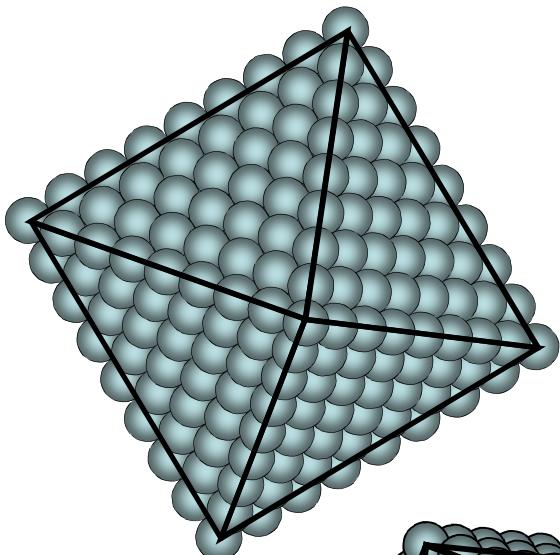
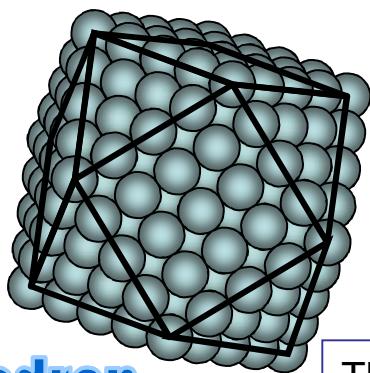


Pb Nanoprecipitates in Al: Magic-Shape Effects Due to Elastic Strain

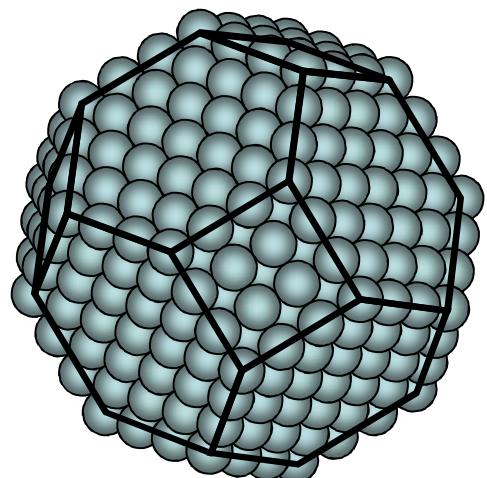
John Hamilton, Francois Leonard,
and Ulrich Dahmen



