

Capturing Microstructural Scale Effects Through Non-Local Crystal Plasticity

W. A. Counts ^{1, 2}, M. V. Braginsky ²,
C. C. Battaile ², E. A. Holm²,
L. N. Brewer²

¹ Georgia Institute of Technology

² Sandia National Laboratories

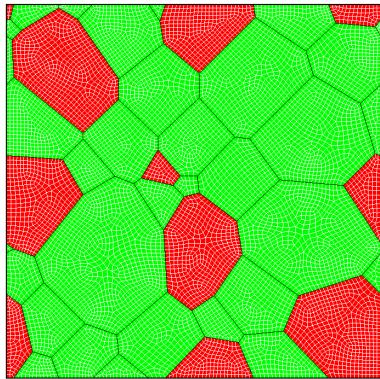
Acknowledgements:

Doug Bammann, SNL/CA

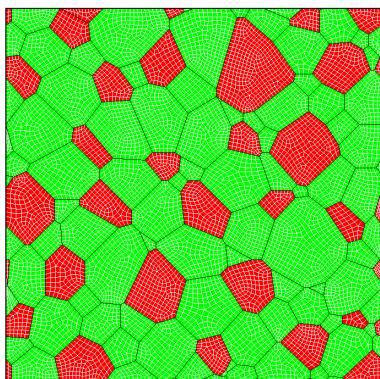
David McDowell, GIT

Ashok Saxena, GIT

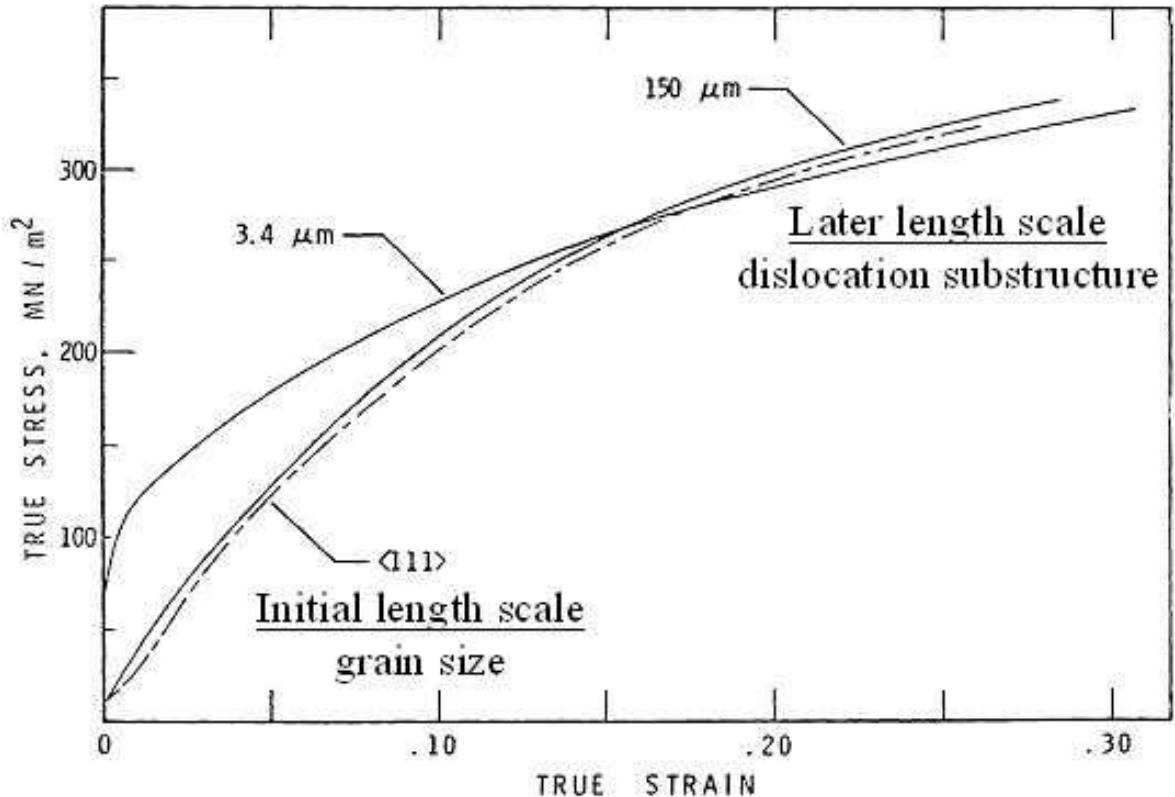
Experimental Observations



150 μm



3.4 μm



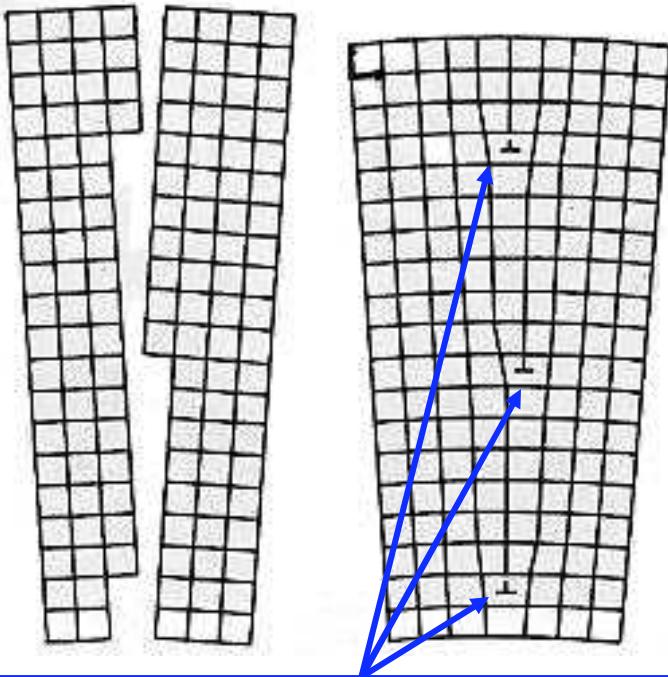
*Mechanical response of materials depends
on the microstructure of the material*

Experimental Observations

- Dominant microstructural features of polycrystals are grain boundaries

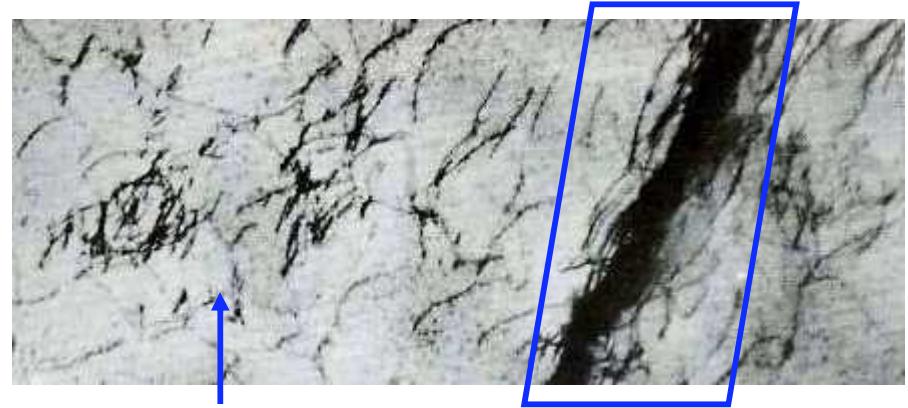
Concept

- Interface between 2 crystals with different orientation



Geometrically Necessary Dislocations
(GNDs)

