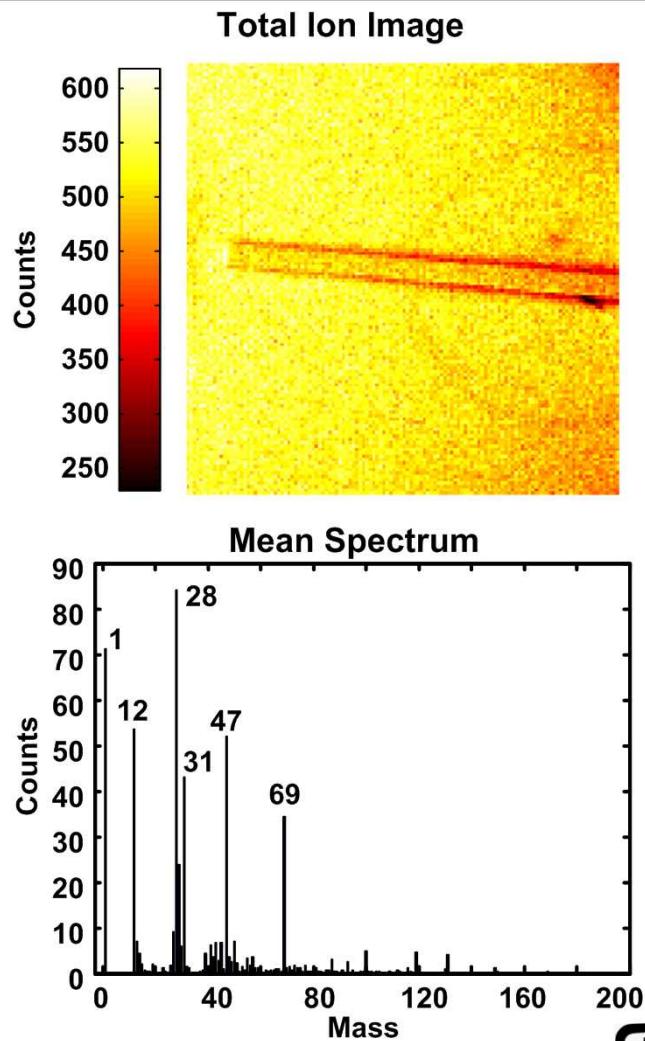
As analyzed
(256 X
compression)

Final silicate
component



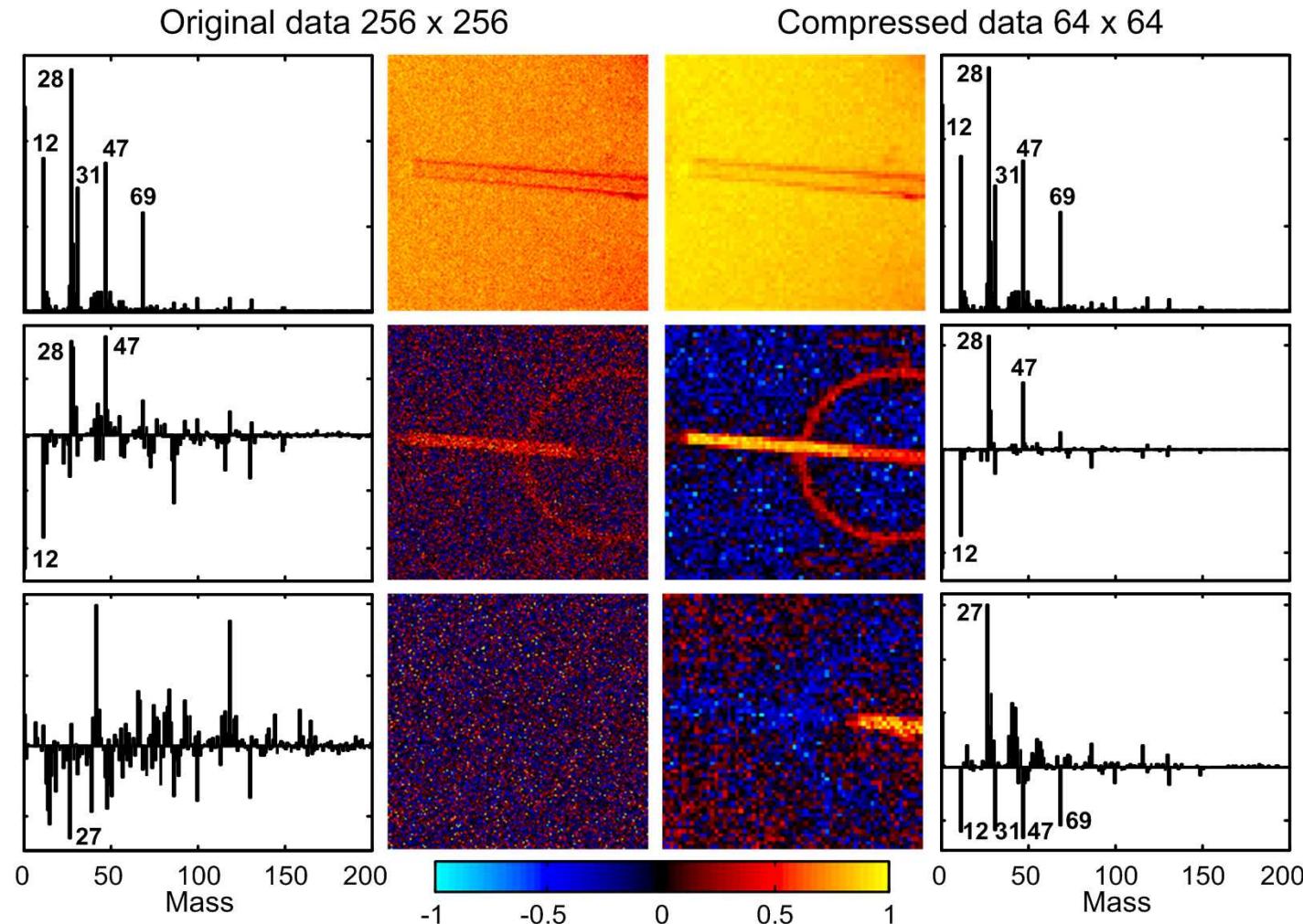


MEMS test device with a beam and an occluded volume (ToF-SIMS)



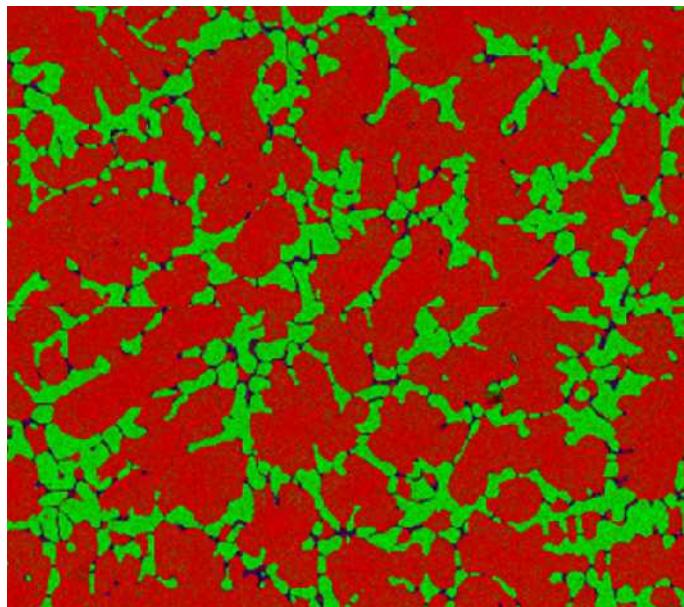
- Device processed with beam inserted
- Device imaged with beam retracted