Octahedron
 $C/A=1.73$



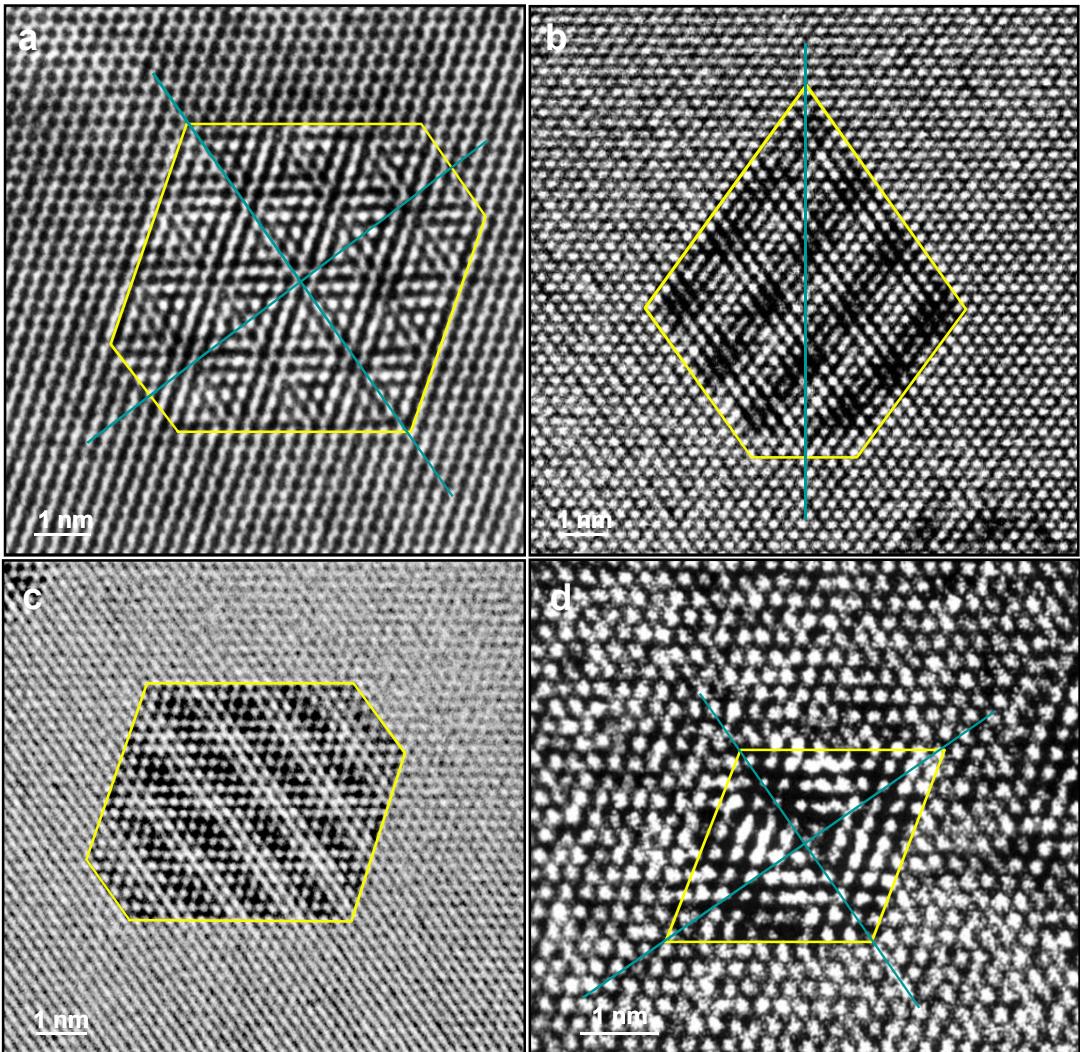
Cuboctahedron
 $C/A=0.86$



Tetrakaidecahedron
 $C/A=1.16$

These figures illustrate three regular polyhedra with O_h symmetry, spanning the range of aspect ratios, C/A , observed for Pb precipitates in Al.