Reality



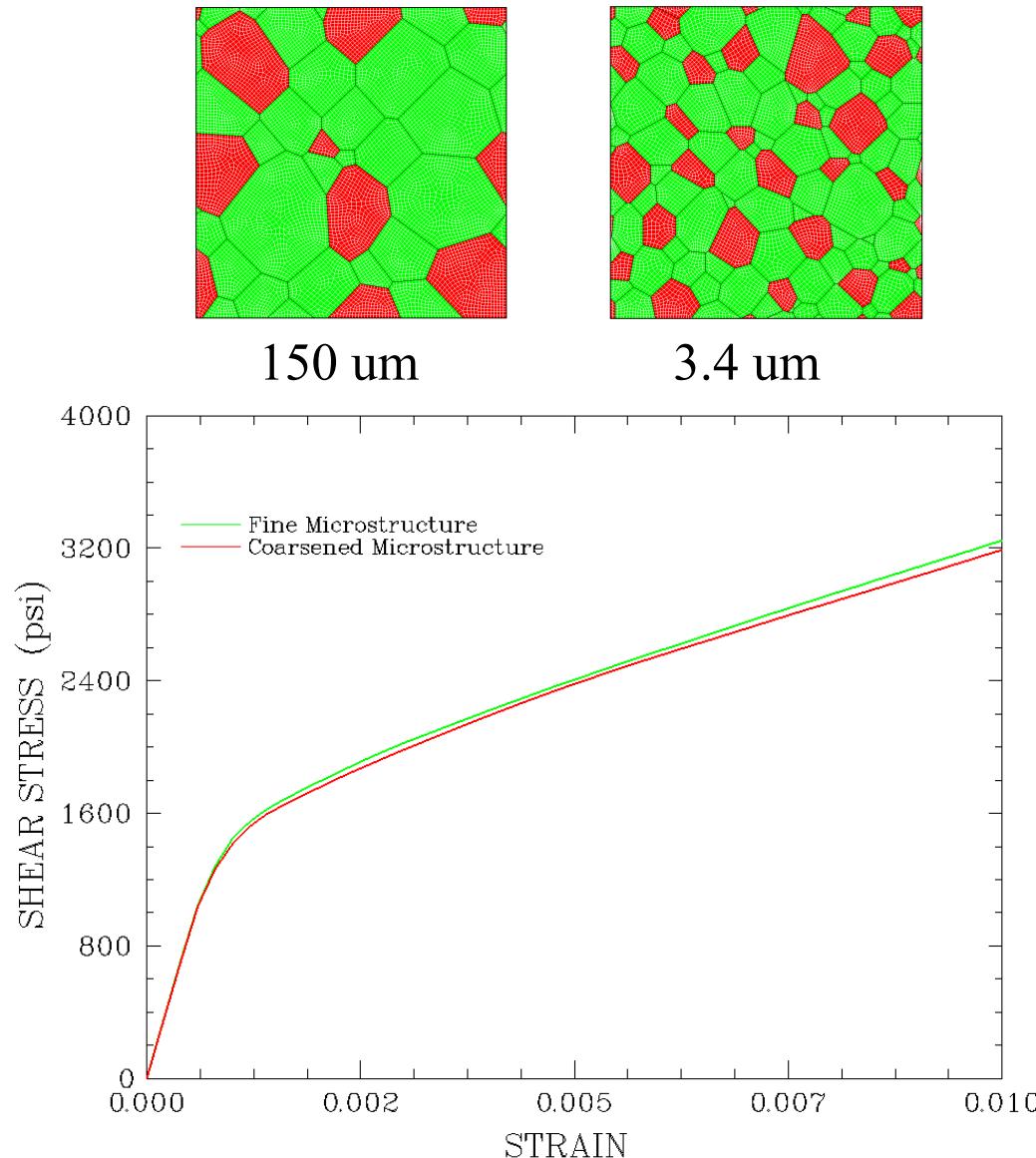
Low density
interior

High density
boundary

*High density boundaries act as
barriers to dislocation motion*

Classical Continuum Modeling

- Structural finite element codes are continuum based
- Finite element mesh has dimensions but they do not effect the σ – ε result
- Predicted σ – ε results from two different grain sizes are similar