16x spatial compression prior to PCA was required to develop chemical contrast



Out-of-core algorithms enable the analysis of data sets that are larger than computer memory

Large-area microstructure
of a turbine blade

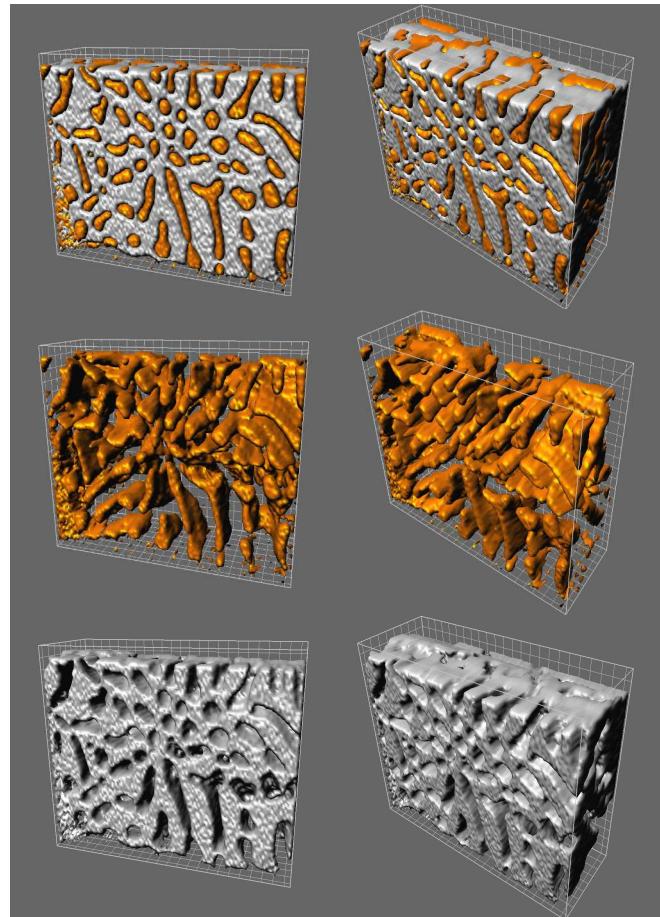


1.2 million pixels x 2048 channels

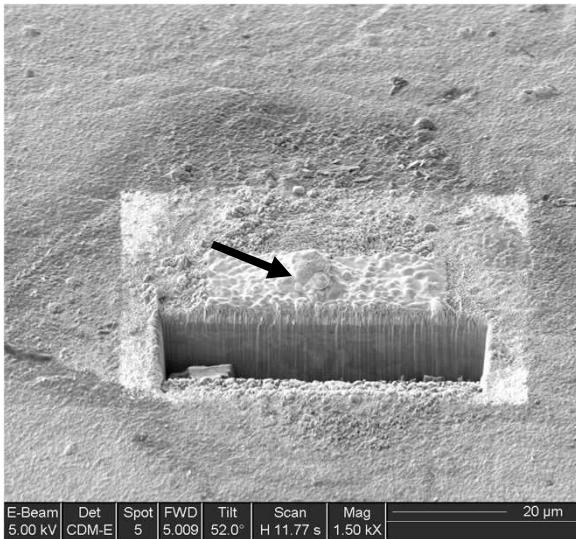
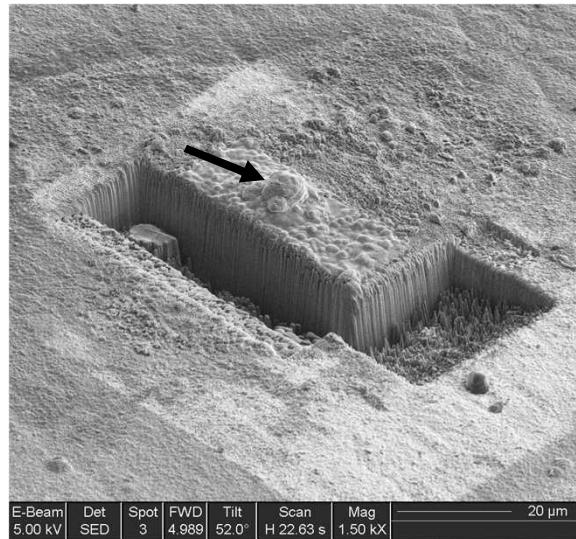
9 GByte data set

12.5 minutes on 4-year-old desktop
computer with 2 GByte main memory

3-D microstructure of Cu/Ag eutectic



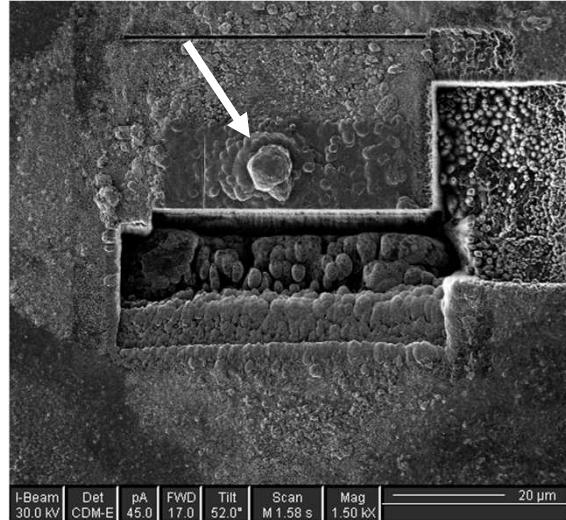
Accelerated Aging of Au-plated Cu Sulfide Bloom on Corrosion Coupon

