
Presentation at INFORMS Fall 2006, Pittsburgh

Opportunities for Parallelism
in Optimization Algorithms

David M. Gay

Optimization and Uncertainty Estimation

dmgay@sandia.gov

+1-505-284-1456

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Released as SAND2006-4717C.

1

SAND2006-6921C



Outline

• Motivation: do hard things faster

•• Kinds of parallelism

• Some forthcoming(?) systems

• Programming models

• Algorithmic opportunities

• Modeling-language opportunities
2



Need for Speed

• Better models (more physics)

•• Hard problems (global opt.)

• Dealing with uncertainty

◦ UQ — quantifying affects

◦◦ decisions/control — stochastic

programming

3



Single-Processor Parallelism

• Vector

•• Instruction-level

• Speculation

• Threading

4



Multiprocessor Parallelism

• SIMD

◦◦ Vector (Cray; attached proc.)

◦ Connection Machine; IBM Cell

•• MIMD

◦ Shared memory

◦◦ Distributed memory

5



Some Forthcoming? Systems — Intel

Intel (& AMD...) multicore:

• • Today dual core

• Soon quad core

• Within years, 10s or 100s of cores

◦ perhaps simpler than x86

◦◦ lower power consumption
6



Some Forthcoming? Systems — IBM Cell

IBM Cell:

• PPU + 8 (later more) SPUs

•• Soon in Playsta. 3, X Box, ...

• Balanced, heterogeneous arch.:

SPUs with 3-level memory

◦ register files; local & main store

◦◦ DMA local ⇐⇒ main store
7



Some Forthcoming? Systems — Eldorado

Cray (nee Tera) Eldorado

• MTA =⇒ MTA-2 =⇒ Eldorado

•• Many threads (128/processor)

• Custom CPU, “Commodity” boards

(Red Storm, Cray XT3)

• 4 extra tag bits / 64-bit word

8



Programming Models

• Automatic

◦◦ CPU

◦ Compiler

•• Added directives

◦ Special comments; #pragmas

• Intrusive changes

9



How Programming Models Change

Expectation for Cell seems general:

• Initially do custom programming

•• Then call library routines

◦ e.g., BLAS, LINPACK, LAPACK

• Tools (compiler, linker, ...)

automate some things

10



Opportunities for (Opt.) Algorithms

• Parallelize existing algorithms

◦◦ lib. lin. algebra may win big

•• Alt. algorithms may be attractive

◦ decomposition

◦◦ speculation

◦ polyalgs. (hetereogeneous search)

11



More Opportunity for (Opt.) Algorithms

More computing resources sometimes

make new algorithms feasible...

• Direct rather than iterative methods

•• All-at-once (SAND) rather than

block-by-block

• E.g., replace EM alg. by estimating

missing data & model pars together
12



When Performance Matters

Only resort to parallelism when serial

is too slow, then follow standard

advice...

• First get it right (& simple) in serial

•• Gradually adapt

• Profile to find hot spots

• Many kinds of tools can help.
13



Modeling-Language Opportunities

Specifically, AMPL...

• Could instantiate in parallel.

•• Higher priority = 2-way talk with

solvers, for fast problem updates.

• For decomposition algs,

parfor{i in S} solve Prob[i];

14



Closing Remarks

• These are “interesting” times.

•• Speedups can change how we work.

• Many ways to exploit parallelism.

• Reversible computing promises

more speed, less power — more new

computing.

15