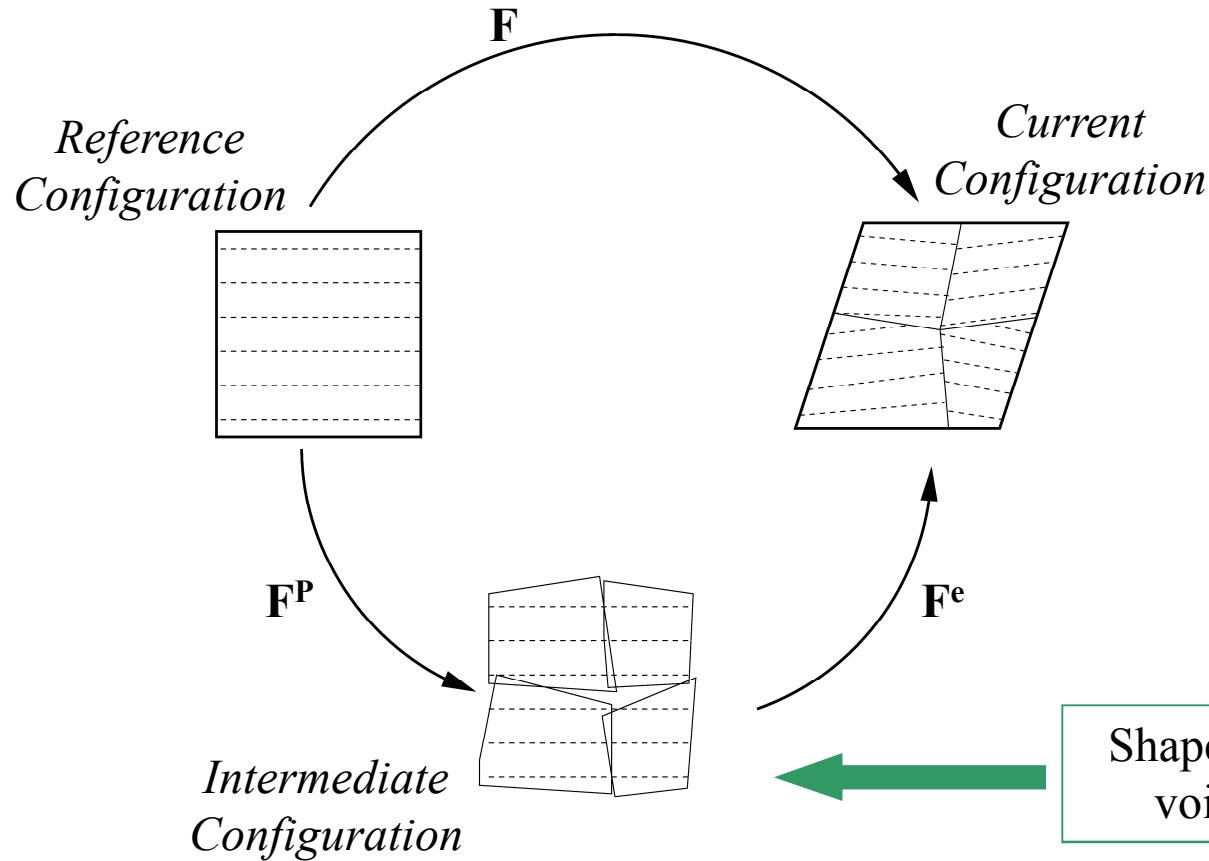


Single Crystal Kinematics

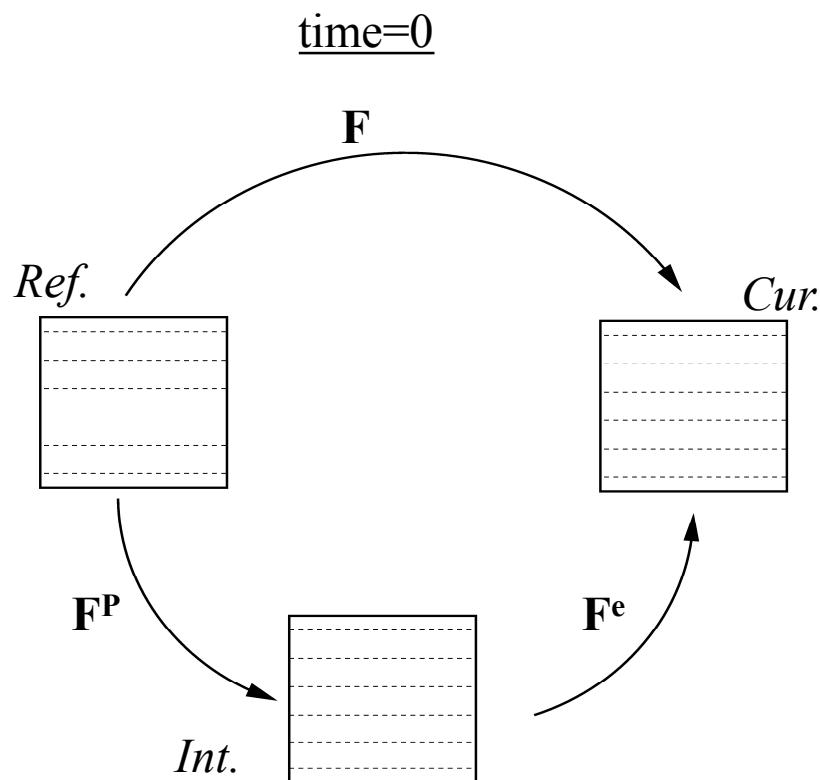
Total deformation (\mathbf{F}) is modeled as a two step process:

- Plastic deformation (\mathbf{F}^P)
- Elastic deformation (\mathbf{F}^e)

$$\mathbf{F} = \mathbf{F}^e \mathbf{F}^P$$



Single Crystal Kinematics



Define a Dislocation Tensor: \hat{G} ¹

$$\hat{G} \rightarrow \frac{1}{\text{Det}[F^p]} F^p \text{Curl } F^p$$

$$\text{Det}[F^e] F^{e^{-1}} \text{curl } F^{e^{-1}}$$

At time=t

$$F^p = F^p(t) \rightarrow \hat{G} = \hat{G}(t)$$

$$F^e = F^e(t)$$

At time=0

$$F_0^p = I \rightarrow \hat{G}_0 = 0 \cdot I$$

$$F_0^e = I$$

How can you account for initial microstructure, specifically GNDs?