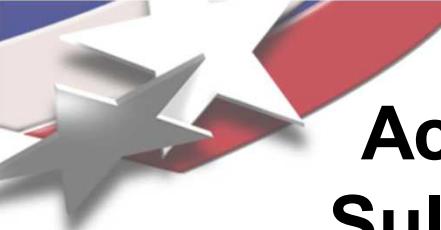


Second trench for x-rays

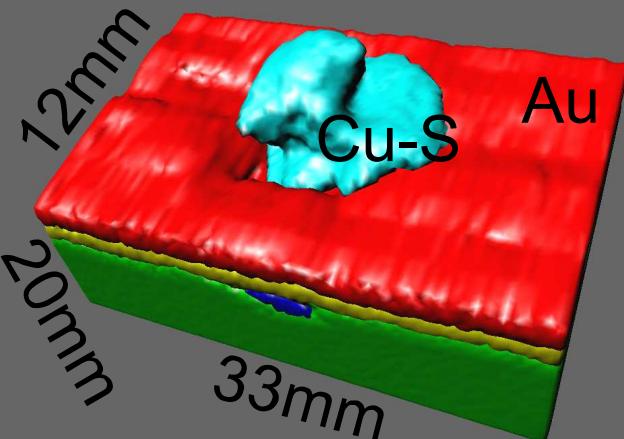
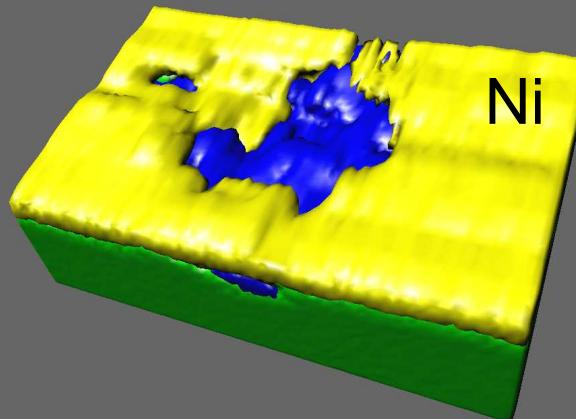
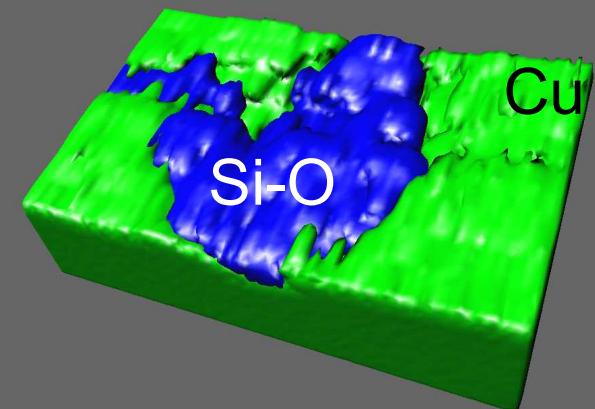
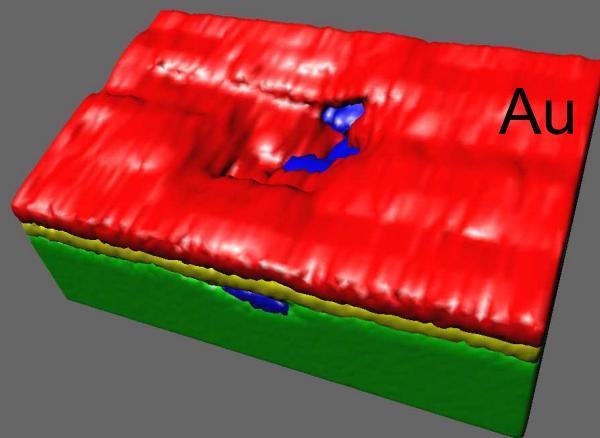
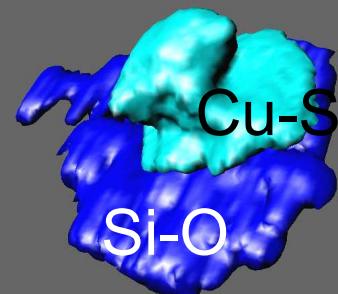
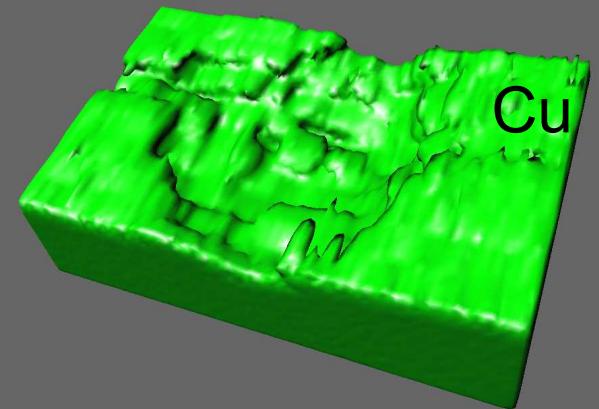
After first cut/polish

Find the region of interest





Accelerated Aging of Au-plated Cu Sulfide Bloom on Corrosion Coupon



Red = Au

Green = Cu

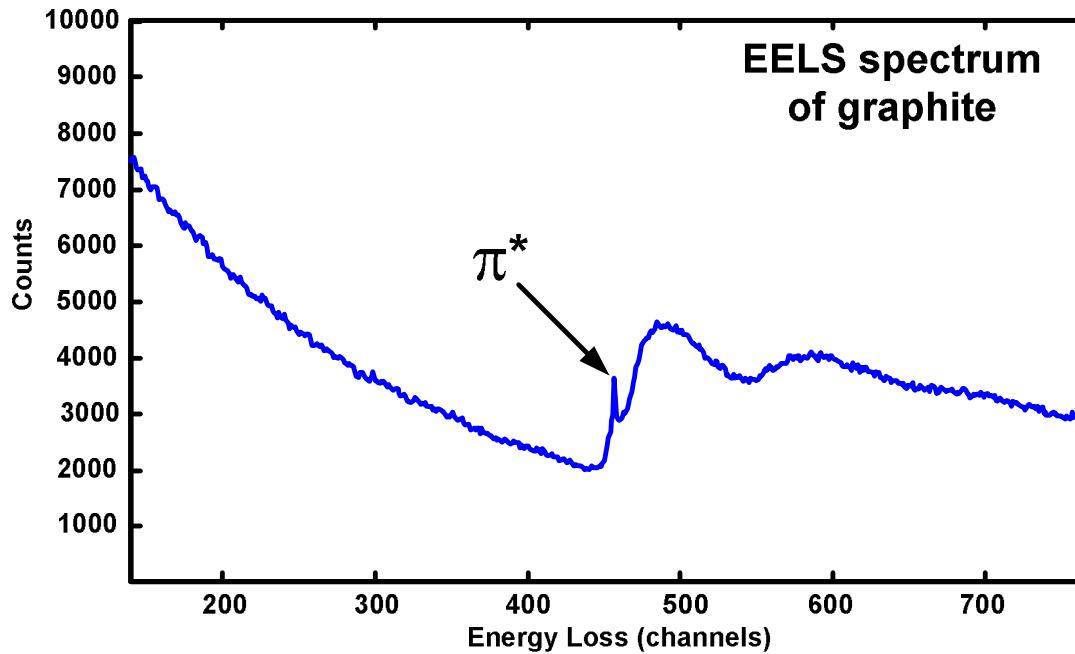
Blue = Si, O, Cl

Cyan = Cu-S

Yellow = Ni



Different spectroscopic problems require different optimization approaches

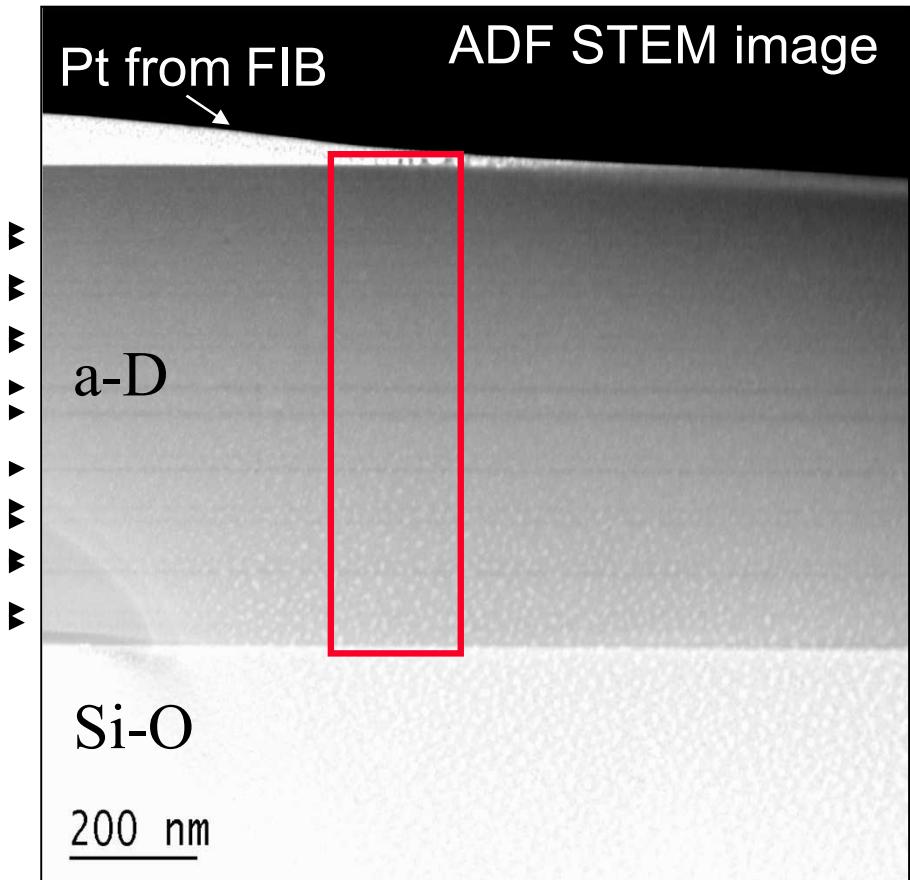


- Observation: many samples are “simple” in the sense that only one or a few chemical components are present at any particular spatial location
- New idea: maximize “spatial simplicity”