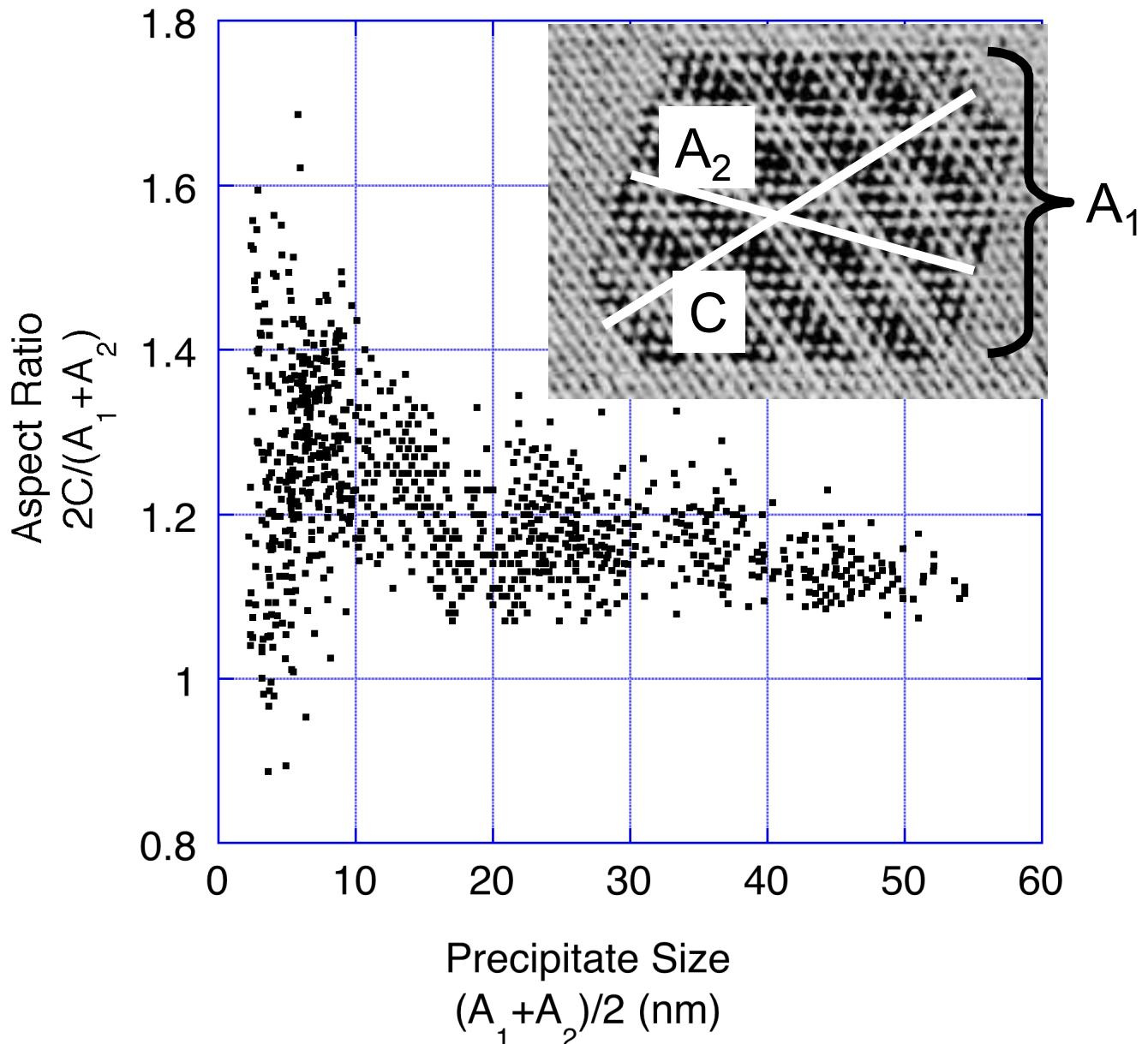
TEM Micrographs



- These micrographs suggest the variety of shapes observed experimentally for small Pb precipitates in Al.
- (a) shows a precipitate which is approximately tetrakaidecahedral as predicted by the Wulff construction.
- (b) shows an asymmetrical precipitate (bottom vertex truncated).
- (c) shows an asymmetrical precipitate (unequal distances between pairs of {111} type facets).
- (d) shows a very small octahedral precipitate.

Our Goal is to explain these size-dependent shape effects.

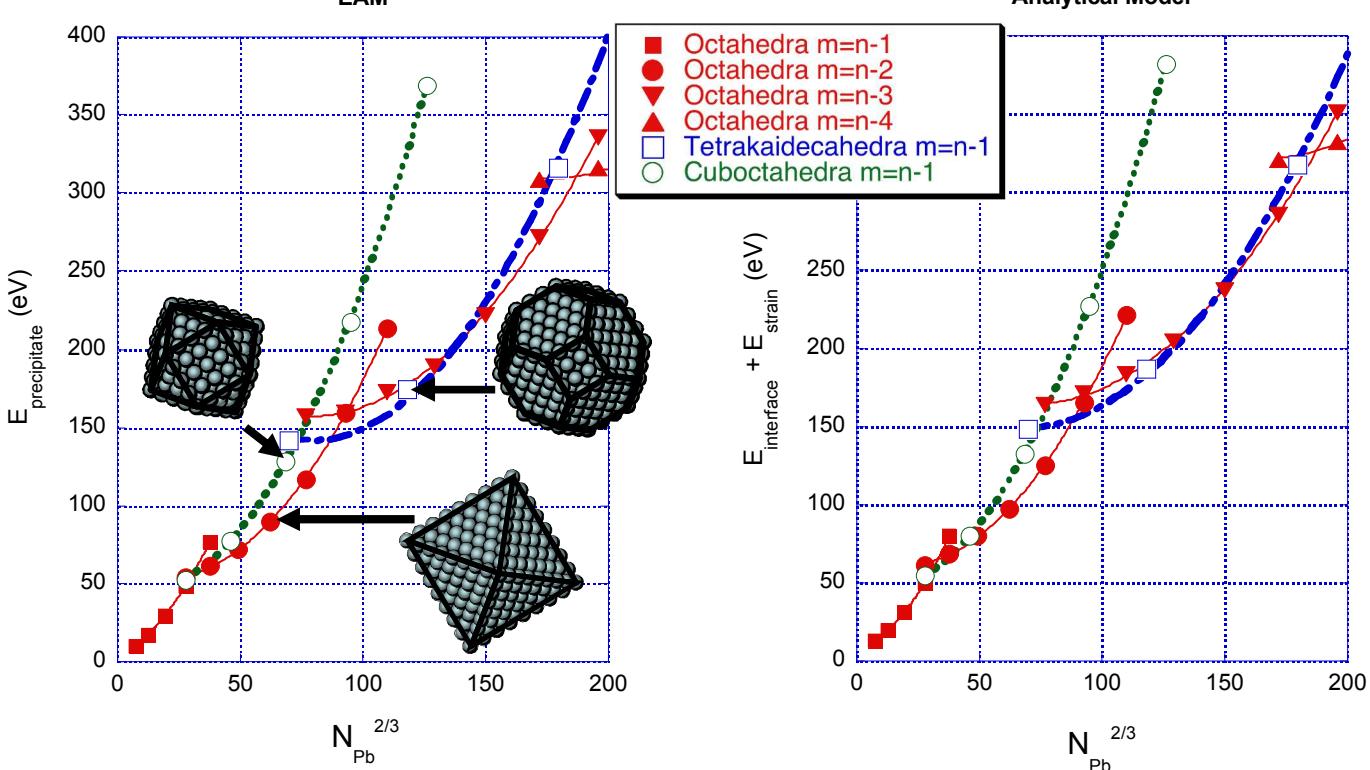
Aspect Ratio from TEM



- For large precipitates, the Wulff construction predicts an aspect ratio of 1.16, in excellent agreement with experiment.
- For small precipitates, a variety of shapes are observed and the range of aspect ratios increases dramatically.