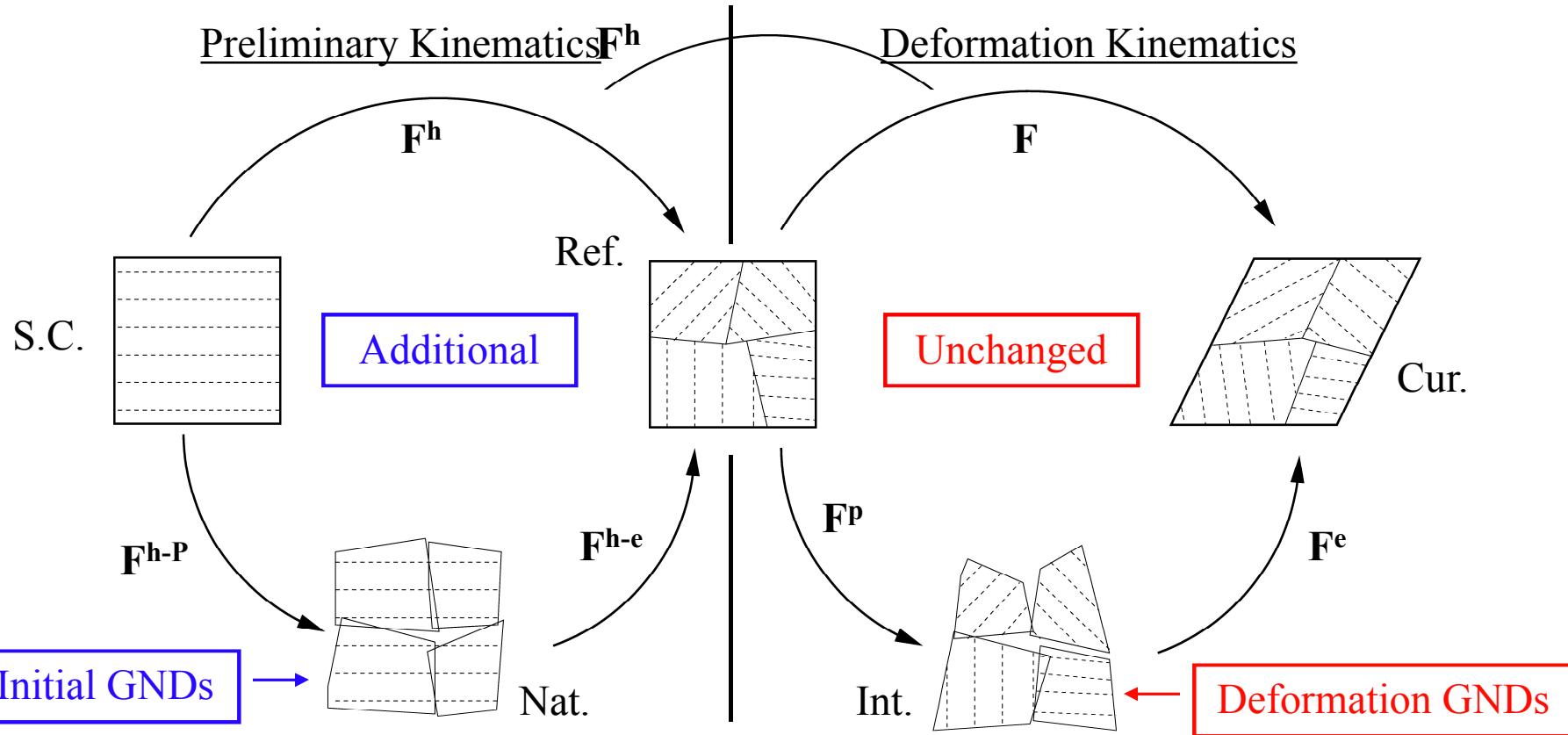
Polycrystal Kinematics

- Based on a geometric argument
- Introduce a *fictitious* deformation
- Establish Preliminary Kinematics

$$\mathbf{F}^h = \mathbf{F}^{h-e} \mathbf{F}^{h-p}$$

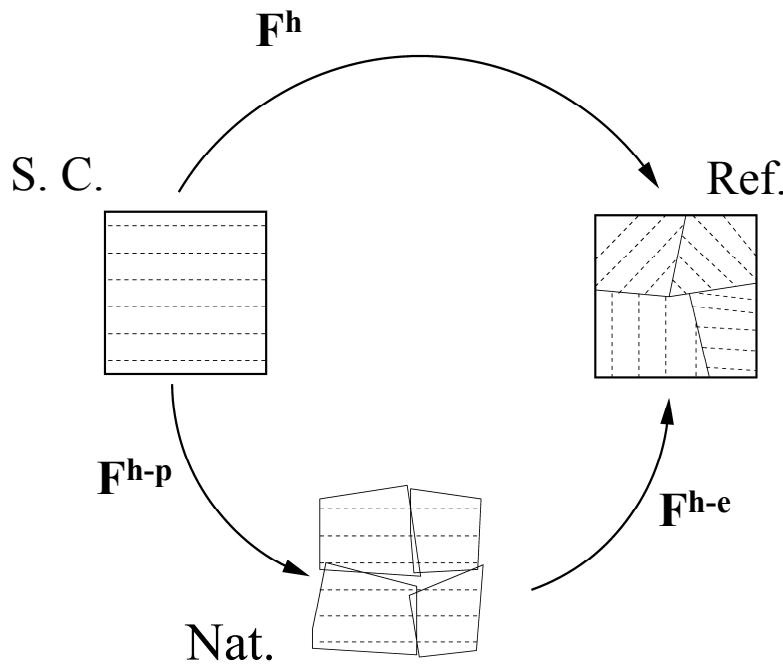
Purpose:

Provide a consistent framework to determine the *initial* and *evolving* GND state.



Polycrystal Kinematics

Preliminary Kinematics



- Define an Initial Dislocation Tensor

$$\tilde{\mathbf{G}}_0 = \frac{1}{\text{Det}[\mathbf{F}^{h-e}]} \frac{1}{\text{Det}[\mathbf{F}^{h-e}]} \mathbf{F}^{h-e} \mathbf{Curl} \mathbf{E}^{h-e} \mathbf{F}^{h-e}$$

$\tilde{\mathbf{G}}_0 \rightarrow$

■ $\mathbf{F}^{h-e} = \mathbf{R}^{h-e} \text{Det}[\mathbf{F}^{h-p}] \mathbf{F}^{h-p} \text{Curl} \mathbf{F}^{h-p}$

■ Assume Ref. is stress free: $\mathbf{U}^{h-e} = \mathbf{I}$

$$\tilde{\mathbf{G}}_0 = \mathbf{R}^{h-e} \text{Curl} \mathbf{R}^{h-e}$$

\mathbf{R}^{h-e} = orientation of each grain

- Define a Deformation Dislocation Tensor

$$\hat{\mathbf{G}} = \frac{1}{\text{Det}[\mathbf{F}^p]} \mathbf{F}^p \text{Curl} \mathbf{F}^p$$

- Define a Total Dislocation Tensor

$$\hat{\mathbf{G}}^{\text{Tot}} = \mathbf{F}^p \mathbf{R}^{h-e} \tilde{\mathbf{G}}_0 \mathbf{R}^{h-eT} \mathbf{F}^{p^{-1}} + \hat{\mathbf{G}}$$

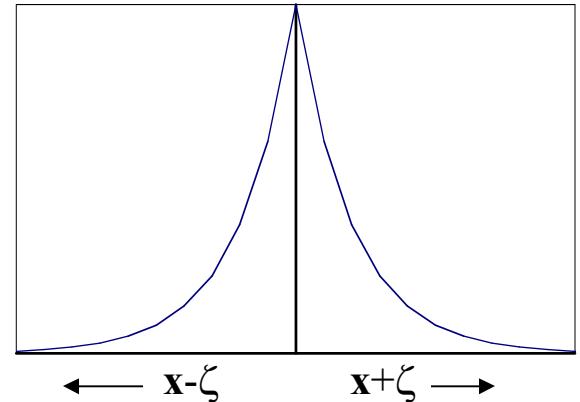
Non-Local Integral Method

Define a non-local curl

$$\{\text{Curl } \mathbf{H}\}_{jk} \equiv \varepsilon_{irs} \frac{\int_V (H_{js}(\mathbf{x} + \boldsymbol{\zeta}) - H_{js}(\mathbf{x})) \zeta_k \text{Exp} \left[-\frac{1}{\omega} \sqrt{\zeta_1^2 + \zeta_2^2 + \zeta_3^2} \right] dV}{\int_V \zeta_r \zeta_K \text{Exp} \left[-\frac{1}{\omega} \sqrt{\zeta_1^2 + \zeta_2^2 + \zeta_3^2} \right] dV}$$

ζ = local coordinates centered at \mathbf{x}

- Exponentials ensure $\{\text{Curl } \mathbf{H}\}$ is convergent
- ω represents the distance over which interactions are felt \rightarrow LENGTH SCALE



The Non-Local Integral Based Dislocation Tensors

$$\{\hat{\mathbf{G}}\} = \frac{1}{\text{Det}[\mathbf{F}^P]} \mathbf{F}^P \ \{\text{Curl } \mathbf{F}^P\} \quad \{\tilde{\mathbf{G}}\} = \mathbf{R}^{h-e^{-1}} \ \{\text{Curl } \mathbf{R}^{h-e^{-1}}\}$$

