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CTH Scaling Studies

• Data taken from ASCI Red 
scaling studies, 2004

• Comparison of production 
CTH (Int03) and rfcth with 
reference CTH (pre-AMR)

• Upper chart: familiar 
presentation of grind times 
on log-log scale

• Lower chart: weakly scaled 
parallel efficiency, derived 
from grind times

• Reasonable scaling for 
Int03, better scaling for 
reference version – WHY?

CTH Grind Time for 2gas 80x80x80
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Basis of Model

• Computational complexity of O(N3) where N is the 
length of one edge of a processor’s subdomain

• Communication complexity for the data 
exchanges is O(N2)

• Communication complexity of collective 
operations is O(log(P)) where P is the number of 
processors



A Model of CTH (flat mesh)

T = E(κ,φ)N3 + C(λ + τkN2) + S(γ log(P))

• T is the time per time step

• N is size of an edge of a processor’s subdomain

• P is the number of processors

• C and S are number of exchanges and collectives

• k is the number of variables in an exchange

• λ and τ are latency and transfer cost

• γ is the cost of one stage of collective

• E(κ,φ) is the calculation time per cell



Notes for Semi-empirical Model

• Number of halo exchanges per time step varies
– Approximately 20 for 2 processors
– More than 100 for a processor that communicates with all possible 

neighbors (six in flat-mesh mode)
• Communication profiles record 89 MPI_Allreduce transfers per time step

• Parameters  are machine dependent
• Used Pallas benchmarks on RedStorm

– PingPing values 8.3μs 0.00102 μs/byte
– Allreduce value 2.6 μs/byte

• Parameter pair is hard to quantify because operation count and 
effective floating point performance depend on code phase

• Practice is to use a measured value, typically derived from single 
processor execution time, to represent E()



Model vs. Measured execution time

Processors Time per Time Step Model

1 11.83 11.83

2 14.23 11.94

4 14.86 11.94

8 17.17 12.05

16 17.49 12.05

32 18.70 12.05

64 18.86 12.05

128 19.73 12.27

256 19.86 12.27

512 21.95 12.27

1024 22.01 12.27

2048 22.16 12.27

4096 22.10 12.27



Typical load imbalance portrait from Intel Trace Collector



CTH Model with Load Imbalance

T = Limbal E(κ,φ)N3 + C(λ + τkN2) + S(γ log(P))

• T is the execution time per time step
• N is size of an edge of a processor’s subdomain
• C and S are number of exchanges and collectives
• P is the number of processors
• k is the number of variables in an exchange
• λ and τ are latency and transfer cost
• γ is the cost of one stage of collective
• E(κ,φ) is the calculation time per cell
• Limbal is a new term representing effects of load imbalance

Execution Time with Load Imbalance
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• Term Limbal depends on several factors

– Problem size, dimension, and data 
decomposition across processors

– Number of processors and their 
mapping to the data decomposition

– Assignment of special tasks (e.g. 
writing log files) to one processor

• Quantification approach

– Define a weak scaling study on the 
simulation of interest for a small 
number of processors, say 1-16.

– Use a trace collector to measure 
communication imbalance over the 
entire simulation; derive the load 
imbalance for user code.

– Determine a statistical metric for 
load imbalance, say the mean of the 
ratios of the maximum local time for 
user code to the average local time 
for user code.

– Use this metric as the value of Limbal

in the execution time model.



Work in progress

• Quantification of load imbalance
– Uses mympic.c (U. Pittsburg) trace collection 

library and a set of text post-processing tools

– Currently examining simulations that have known 
load imbalance issues (e.g. shape charge)

• How does load imbalance vary with number of 
processors?
– 2:1.01    4:1.05    8:1.21    16:1.23    32:?

• How does load imbalance vary with computing 
platform?

• And does code phase make a difference?
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Abstract

Predicting CTH run times is extremely difficult because the actual run time activities 
within the simulation depend strongly on input specifications.  Therefore, a 
performance model for CTH must take into account the particular problem being 
simulated in order to determine which computational phases occur and the 
space/time complexity of these phases.  Part of the challenge in creating of a good 
execution time model for CTH lies in the number of ways that computational phases 
can be organized and combined.  The number of materials and their arrangement in 
the mesh form the basis of complexity analysis for a performance model.  The variety 
of options available for equation-of-state and material strength calculations that are 
done during the Lagrangian step complicate the modeling process. There are also 
options for interface tracking and methods of handling cells with multiple materials 
that introduce variations in numerical intricacy. Moreover, the sequence of 
computational phases for a time step can change during simulation, depending on 
material discard and/or fracture models.

The focus of this paper is an experimental methodology for obtaining bounds on the 
variability of per-processor and per-cycle execution time for CTH.  Results of applying 
the technique on a typical benchmark simulation for CTH, in the context of different 
domain decompositions, are presented.  The dynamic runtime information from these 
experiments is used to enhance a statically determined performance model for CTH. 
Runtime data were collected from the Red Storm supercomputer and from large Linux 
clusters at Sandia National Laboratories. 