Our Goal is to explain this size-dependent shape effect.

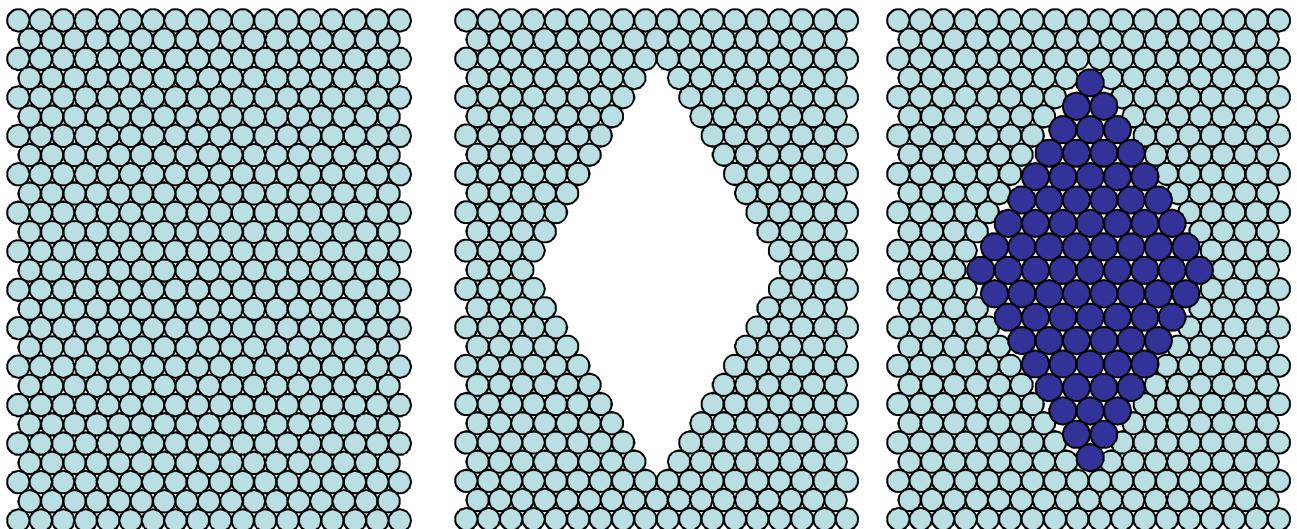
We Used EAM and an Analytical Model



- Atomistic calculation (EAM) gives precipitate energy as a function of shape and size.
- Analytic Model includes strain energy and interface energy, **but NOT edge energy**.
- EAM and Analytical Model agree proving that edge energy does not determine shape.
- The EAM and Analytical calculations are the subject of next several pages.

Edge Energy Does Not Explain Shape Effects!
What Does?

EAM Calculation

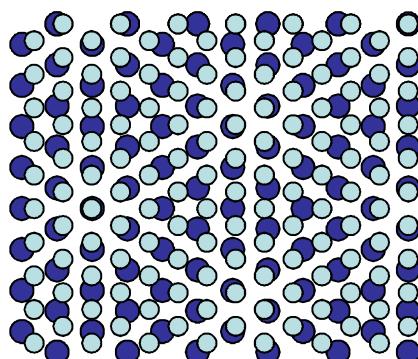


Start with Al slab

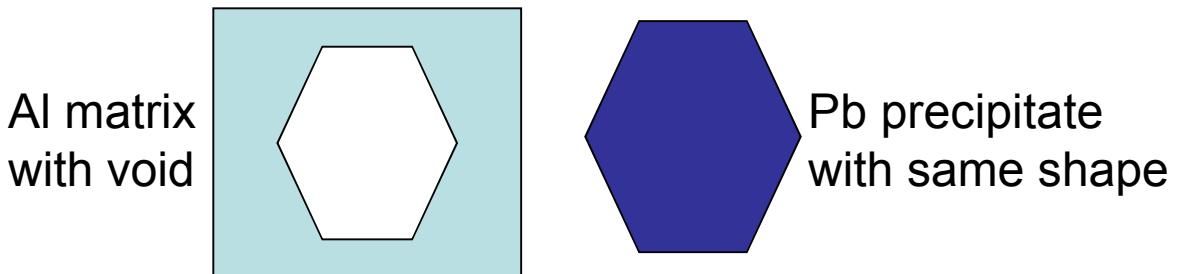
Remove Al octahedron
 $n_{\text{oct}}=11$ atoms on edge

Insert Pb octahedron
 $m_{\text{oct}}=9$ atoms on edge

- The lattice constants are $a_{\text{Al}}=4.05\text{\AA}$ and $a_{\text{Pb}}=4.95\text{\AA}$
- Since $a_{\text{Pb}}/a_{\text{Al}}=11/9$, a regular polyhedron (in this case an octahedron) with $m=9$ Pb atoms on an edge fits with zero strain in the void made by removing the same regular polyhedron with $n=11$ Al atoms on an edge.
- After relaxing atomic coordinates, EAM calculation gives E_{total} for Pb precipitate in Al slab. The total energy of the precipitate is $E_{\text{precipitate}}=E_{\text{total}}-N_{\text{Al}} E_{\text{Al}} - N_{\text{Pb}} E_{\text{Pb}}$.
- We performed this calculation for a range of sizes and for octahedra, tetrakaidecahedra, and cuboctahedra.
- Due to large size difference, Al/Pb interfaces are not coherent.