Crystal Plasticity Model

- Standard Crystal Plasticity

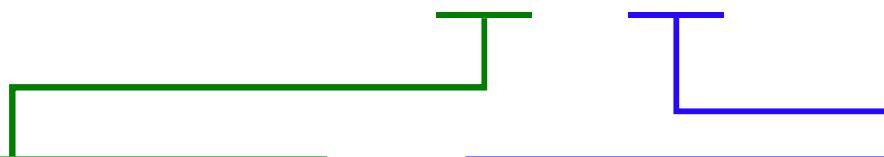
$$\hat{\mathbf{L}}^P = \mathbf{F}^P \mathbf{F}^{P-1} = \sum_{\alpha=1}^N \gamma^\alpha \left(\hat{\mathbf{s}}^\alpha \otimes \hat{\mathbf{m}}^\alpha \right)$$

$\hat{\mathbf{s}}^\alpha \otimes \hat{\mathbf{m}}^\alpha$ = schmid tensor

$\dot{\gamma}^\alpha$ = slip rate

- Anisotropic Taylor Hardening

$$\tau_{\text{CRSS}}^\alpha = C G_{110} b \sqrt{\rho_{\text{GND}}^\alpha + \rho_{\text{SSD}}^\alpha}$$



Scalarization of $\hat{\mathbf{G}}^{\text{Tot}}$

$$\rho_{\text{GND}}^\alpha = J^{\mathbf{F}^e} \frac{|\hat{\mathbf{G}}^{\text{Tot}} : (\hat{\mathbf{s}}^\alpha \otimes \hat{\mathbf{m}}^\alpha)|}{b}$$

b = burgers vector

SSD Evolution Equation³

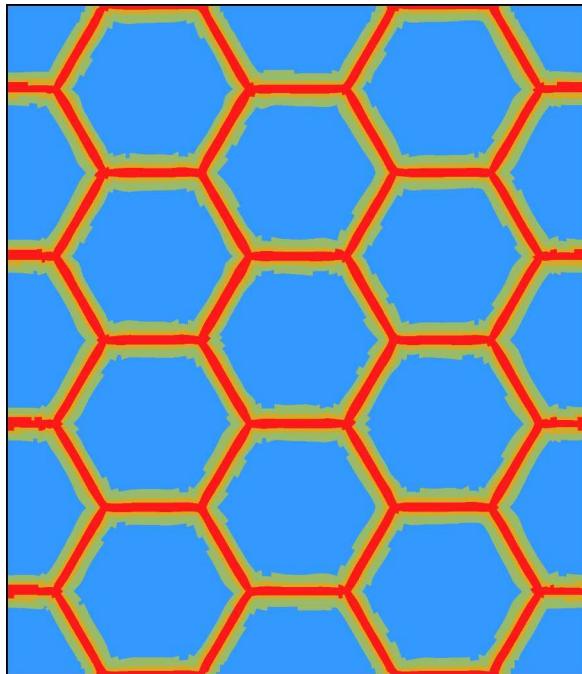
$$\frac{d\rho_{\text{SSD}}^\alpha}{d\gamma^\alpha} = c_1 \sqrt{\rho_{\text{SSD}}^\alpha + \rho_{\text{GND}}^\alpha} - c_2 (\rho_{\text{SSD}}^\alpha + \rho_{\text{GND}}^\alpha)$$

γ = slip

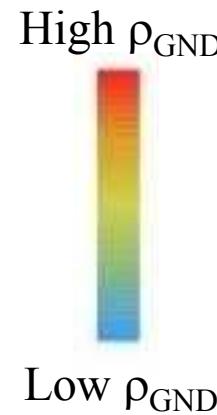
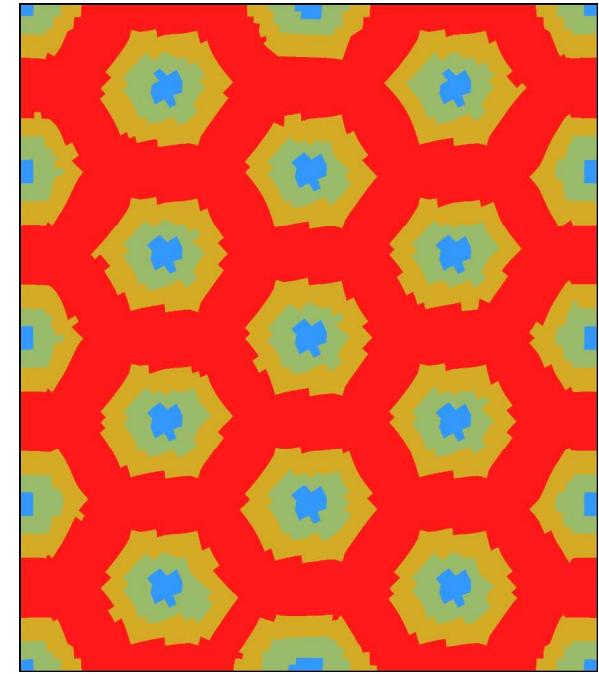
c_1, c_2 = material constants