EEL Spectral Image Analysis a-Diamond

In collaboration with Tom Friedman
Sandia National Labs, Albuquerque (a-D material)

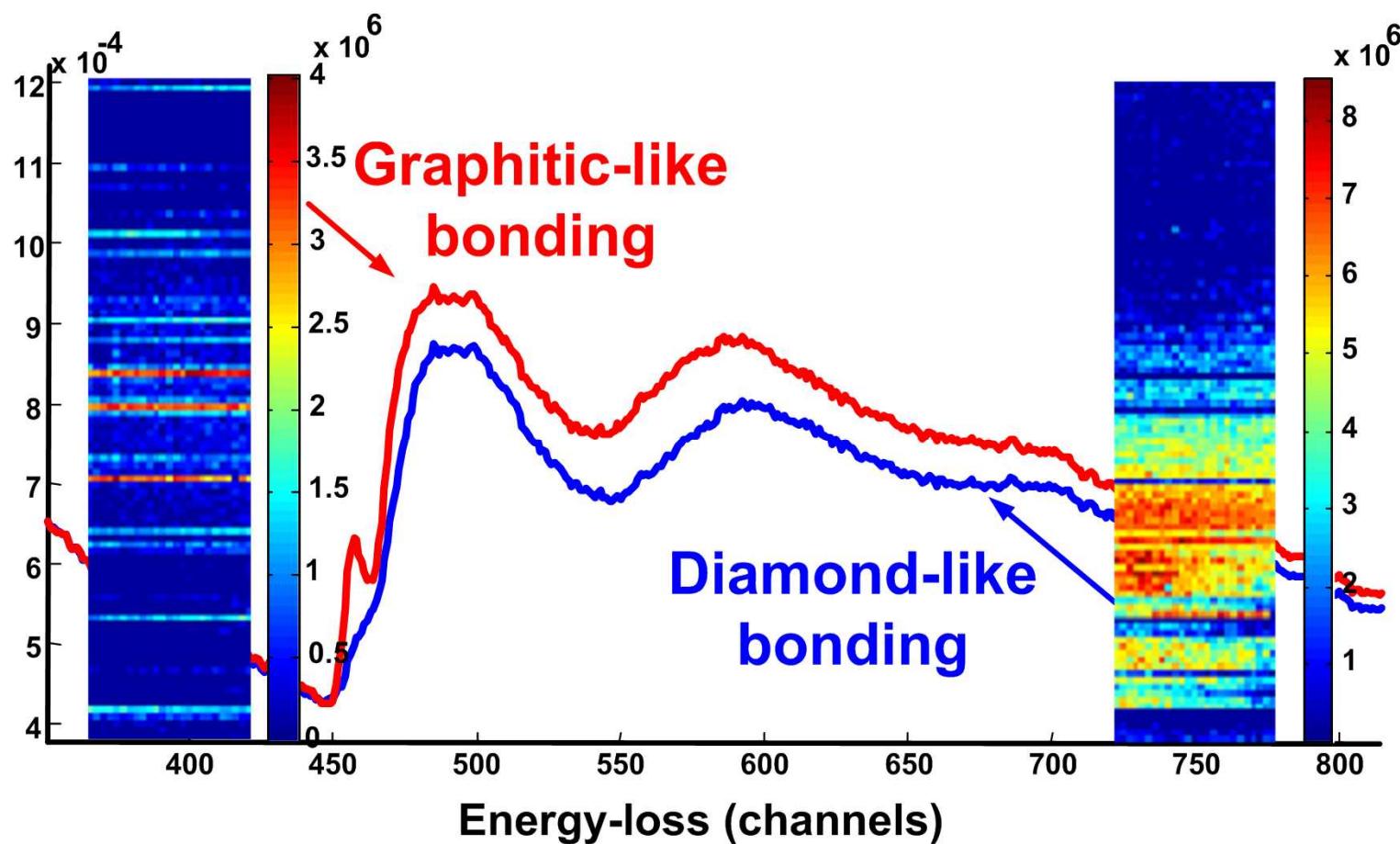
- **Laser ablation grown a-D**
- **Growth interrupts for annealing**
- **Moving shield in vacuum sys.**
- **Bands of apparently less dense material**
- **FIB Specimen with slight gradient in thickness**
- **Ex-situ lift out sample placed on polymer film**
- **Tecnai F30-ST with TIA (Emispec) spectral imaging**
- **High- and low-frequency high voltage drift/instability**



**SI: 200x800 nm, 25x100 pixels
100 msec/pixel**



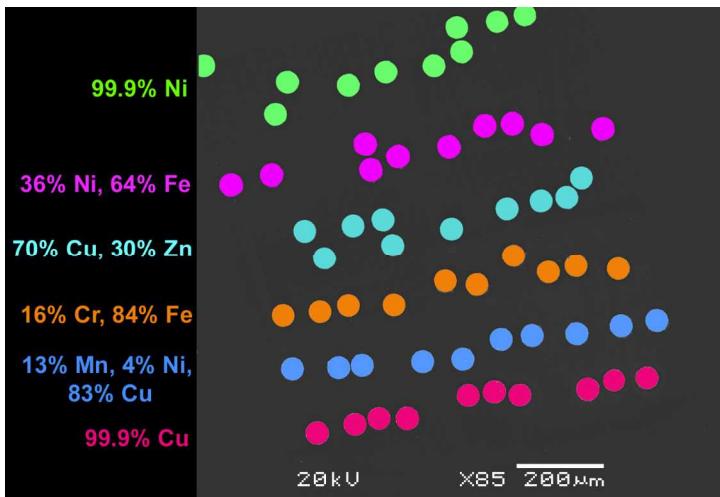
Maximization of “spatial simplicity” enabled identification of graphitic layers



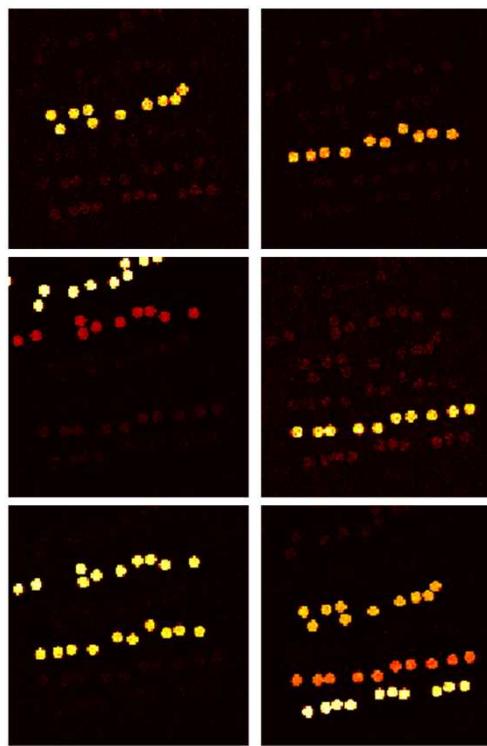
Alternative constraints can yield additional analytical insight