Continuum Model



- We neglect edge energy.

$$E_{\text{precipitate}} = E_{\text{strain}} + E_{\text{interface}}$$

- We consider case with homogeneous strain (i.e. similar shape for void and inserted precipitate).

$$E_{\text{strain}} = \frac{Y a_{\text{Pb}}^3 \eta^2}{4(1-\nu)} N_{\text{Pb}} \quad \eta = 1 - \left(\frac{N_{\text{Pb}}}{N_{\text{Al}}} \right)^{1/3} \frac{a_{\text{Pb}}}{a_{\text{Al}}}$$

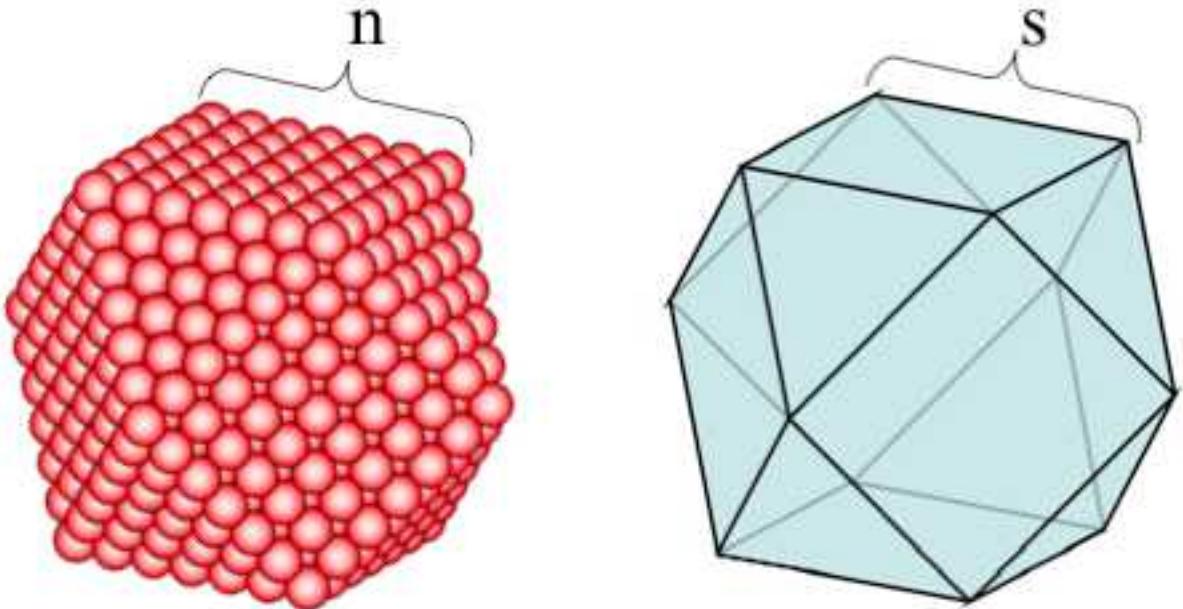
- Interface energy

$$E_{\text{interface}} = A_{111} \gamma_{111} + A_{100} \gamma_{100}$$

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

**At nanoscale, facet
lengths, facet areas,
and edge energies
are ill-defined!**

Defining Edge Lengths*

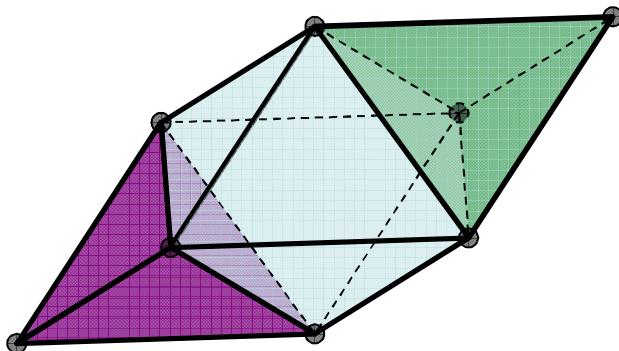


- n , the number of atoms on an edge, is well-defined.
- s , the precise edge length in length units, say \AA , is not well-defined.
- There is a fundamental problem in defining edge lengths, facet areas, and in calculating edge energies.
- Problem is related to concept of Gibbs dividing surfaces which addresses ambiguity in definition of surface position.
- This problem is solved by using Gibbs equimolar surfaces to define the facets. The facet intersections define edges precisely.
- For a cuboctahedron,

$$s = \sqrt[3]{n^3 - \frac{3n^2}{2} + \frac{11n}{10} - \frac{3}{10} \left(\frac{a}{\sqrt{2}} \right)} \approx \left[n - \frac{1}{2} + \frac{7}{60n} \right] \frac{a}{\sqrt{2}}$$