General Results

GND Density @ time=0



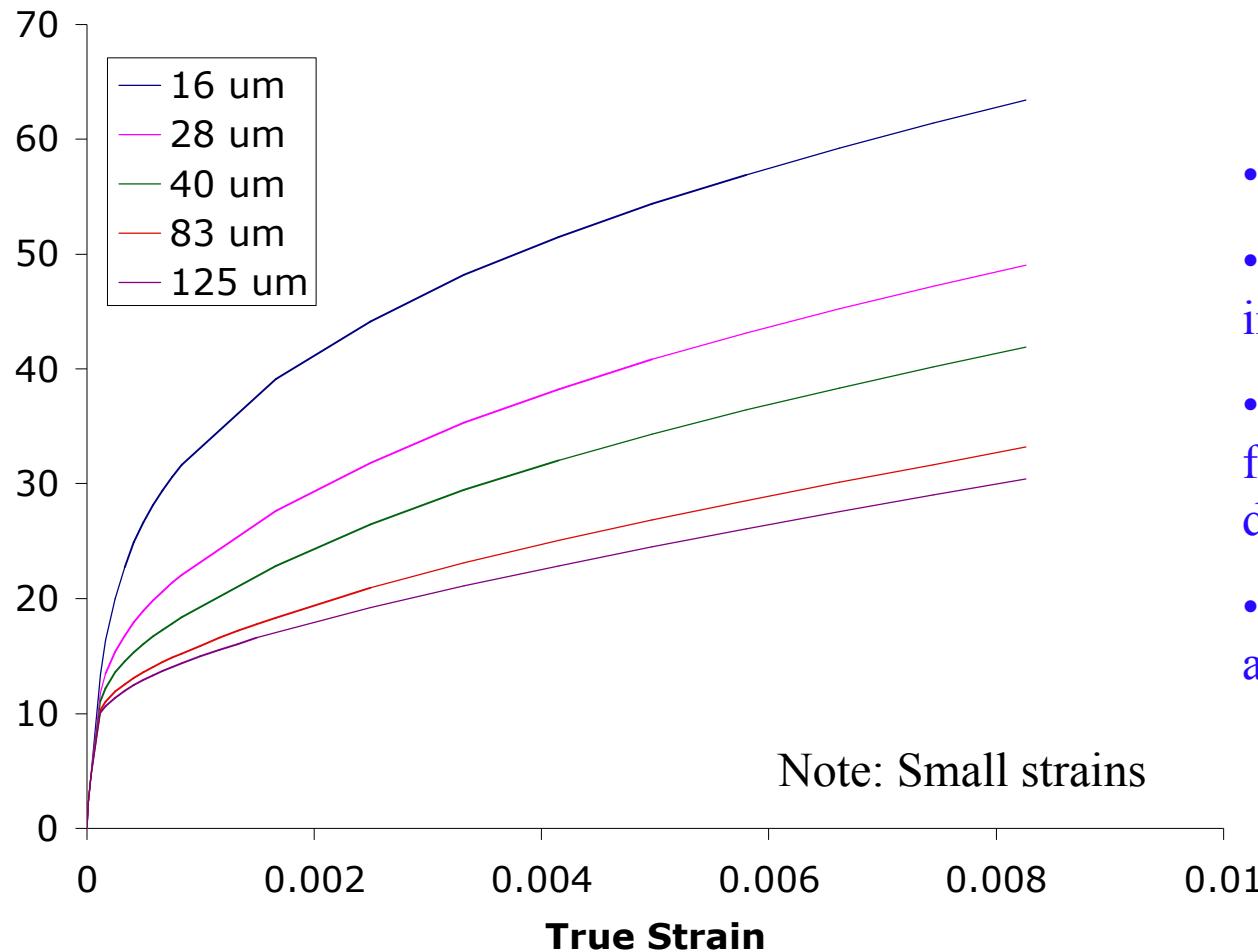
125 μm



20 μm

- Kinematics behind $\tilde{\mathbf{G}}_0^{\text{NL}} \rightarrow$ initialize microstructure
 - Non-local approach \rightarrow length scale

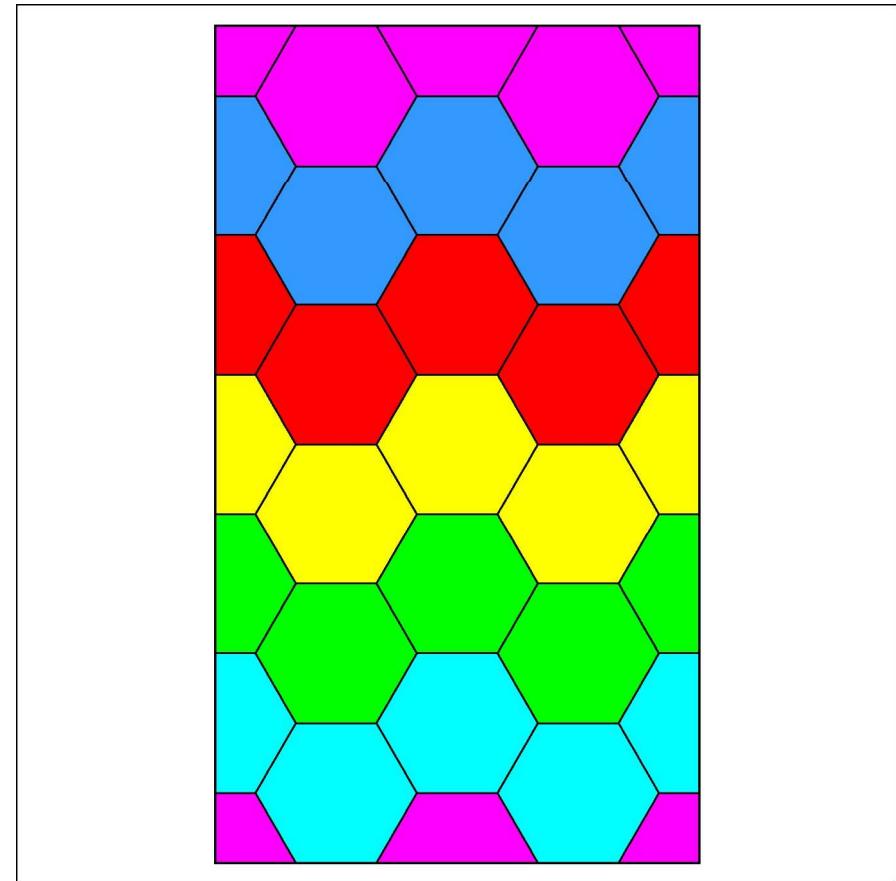
General Results



- Realistic curve shapes.
- Elastic behavior is independent of grain size.
- Yield strength and plastic flow are grain size dependent.
- Yield strength increases as grain size decreases.