6 different alloys composed of 6 different elements

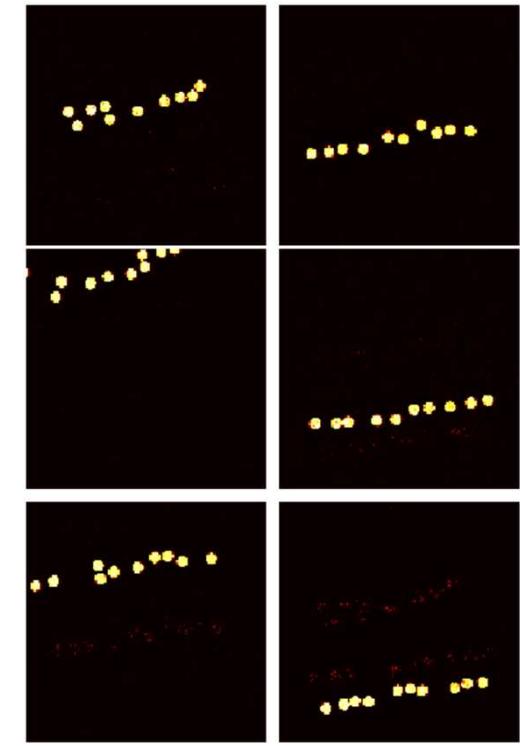
What are the pure components?



NN constraint
Spectrally simple

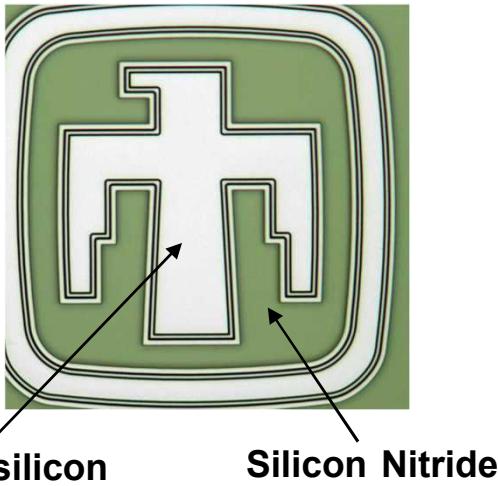
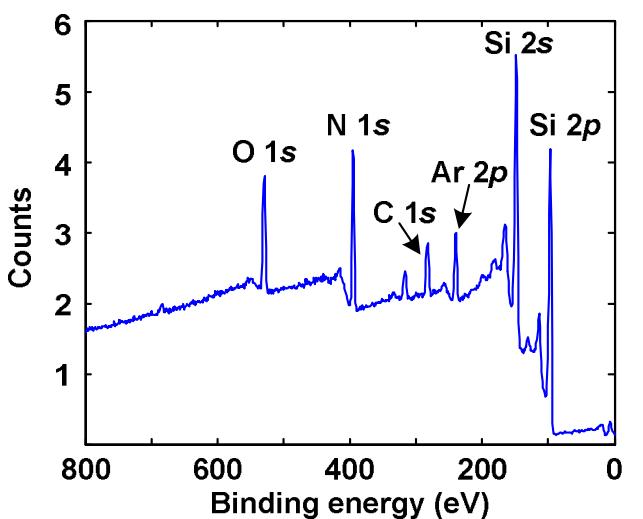


Simplicity constraint
Spatially simple



XPS example: putting it all together

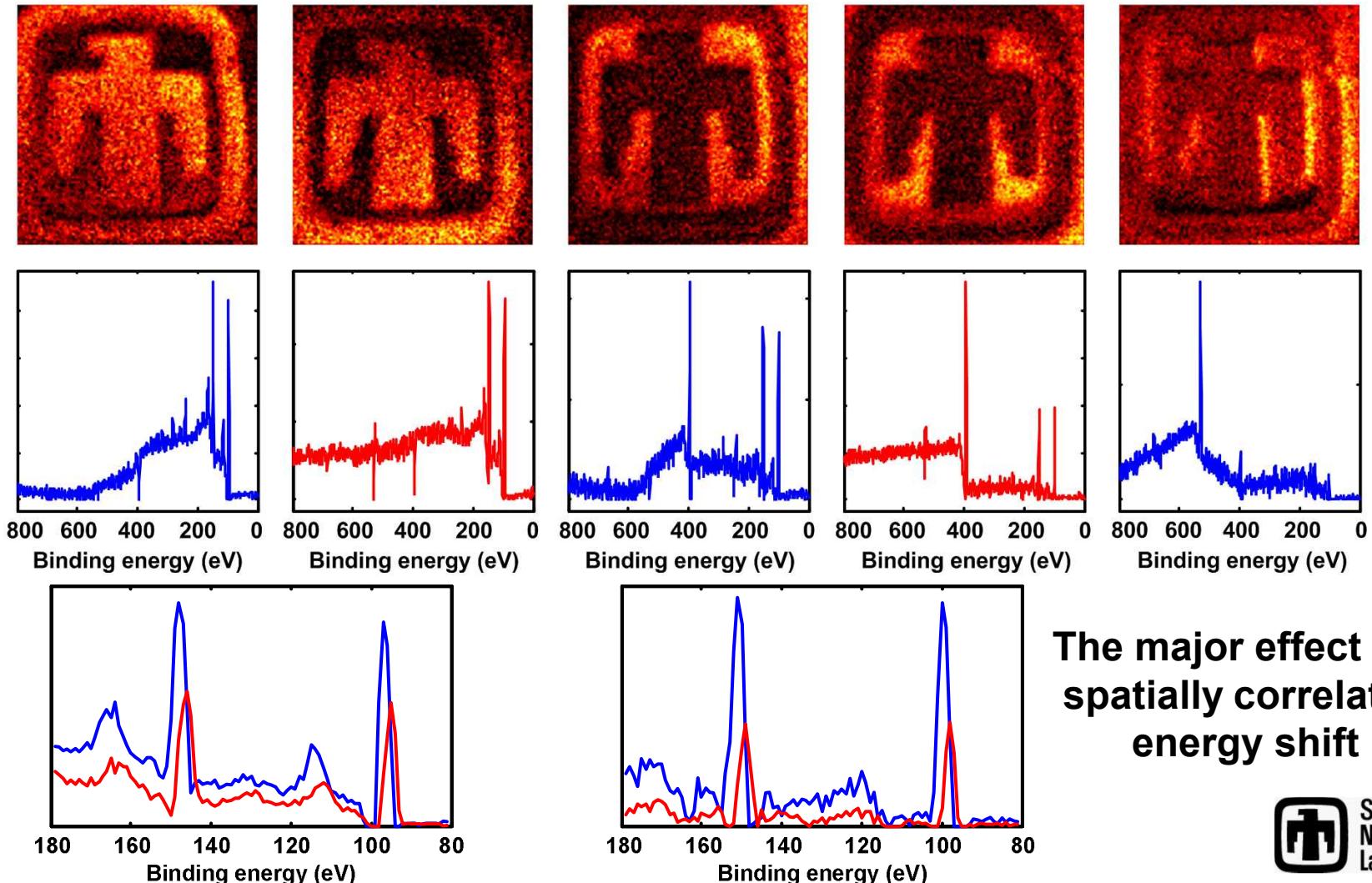
Optical Image

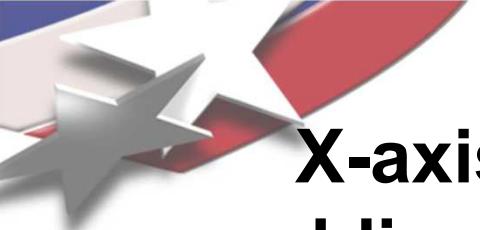


- Polysilicon on silicon nitride MEMS device
- Sputtered with Ar ions to remove surface oxide
- Has 3-D structure
- Some edges are shadowed