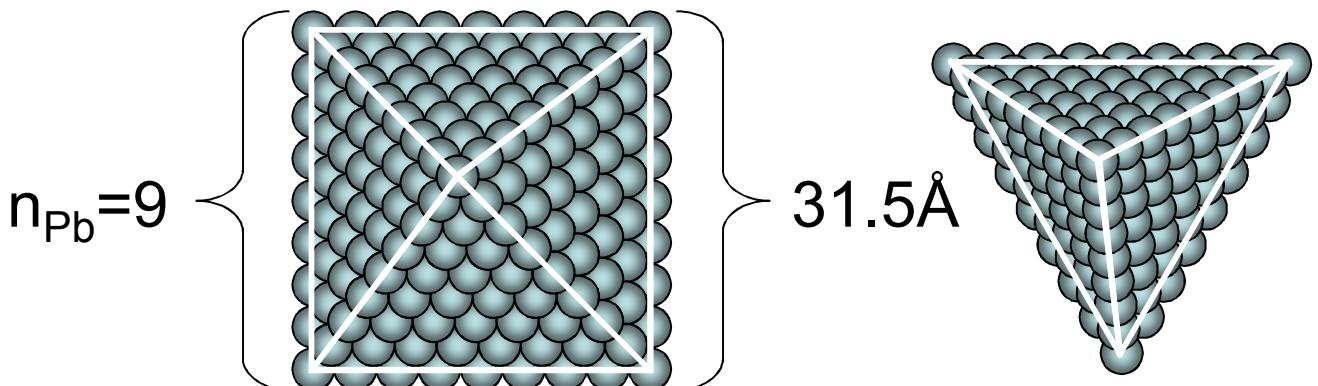
* *“Edge energies: Atomistic calculations of a continuum quantity”*,
J.C. Hamilton, Phys. Rev. B **73**, 125447 (2006).

“Magic Shapes” are Shapes with Zero Strain

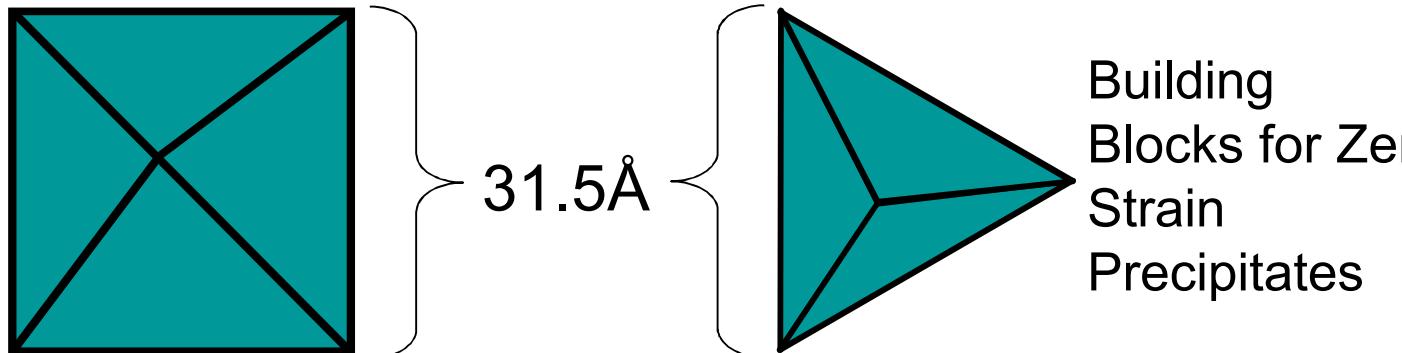
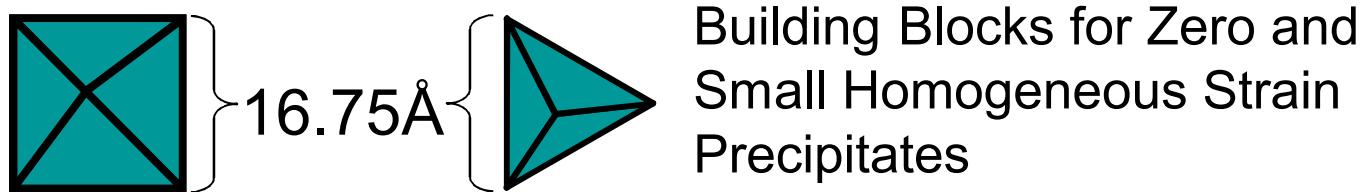
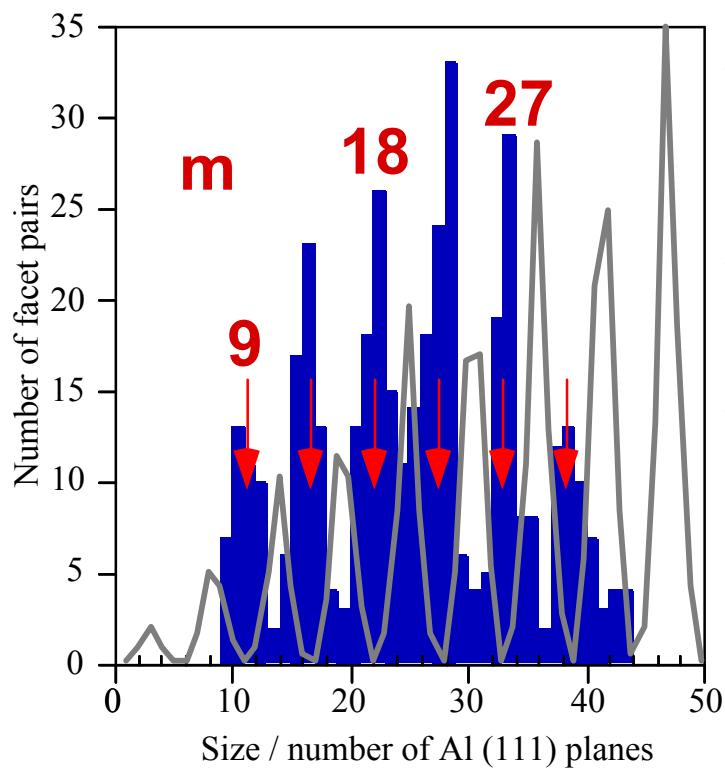


