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Cable SGEMP Simulation Needs

• Requires accurate 
resolution of dose-
enhancement and charge 
profiles near 
conductor/dielectric 
interfaces
– Results in extremely small 

mesh cells near the 
material interfaces

– Use of higher-order finite 
elements

– Ill-conditioned matrix for 
photon-transport
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CEPTRE Code
(Coupled Electron Photon Transport for Radiation Effects)

• Time-independent, deterministic, coupled 
electron-photon transport code on unstructured 
mesh

• Numerical solutions to the Boltzmann transport 
equation which describes the particle distribution 
in phase space (r, E, Ω) 

• Physics of particle-media interactions properly 
characterized by cross sections

• Discretization of Phase Space

– Multigroup approximation in energy along 
with Legendre expansion of scattering cross 
sections

– Discrete-Ordinates approximation in direction

– Finite-Element approximation in space
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Forms and Solution of
Boltzmann Transport Equation

        ,,, rQrDMrt 

          ,,, 11 rQrQr

First-order:

Second-order:

Outer Iteration over Energy Groups

Inner Iteration over Directions 

Direct or Iterative

Solutions of Space

Conventional Source Iteration

Outer Iteration over Energy Groups

Simultaneous Space-Direction

Solutions (Iterative)

CEPTRE
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Sweeps of
Structured Meshes
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Sweeps of
Unstructured Meshes
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Parallel Sweeps of
Unstructured Meshes

• Mesh decomposition

• Eliminate cycles in sweep graph

• Sweep ordering

• Communication pattern

• Violations of sweep graph

• Iterative preconditioners
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Second-order forms

Even-parity equation:

          ,,, 11 rQrQr O
O

EE
EO 

Odd-parity equation:

          ,,, 11 rQrQr E
E

OO
OE 

Self-adjoint angular flux (SAAF) equation:

          ,,, 11 rQrQr
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Second-order matrix

• Sparse block matrix

• Symmetric Positive Definite 
System

• Number of block rows: 
– Nnodes

• Block size

– NdirectionsxNdirections

• Blocks are full due to coupling 
from scattering

• Tailor-made for VBR data format

• Storage ~(Ndirections)
2xNnodes

• Run time ~(Ndirections)
2x(Nnodes)

1.5
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First- and second-order forms
exhibit different behaviors

Computing Conditions 1st order 2nd order

Time/Source
Iteration

# Iterations
Time/CG
Iteration

# Iterations

Baseline NDNEP-(d-1)/d [ln(1/cn)]-1 ND
2NEP-1

Large ND NDNEP-1 [ln(1/cn)]-1 ND
2NEP-1

KBA Decomposition NDNEP-1 [ln(1/cn)]-1 ND
2NEP-1

Diagonal 
Preconditioner

N/A N/A (c1ND+c2ND
2)NEP-1

Extended Transport 
Correction 

Preconditioner
ND

2NEP-(d-1)/d [ln(1/cn,eff)]
-1 N/A N/A

1
ha

1
ha

1
ha

1
ha
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Parallel scaling, second-order
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Scaling with number of angles,
first-order
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Scaling with number of angles,
second-order

Number of Directions (Nd)
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Scaling with scattering ratio,
first-order
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Scaling with scattering ratio,
second-order
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Cell Size, h

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

T
im

e
/I

te
ra

ti
o

n

0 0.2 0.4 0.6 0.8 1
0

10

20

30

10
-3

10-2

10
-1

100

10
1

10
2


t
= 50 c = 0.5 S

2
 = 10

-6

T
iter
 h

-3
 N

E

Scaling with cell thickness,
first-order



18

Scaling with cell thickness,
second-order

Cell Size (h)
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Group Number
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Summary

• First- and second-order forms have 
complementary strengths and weaknesses

• Both forms are being implemented in 
CEPTRE

• Either form may be used separately, or 
together as a hybrid solver

• These forms are not restricted to 
electron/photon problems