SEM view
from ion gun

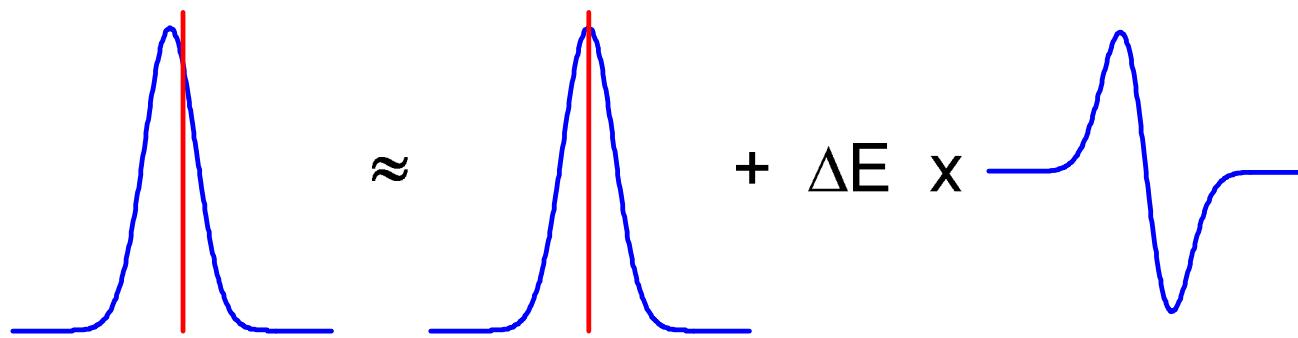
Standard MCR-ALS yields results that are more difficult to interpret than expected





X-axis shift can be accommodated by adding derivatives to the spectral matrix

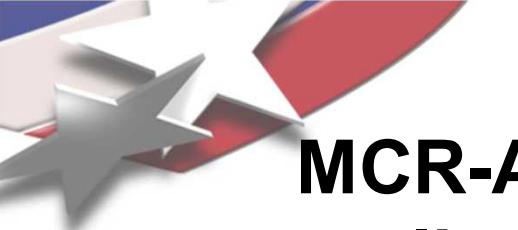
A shifted peak can be approximated by a Taylor series



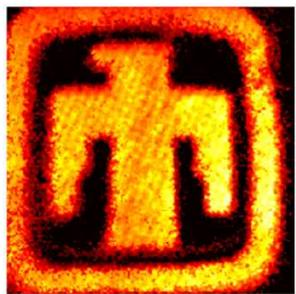
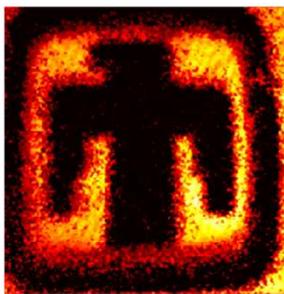
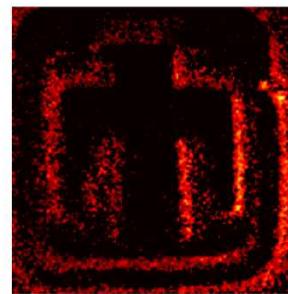
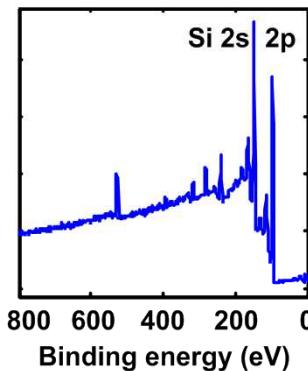
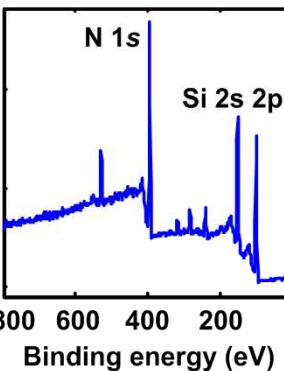
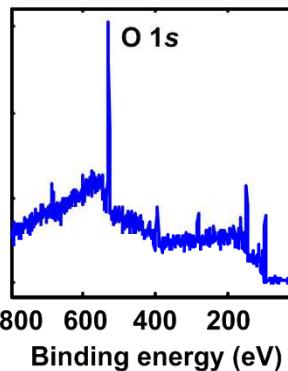
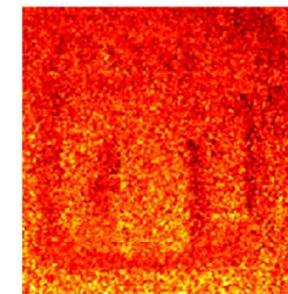
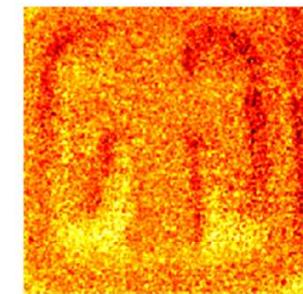
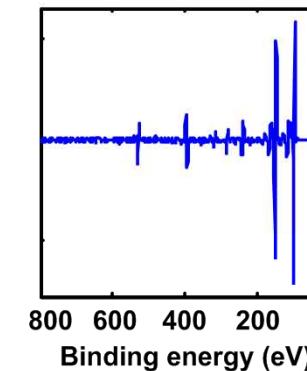
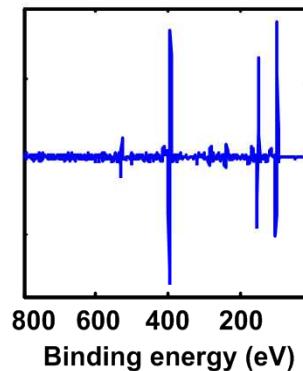
Partition A and S into chemical and shift components

$$A = [A^C \quad A^D], \quad S = [S^C \quad S^D]$$

Incorporate derivatives by using equality constraints



MCR-ALS with simplicity and derivative-equality constraints yields excellent results



→

3 chemical
components

←

→

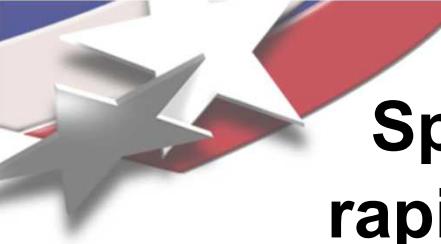
2 artifact
components



Often, it is the small, unexpected things that will bite you

Addressing significant characterization problems of the future will rely upon ...