- Rhombohedral unit cell of fcc lattice can be constructed from two square pyramids and two tetrahedra.
- Consequently strain-free Pb precipitate in Al, must be constructed from “building blocks” in the shape of tetrahedra and square pyramids.
- For zero strain, building blocks must be square pyramids and tetrahedra with 9 Pb atoms on an edge.

Building Blocks for Zero Strain Precipitates



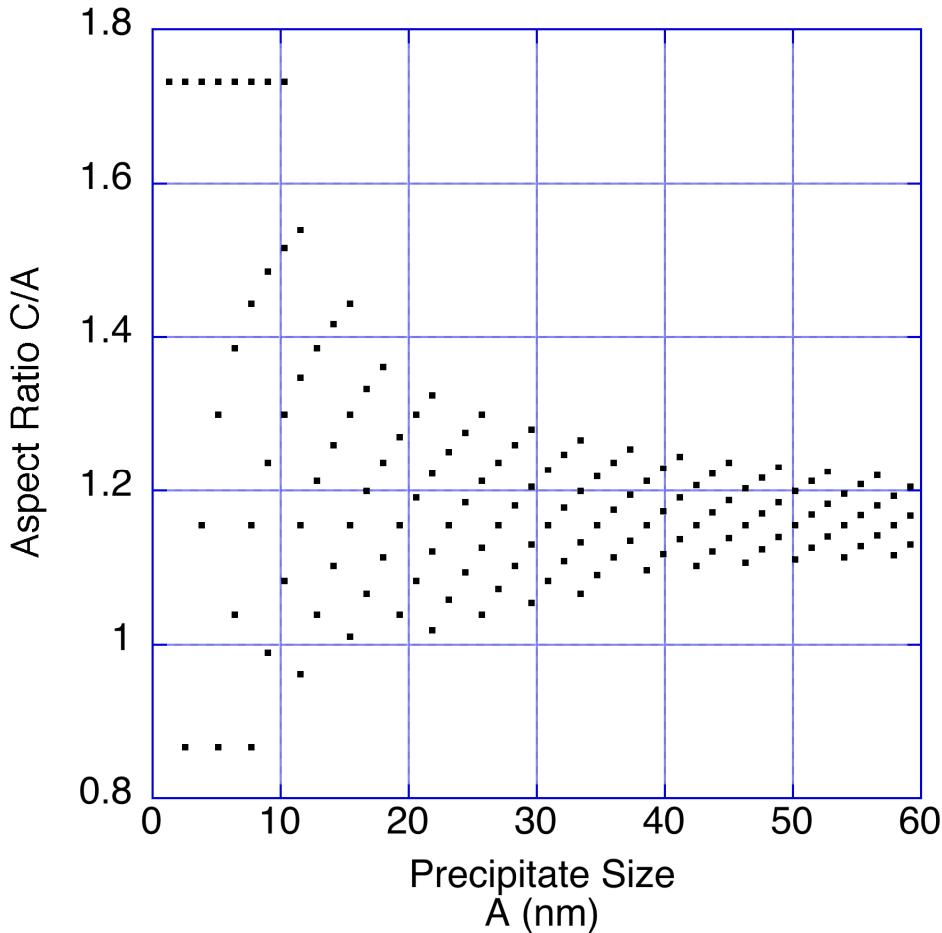
Include “Magic-Shapes” with Small Homogeneous Strains



- Histogram shows experimentally observed distances between {111} planes.
- 16.75 Å edge lengths allow building shapes with peaks with $m \approx 12, 21, 30, \dots$
- The “magic shapes” criterion for small homogeneous strain precipitates replace the criteria of “magic sizes”.

