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Outline of the Problem

• Materials performance, failure 
and degradation are often 
governed by local chemistry

– Corrosion

– Interfacial adhesion

– Impurities, etc.

• Spectral imaging is quickly 
becoming the tool of choice for 
comprehensive materials 
characterization from the nano-
to micro- scales

• How do we extract the chemical 
information from the mountain of 
spectral data?

Au
Cu-S

CuNi
Si-O

Analysis of corrosion product 
after accelerated aging



Goals of Spectral Image Analysis

• Unbiased, comprehensive, rapid, routine analysis

– Find all sources of chemical variation

• Major phases to single-pixel impurities

– No foreknowledge of constituents

– Computation time ~ data acquisition time 

– Use commonly available lab computers

• Easily interpretable representation of the data

– Spectral pure components look like spectra, etc.

– Useful to the non-expert (non-chemometrician)

– Solve the chemical problem at hand



Spectral imaging and Factor Analysis
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Factor Analysis, D = AST

D= f(x, y, )

The goal of FA it to estimate:

p, “how many components?”
S, “what are they?”
A, “where are they and how much?”

“Data
cube”

A spectral image 
comprises a complete 

spectrum at each 
point in a spatial array 

(1-, 2-, 3-D)



Spectral images are often acquired with 
low S/N, statistical aggregation is essential

Energy Dispersive X-ray Spectroscopy (EDS)

X-ray Photoelectron Spectroscopy (XPS)

Analysis accounts for Poisson Statistics



Factor models suffer “rotational ambiguity,” 
additional criteria are needed for uniqueness
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• Principal Component Analysis (PCA)
– Factors are orthogonal

– Factors serially maximize variance

– Provides best LS fit to data

– Non-physical constraints:

– Factors are abstract

• PCA + factor rotation
– Rotate factors to “simple structure”

• Alternating Least Squares (ALS)

• MCR-ALS

– Non-negativity of A and/or S

– Simplicity/sparsity 

– Equality, closure and others 

Analysis goal: Obtain an 
easily interpretable 

representation of the data



A simple example: Energy Dispersive
X-ray Analysis of a Braze Interface

RGB Composite Image



Where’s the Hafnium?

Red=Al2O3

Green = Ag
Blue = Cu
Yellow = HfYellow = Hf

20 m

HfHf--CuCuSilSil brazeAlumina



Hafnium was found as an interfacial 
inclusion by spectral imaging
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Spectral imaging can solve the 
“needle-in-a-haystack” problem
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Red = C-support
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Black = shadowed support

Unexpected Ca-S-Si-O 
particle is ~40 pixels



Improved performance can be 
achieved through compression

• Spatial compression using wavelets

• Spectral compression using principal components

– ~100-fold compression for chemical images

• Least squares algorithms can be written in terms of the 
compressed coefficients.

• Larger-than-core-memory data sets can be analyzed

• Compression is a filtering operation which leads to improved 
S/N and sensitivity
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Spatial Compression yields improved 
performance with no loss of detail

Altaite

Galena

native-Te

Dunhamite?

Pyrite

Apatite

Calcite

Chalcocite

Rutile?

200 m

As analyzed
(256 X 

compression)

Final silicate 
component

X-ray analysis of 
tellurium ore



MEMS test device with a beam and 
an occluded volume (ToF-SIMS)

• Device processed with beam inserted
• Device imaged with beam retracted



16x spatial compression prior to PCA 
was required to develop chemical contrast

Shadow
+

Occluded
beam

Exposed
beam



Out-of-core algorithms enable the analysis of
data sets that are larger than computer memory

3-D microstructure of Cu/Ag eutecticLarge-area microstructure 
of a turbine blade

1.2 million pixels x 2048 channels

9 GByte data set

12.5 minutes on 4-year-old desktop 
computer with 2 GByte main memory



Second trench for 
x-rays

After first cut/polish

Find the region of interest
Cut first trench

Accelerated Aging of Au-plated Cu 
Sulfide Bloom on Corrosion Coupon
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Cyan = Cu-S Yellow = Ni



• Observation: many samples are “simple” in the sense 
that only one or a few chemical components are present 
at any particular spatial location

• New idea: maximize “spatial simplicity”

Different spectroscopic problems 
require different optimization approaches



EEL Spectral Image Analysis a-Diamond
In collaboration with Tom Friedman

Sandia National Labs, Albuquerque (a-D material)

• Laser ablation grown a-D
• Growth interrupts for 

annealing
• Moving shield in vacuum sys.
• Bands of apparently less 

dense material
• FIB Specimen with slight 

gradient in thickness
• Ex-situ lift out sample placed 

on polymer film
• Tecnai F30-ST with TIA 

(Emispec) spectral imaging
• High- and low-frequency high 

voltage drift/instability

Si-O

Pt from FIB

a-D

ADF STEM image

SI: 200x800 nm, 25x100 pixels
100 msec/pixel



Maximization of “spatial simplicity” 
enabled identification of graphitic layers



Alternative constraints can yield 
additional analytical insight

NN constraint
Spectrally simple

Simplicity constraint
Spatially simple6 different alloys composed

of 6 different elements

What are the pure components?



XPS example: putting it all together

Polysilicon Silicon Nitride

Optical Image

SEM view 
from ion gun

• Polysilicon on silicon nitride 
MEMS device

• Sputtered with Ar ions to 
remove surface oxide

• Has 3-D structure

• Some edges are shadowed



Standard MCR-ALS yields results that are 
more difficult to interpret than expected

The major effect is a 
spatially correlated 

energy shift



X-axis shift can be accommodated by 
adding derivatives to the spectral matrix

Partition A and S into chemical and shift components

Incorporate derivatives by using equality constraints

A shifted peak can be approximated by a Taylor series
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MCR-ALS with simplicity and derivative-
equality constraints yields excellent results



Checking out the polar icecap

Often, it is the small, unexpected 
things that will bite you

Time to get back to the boat

An anomaly!! 
But is it 

significant?

You Betcha!!



Addressing significant characterization 
problems of the future will rely upon …

• Ever greater spectroscopic sensitivity

• Ever increasing spectral and spatial resolution

• Combining data from multiple techniques

• Incorporating new dimensions, e.g. time



The goals of future software development include:

• Enabling routine use of spectral imaging techniques
Develop numerically efficient, rigorous and robust spectral 
image analysis algorithms suitable for day-to-day use.

• Accommodating ever larger data sets
Develop novel approaches to analyzing extremely large data 
sets from large-area and multi-dimensional spectral images. 

• Broadening the application of spectral image analysis
Exploit additional qualities of spectral data to enable the 
successful application of methods to new imaging modalities.

Spectral imaging hardware has advanced 

rapidly; image analysis software has lagged

Ultimately, develop tools to help us assess the 
significance of our analytical findings





Color picture: a 3-channel spectral image with 
spectral variables red, green, and blue 

One spectrum

Intensity

RED GREEN      BLUE

Blue image

‘spectrum’



Color Picture = 
(Intensity) x (Spectral characteristic)T

note the linearity assumption



Method transforms RGB into a
reduced-dimension color space JW

J and W are linear combinations of R, G and B

J (Jelly-color)

W (Water-color)



Jelly-color and water-color are the “pure 
components” in the JW color space

2-component 
reconstruction

Original image



Single-pixel detection is possible, even 
for low S/N spectrum images
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FIB-prepared specimen with 
1x1m by 3 m deep ‘pixel’ of Pt 
in Si matrix

Average 55 total counts/pixel
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