- Ever greater spectroscopic sensitivity
- Ever increasing spectral and spatial resolution
- Combining data from multiple techniques
- Incorporating new dimensions, e.g. time



Spectral imaging hardware has advanced rapidly; image analysis software has lagged

The goals of future software development include:

- **Enabling routine use of spectral imaging techniques**

Develop numerically efficient, rigorous and robust spectral image analysis algorithms suitable for day-to-day use.

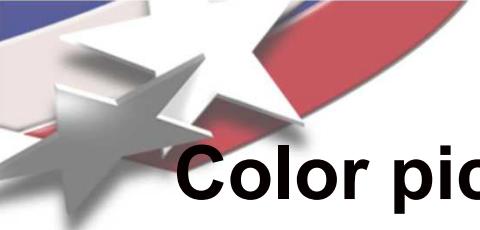
- **Accommodating ever larger data sets**

Develop novel approaches to analyzing extremely large data sets from large-area and multi-dimensional spectral images.

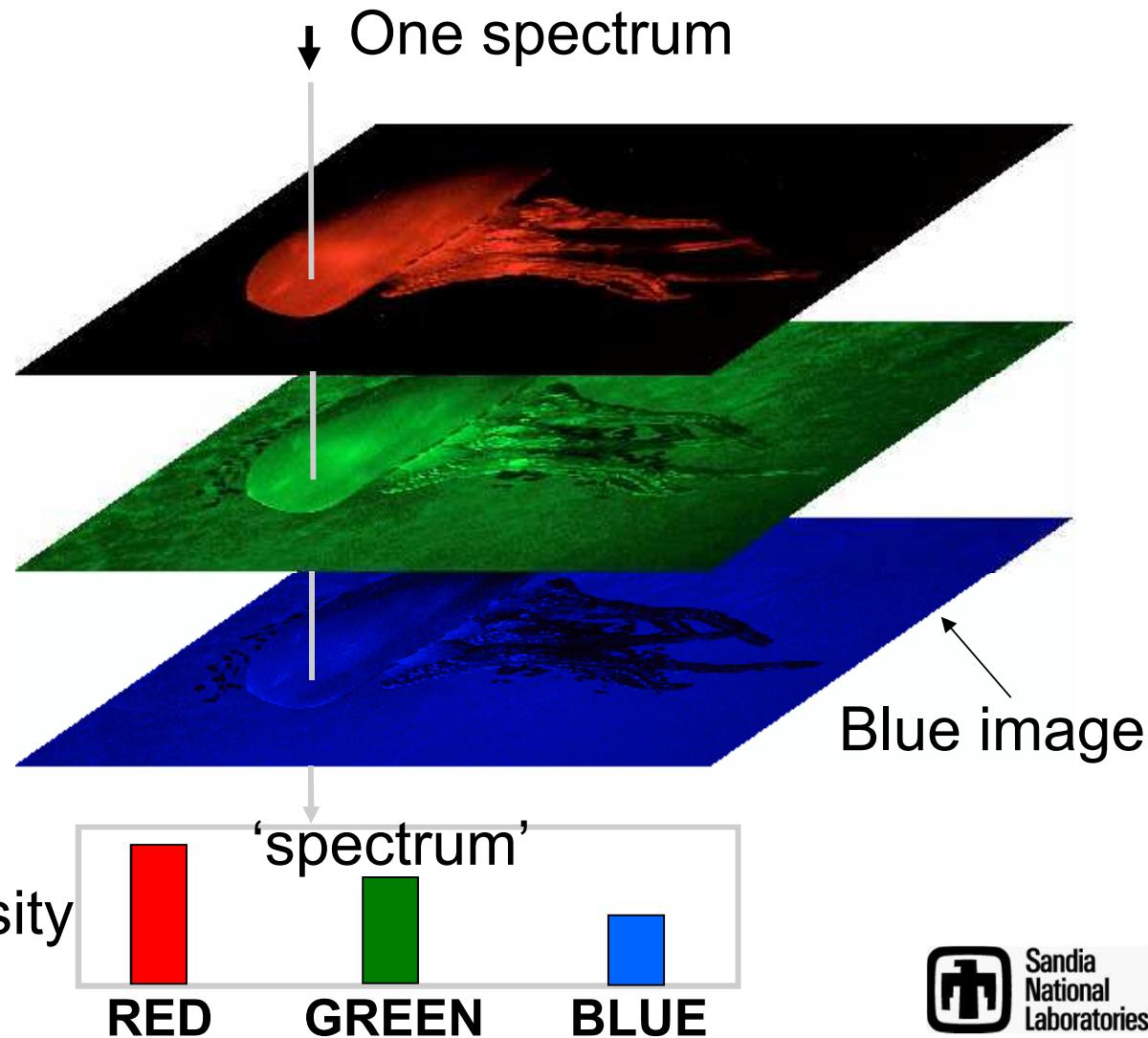
- **Broadening the application of spectral image analysis**

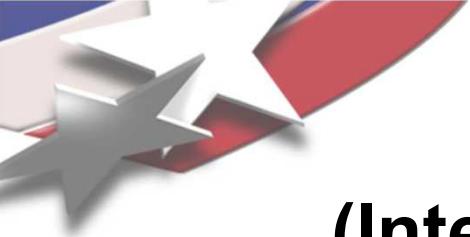
Exploit additional qualities of spectral data to enable the successful application of methods to new imaging modalities.

Ultimately, develop tools to help us assess the significance of our analytical findings



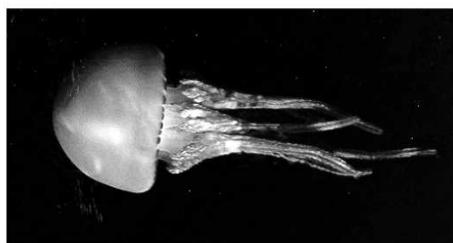
Color picture: a 3-channel spectral image with spectral variables red, green, and blue