Dahmen, Xiao,
Paciornik, Johnson and
Johansen, PRL 78, 471
(1997)

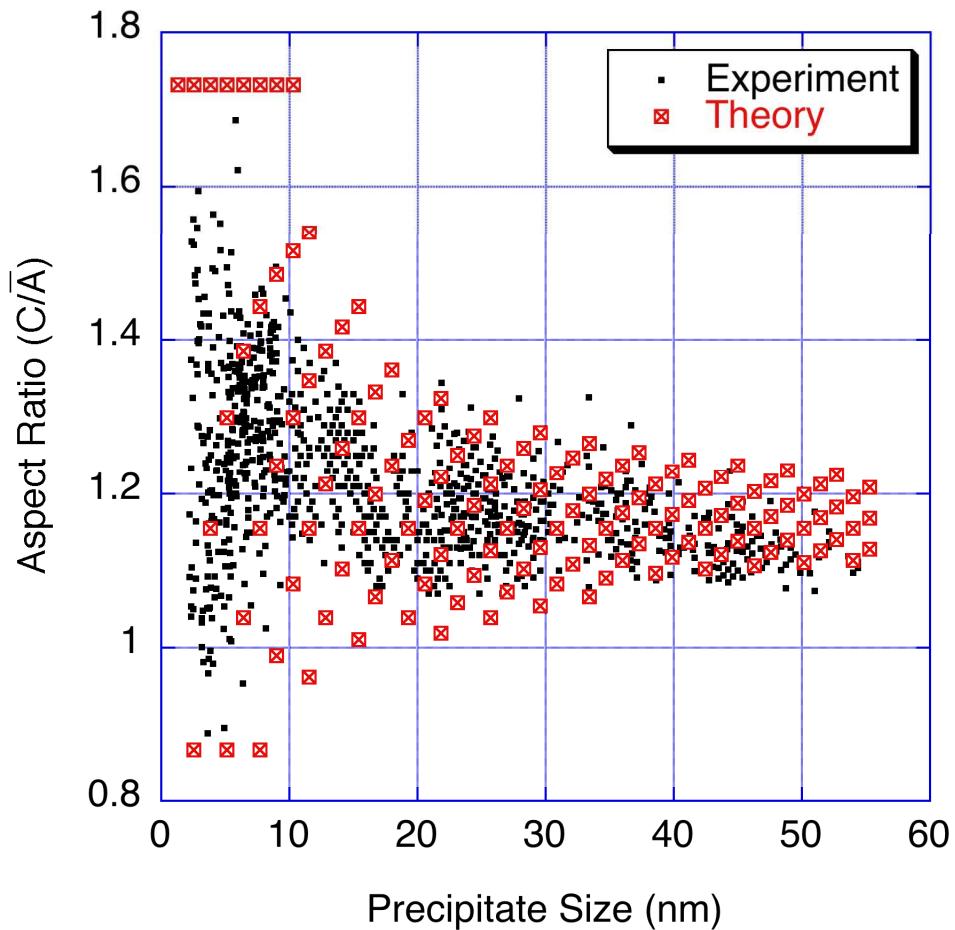
Theoretical Prediction



- **Method**

- Generate set of “magic shapes” using square pyramids and tetrahedra with $s=16.75\text{\AA}$. Choose subset with O_h symmetry.
- Strain energy for these shapes is small, so we use approximation, $E_{\text{precipitate}} = A_{111}\gamma_{111} + A_{100}\gamma_{100}$.
- Calculate E_{Wulff} , the energy of precipitate with same volume, but with Wulff shape.
- Plot Aspect Ratio for O_h magic shapes with $\Delta E = E_{\text{precipitate}} - E_{\text{Wulff}} < 100\text{eV}$.
- This energy criteria is not rigorous, but appears to account for system which while approaching equilibrium is still far from equilibrium.

“Magic-Shape” Theory Agrees With Experiment



• Conclusions

- Size-dependent shape effects for Pb in Al are not due to edge energy.
- These effects are explained by combined effect of strain and interface energies.
- Calculating edge energies and/or facet areas requires a rigorous definition of edge length. We propose Gibbs equimolar surface as a solution to this problem.