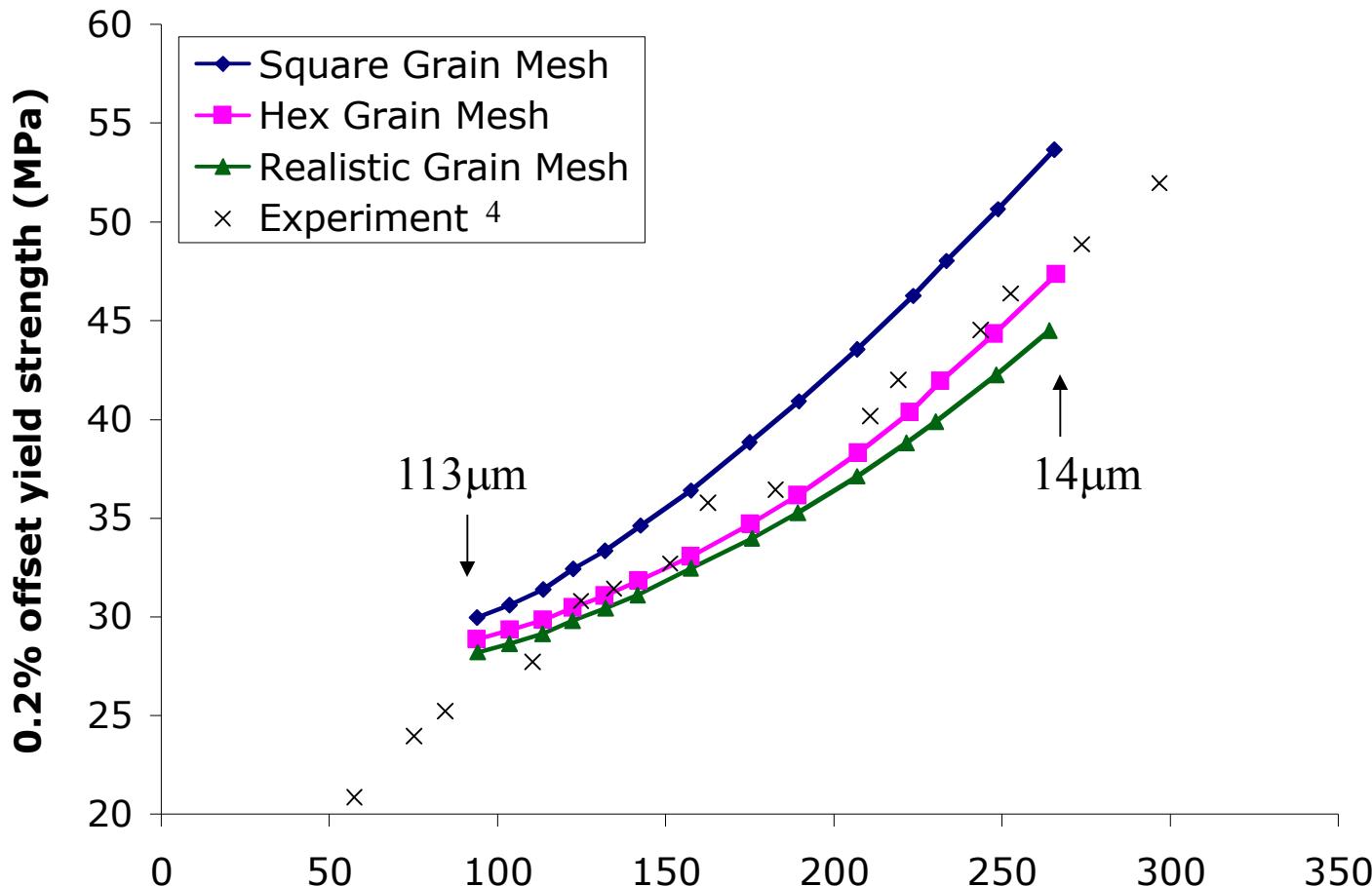
Results: Grain size effect

- 3 Different Grain Shapes
- Random Texture
 - 100 runs; data shows average
- Periodic BC in all directions
- Material \rightarrow Copper
- 4 different mesh resolutions
 - 7000 - 34000 elements
- Convergence criteria
 - $\Delta\sigma_{ys} < 1\%$
- Fit experimental stress-strain curve with Hex mesh



- **24 Grain Polycrystal**
- **Realistic shaped Grains**

Results: Grain size effect

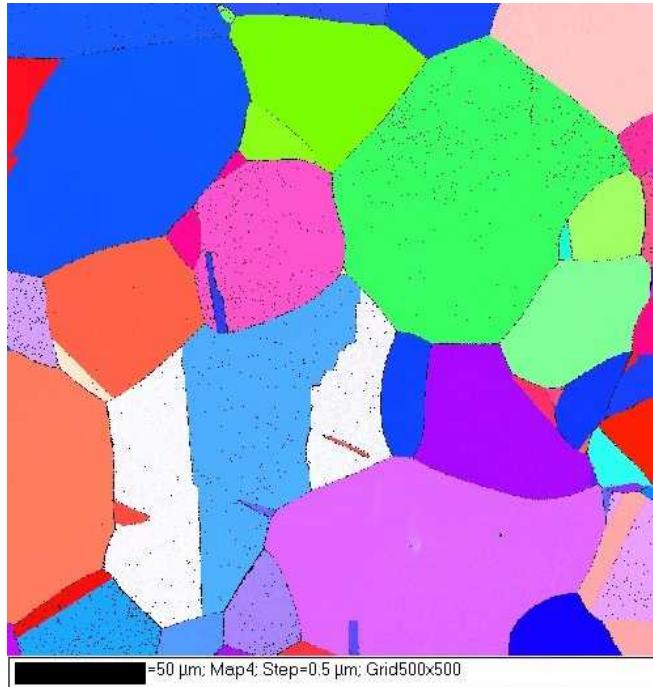


- Not a $d^{-1/2}$ dependence. Closer to a d^{-1} dependence.
- Grain morphology affects the grain size behavior

Results: Misorientation

Experimental

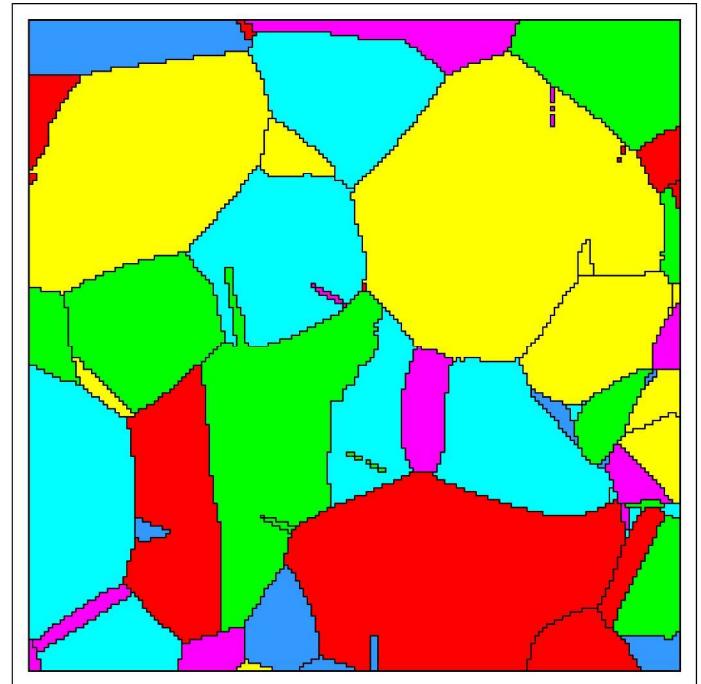
- Ni polycrystal
- Interrupted Tensile Test
- EBSD data @ same location
 - 0%, 1%, 5%, 10% Strain



Simulation

- Meshed the initial microstructure
- Ran both the local and non-local models to 10% strain

Initial Microstructure



Results: Misorientation

- Local Model: 0-10% Strain

QuickTime™ and a
MPEG-4 Video decompressor
are needed to see this picture.

Local Misorientation

- Within each grain
 - Calculate misorientation from 8 surrounding elements
 - Find the minimum misorientation in each grain
 - Re-calculate the misorientation from this minimum at each point

