
Performance Modeling of CTH Run Times
on MPP and Cluster Platforms

DoD High Performance Computing Modernization
Program

2006 Users Group Conference

Denver, CO

June 26-29, 2006

Sue P. Goudy, SMTS

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2006-3933C

• To the Performance Analysis Team at Sandia for
timing data (and a viewgraph or two)

– Especially Courtenay Vaughan, Mahesh Rajan,
and Bob Benner

• To Steve Schraml for input decks, both fixed
mesh and automatic mesh refinement

• To my previous and current managers at Sandia
for supporting this work

Acknowledgments

CTH Scaling Studies

• Data taken from ASCI Red
scaling studies, 2004

• Comparison of production
CTH (Int03) and rfcth with
reference CTH (pre-AMR)

• Upper chart: familiar
presentation of grind times
on log-log scale

• Lower chart: weakly scaled
parallel efficiency, derived
from grind times

• Reasonable scaling for
Int03, better scaling for
reference version – WHY?

CTH Grind Time for 2gas 80x80x80

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1 2 4 8 16 32 64 128 256 512

Number of processors

s
e

c
/z

o
n

e
-c

y
c

le

ref

cth

rfcth

Scaled Parallel Efficiency

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 4 8 16 32 64 128 256 512

Number of processors

ref

cth

rfcth

Basis of Model

• Computational complexity of O(N3) where N is the
length of one edge of a processor’s subdomain

• Communication complexity for the data
exchanges is O(N2)

• Communication complexity of collective
operations is O(log(P)) where P is the number of
processors

A Model of CTH (flat mesh)

T = E(κ,φ)N3 + C(λ + τkN2) + S(γ log(P))

• T is the time per time step

• N is size of an edge of a processor’s subdomain

• P is the number of processors

• C and S are number of exchanges and collectives

• k is the number of variables in an exchange

• λ and τ are latency and transfer cost

• γ is the cost of one stage of collective

• E(κ,φ) is the calculation time per cell

Notes for Semi-empirical Model

• Number of halo exchanges per time step varies
– Approximately 20 for 2 processors
– More than 100 for a processor that communicates with all possible

neighbors (six in flat-mesh mode)
• Communication profiles record 89 MPI_Allreduce transfers per time step

• Parameters  are machine dependent
• Used Pallas benchmarks on RedStorm

– PingPing values 8.3μs 0.00102 μs/byte
– Allreduce value 2.6 μs/byte

• Parameter pair is hard to quantify because operation count and
effective floating point performance depend on code phase

• Practice is to use a measured value, typically derived from single
processor execution time, to represent E()

Model vs. Measured execution time

Processors Time per Time Step Model

1 11.83 11.83

2 14.23 11.94

4 14.86 11.94

8 17.17 12.05

16 17.49 12.05

32 18.70 12.05

64 18.86 12.05

128 19.73 12.27

256 19.86 12.27

512 21.95 12.27

1024 22.01 12.27

2048 22.16 12.27

4096 22.10 12.27

Typical load imbalance portrait from Intel Trace Collector

CTH Model with Load Imbalance

T = Limbal E(κ,φ)N3 + C(λ + τkN2) + S(γ log(P))

• T is the execution time per time step
• N is size of an edge of a processor’s subdomain
• C and S are number of exchanges and collectives
• P is the number of processors
• k is the number of variables in an exchange
• λ and τ are latency and transfer cost
• γ is the cost of one stage of collective
• E(κ,φ) is the calculation time per cell
• Limbal is a new term representing effects of load imbalance

Execution Time with Load Imbalance

10

11

12

13

14

15

16

17

18

19

20

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Number of processors

balanced

1 percent

5 percent

10 percent

20 percent

50 percent

• Term Limbal depends on several factors

– Problem size, dimension, and data
decomposition across processors

– Number of processors and their
mapping to the data decomposition

– Assignment of special tasks (e.g.
writing log files) to one processor

• Quantification approach

– Define a weak scaling study on the
simulation of interest for a small
number of processors, say 1-16.

– Use a trace collector to measure
communication imbalance over the
entire simulation; derive the load
imbalance for user code.

– Determine a statistical metric for
load imbalance, say the mean of the
ratios of the maximum local time for
user code to the average local time
for user code.

– Use this metric as the value of Limbal

in the execution time model.

Work in progress

• Quantification of load imbalance
– Uses mympic.c (U. Pittsburg) trace collection

library and a set of text post-processing tools

– Currently examining simulations that have known
load imbalance issues (e.g. shape charge)

• How does load imbalance vary with number of
processors?
– 2:1.01 4:1.05 8:1.21 16:1.23 32:?

• How does load imbalance vary with computing
platform?

• And does code phase make a difference?

For more information

• Vaughan, Courtenay T., Sue P. Goudy, "Analysis of an
Application on Red Storm," Cray Users Group, May 2006.

• spgoudy@sandia.gov

Abstract

Predicting CTH run times is extremely difficult because the actual run time activities
within the simulation depend strongly on input specifications. Therefore, a
performance model for CTH must take into account the particular problem being
simulated in order to determine which computational phases occur and the
space/time complexity of these phases. Part of the challenge in creating of a good
execution time model for CTH lies in the number of ways that computational phases
can be organized and combined. The number of materials and their arrangement in
the mesh form the basis of complexity analysis for a performance model. The variety
of options available for equation-of-state and material strength calculations that are
done during the Lagrangian step complicate the modeling process. There are also
options for interface tracking and methods of handling cells with multiple materials
that introduce variations in numerical intricacy. Moreover, the sequence of
computational phases for a time step can change during simulation, depending on
material discard and/or fracture models.

The focus of this paper is an experimental methodology for obtaining bounds on the
variability of per-processor and per-cycle execution time for CTH. Results of applying
the technique on a typical benchmark simulation for CTH, in the context of different
domain decompositions, are presented. The dynamic runtime information from these
experiments is used to enhance a statically determined performance model for CTH.
Runtime data were collected from the Red Storm supercomputer and from large Linux
clusters at Sandia National Laboratories.