**Color Picture =
(Intensity) x (Spectral characteristic)^T**

=

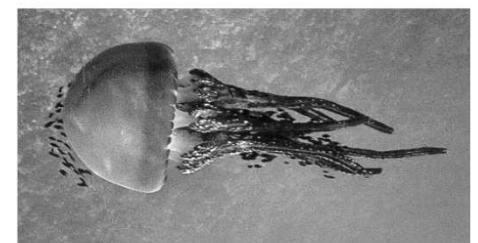


x

+

x

+

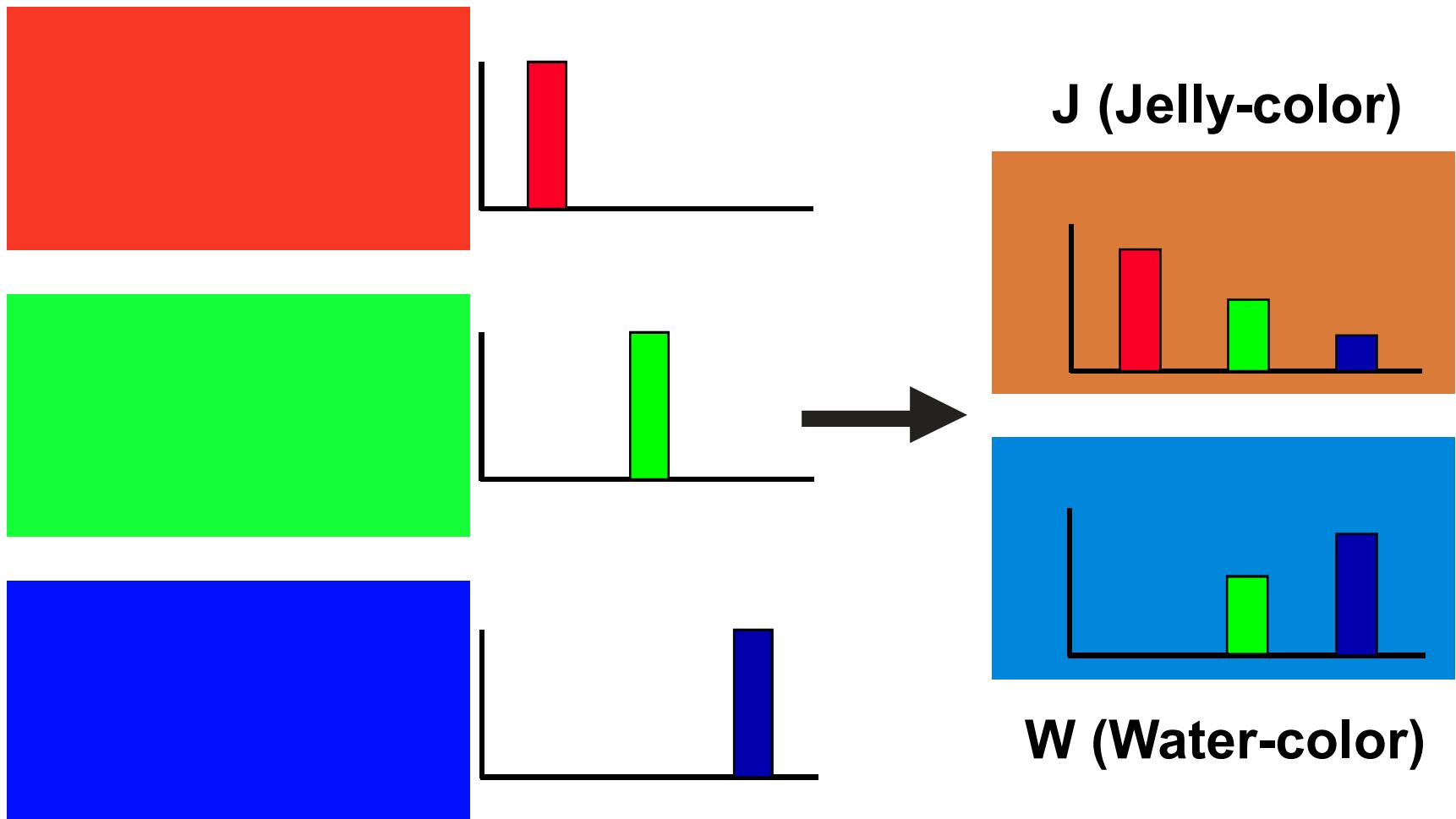


x

note the linearity assumption

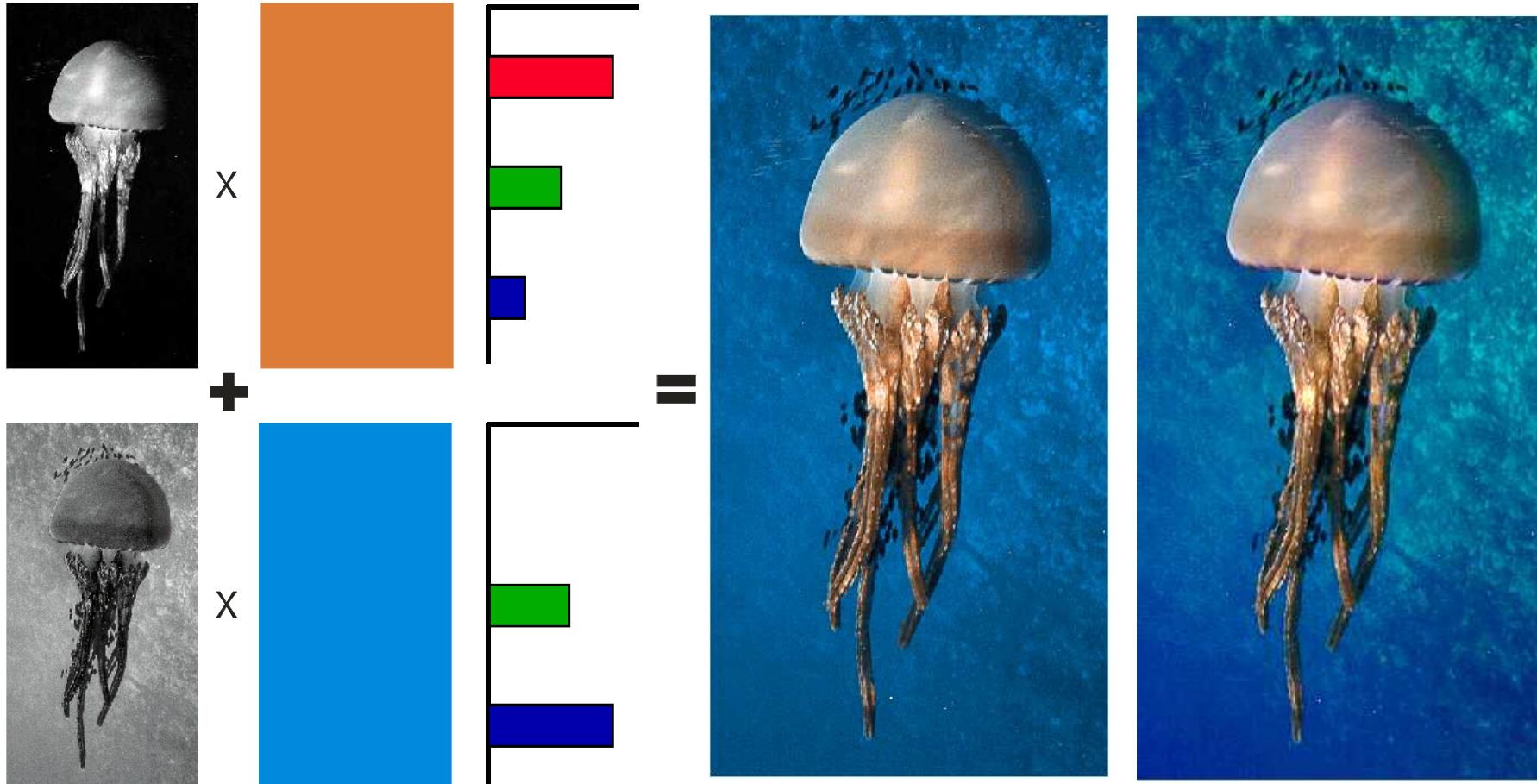


Method transforms RGB into a reduced-dimension color space JW



J and W are linear combinations of R, G and B

Jelly-color and water-color are the “pure components” in the JW color space

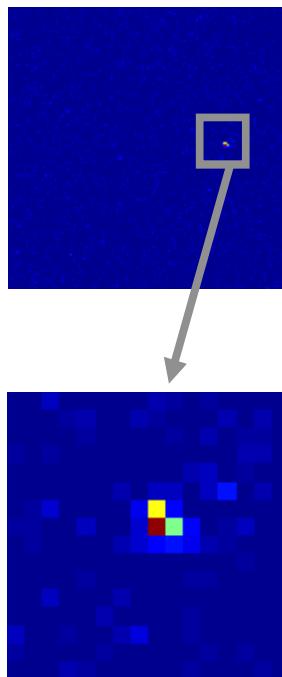


2-component reconstruction

Original image

Single-pixel detection is possible, even for low S/N spectrum images

FIB-prepared specimen with
1x1 μm by 3 μm deep 'pixel' of Pt
in Si matrix



Average 55 total counts/pixel