Results: Misorientation

- Non-Local Model: 0-10% Strain

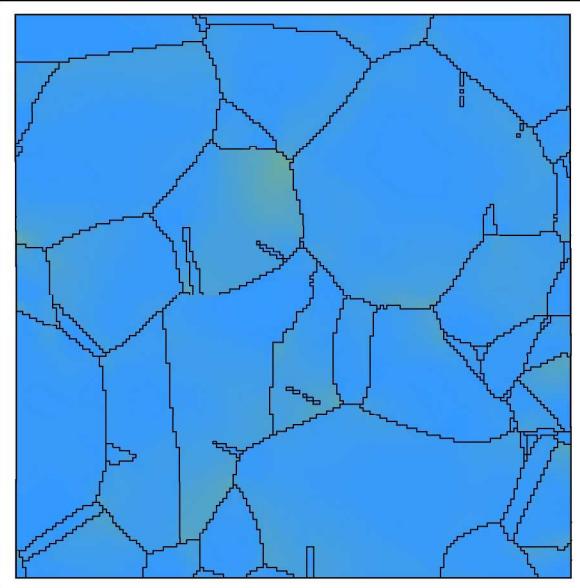
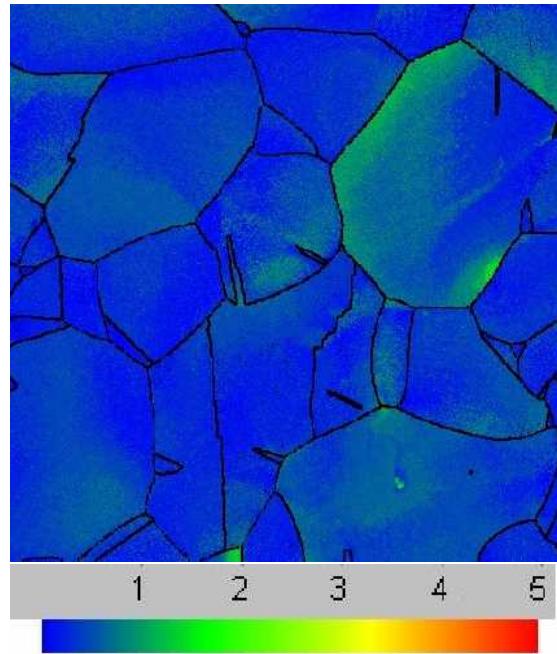
QuickTime™ and a
MPEG-4 Video decompressor
are needed to see this picture.

*Hardened grain
boundaries
causes
misorientation to
accumulate*

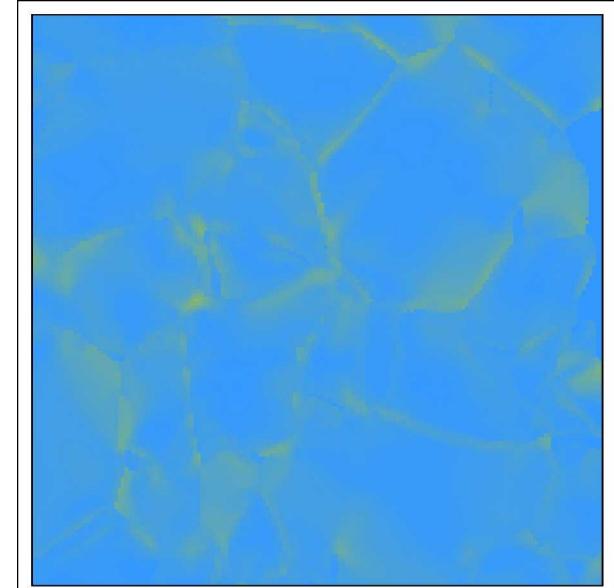
Results: Misorientation

Comparison with experiment - 1%

Local Model



Non-Local Model

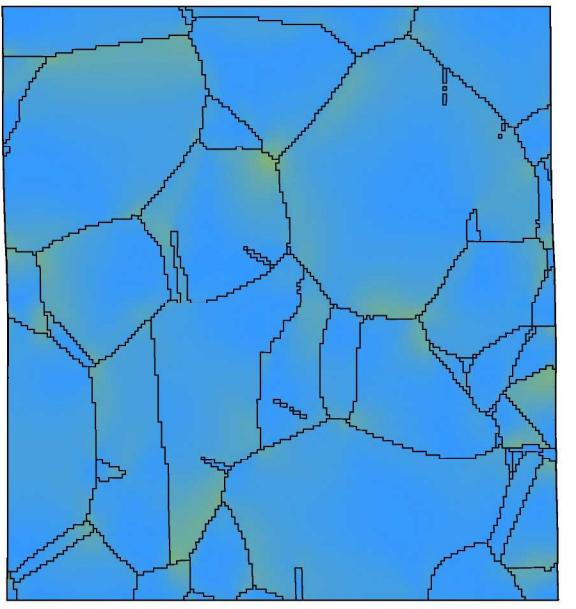
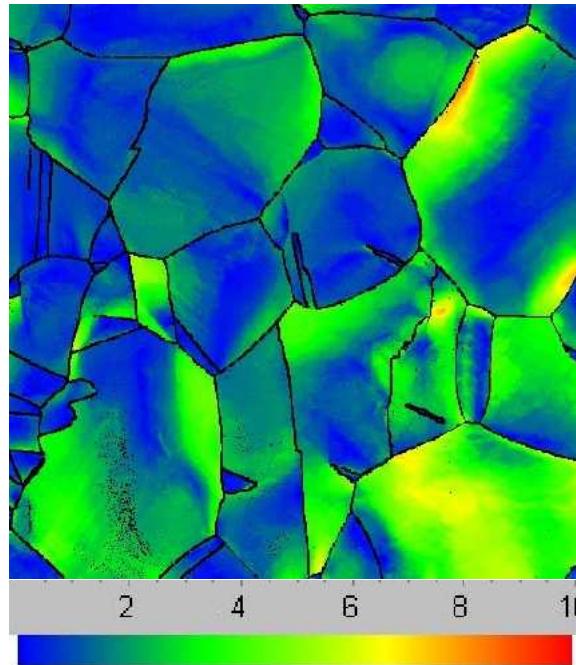


Results: Misorientation

Comparison with experiment - 5%

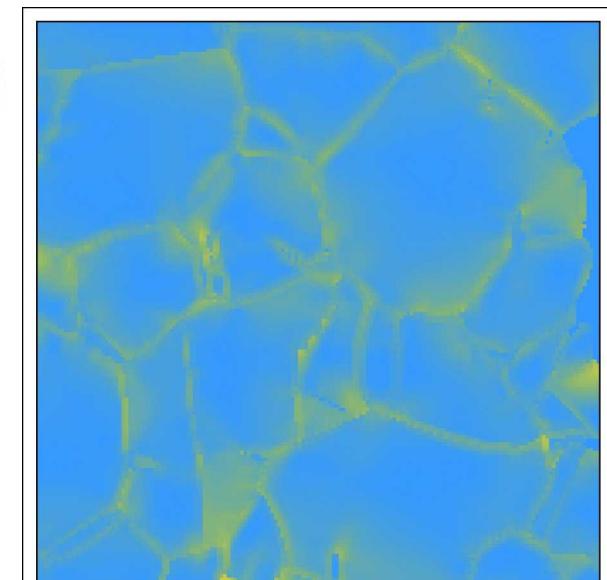
Local Model

- Underestimates



Non-local Model

- Too localized



Conclusions

- Shown that polycrystal kinematics provide a consistent approach to initializing grain boundary microstructure.
- Developed a non-local integral based model that predicts a grain size dependence of yield stress.
- Grain size dependence is closer to a d^{-1} than $d^{-0.5}$.
- Grain morphology affects the Hall-Petch behavior.
- Hardened grain boundaries causes misorientation accumulation.
- Local crystal plasticity model underestimates misorientation development, while the spatial distribution of misorientation is too localized in the non-local model.