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Abstract

• OVIS is an open-source software tool for intelligent, 
real-time monitoring of computational clusters

• Visualization of deterministic information of cluster 
nodes: 
– CPU temperature

– fan speed

– memory error rate

– etc.

• Built-in statistical tools for cluster analysis and 
prediction of future cluster health problems



Traditional RAS Tools

Ganglia, Supermon and commonly-supplied 
vendor RAS systems

– Nodes within clusters treated in singleton 
– Manufacturer determined extreme limits define 

thresholds used for failure detection/avoidance



OVIS
Statistical approach

– Enables earlier detection of abnormal behavior

– Can enable controlled failure avoidance

– Includes statistical and correlation tools

Spatial organization 
– Data is displayed in a meaningful realistic geographic 

layout 

– Immediate visual feedback aids in environmental 
understanding and configuration

– Color map facilitates intuitive visualization of state   



Statistical Approach: An example of using a 
PDF to determine a measure of the relative 

probability of a value occurring



Spatial Approach



Statistics Tool



Correlation Tool



Environmental Modelling Using
Bayesian Inference



Statistical Approach: Plot of PDF of Idle Rack 
3 at height 10



OVIS – Other Features

• User-customizable color schema with automatic 
gradient shading

• Visualization of real-time data, or playback of historical 
data

• Easily adaptable to new systems
• XML cluster description

• Various readers to fetch collected data (e.g. Ganglia)



Demo



OVIS 2

• 3-D navigable cluster representation providing 
advanced visualization with drill-down 
functionality to component level

• Parallel architecture for real-time statistical 
characterization, modeling and analysis of large 
(10's of thousands of nodes) clusters

• Further data analysis tools including automated 
troubleshooting functionality



Contacts and Downloads

Contacts

ovis-help@sandia.gov

For OVIS downloads and more information:

http://ovis.ca.sandia.gov
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Problems and Solutions

P CPU utilization of different nodes could be different at 
any point in time legitimately different CPU 
temperatures

S Model steady state temperature distribution(s) with CPU 
utilization dependence

P All nodes not co-located in space non-homogeneous 
environment

S Model temperature distribution(s) with geographic 
location (e.g. distance off floor) dependence



Problems and Solutions

P Room temperature not fixed (but does have an 
acceptable range) same CPU utilization rate yields 
different temperatures at different times (though change 
is slow)

S Use new data to continuously update model parameters 
and confidence in the model

P If sampling rate too slow --> Cannot look for stability 

S Model upper and lower bounds 









Why simple statistics aren't enough

Need something about why we are using Bayesian 
inference. 



Example of Bayesian Modeling: 
Dependence of Temperature on 

Height• Bayesian learning allows us to incorporate expert knowledge 
in the model. e.g., it has been noted that on Shasta, the 
temperature T baseline varies with height h in the cluster.

• However, each individual node should behave similarly under 
similar conditions, within some variability range due to the 
manufacturing process.

• Thus, we model T as a Gaussian r.v. with mean Q(h) (Q is a 
quadratic => 3 degrees of freedom) and variance s. We can 
then infer the PDF of the 4 unknown parameters based on the 
data at hand using Bayes' formula. 

• But in fact, we are mostly interested in the most likely
parameters to characterize the model, using P(X|D,M) ∝
P(D|X,M) x P(X|M)

• Model training is automatically done until some user-defined 
maximum likelihood convergence ratio is reached



Problems

• CPU utilization of different nodes could be different at 
any point in time legitimately different CPU 
temperatures

• All nodes not co-located in space non-homogeneous 
environment

• Room temperature not fixed (but does have an 
acceptable range) same CPU utilization rate yields 
different temperatures at different times (though change 
is slow)

• Sampling rate too slow --> Cannot look for stability --> 
can only compare with upper and lower bounds



Solutions

• Model steady state temperature distribution(s) with CPU 
utilization dependence

• Model temperature distribution(s) with geographic 
location (e.g. distance off floor) dependence

• Use new data to continuously update model parameters 
and confidence in the model

• Model upper and lower bounds and call anything in 
between good though must detect shift in model 
(perhaps if many are falling out of bounds in same 
direction).



OVIS’s Interface

OVIS can be used either in command-line mode or with a 
GUI Interface that:

– provides smooth transition between raw data and statistics 
and derived data and visualization,

– facilitates system administrator analyses for configuration 
and monitoring of a system,

– supports a variety of drop-in monitoring and analysis 
modules.



Current functionality

• Provide raw data visualization and archiving

• Provide statistical characterization, Bayesian modeling 
and analysis – not very fast and needs a homogeneous 
glob to work on



Posterior

• P(X|D,M) = P(D|X,M) x P(X|M) / P(D|M)

• P(X|D,M) (posterior) is the probability distribution of 
model parameters given our data and choice of model. 

• We chose the particular parameter set which yields the 
maximum of the PDF as most likely and use it and the 
model as the basis for comparison with any individual 
node



Likelihood

• P(X|D,M) = P(D|X,M) x P(X|M) / P(D|M)

• P(D|X,M) (likelihood) is the probability distribution of 
actual data over all sets of parameters for the model



Prior

•P(X|D,M) = P(D|X,M) x P(X|M) / P(D|M)

•P(X|M) (prior) is the probability distribution of 
the parameter sets of the model

– For initial calculation allows input of expert knowledge
• Model selection

• Knowledge of the actual distribution of parameter sets (we 
use a uniform distribution because of lack of knowledge)

– Posterior from previous iteration is used on 
subsequent iterations



Evidence

• P(X|D,M) = P(D|X,M) x P(X|M) / P(D|M)

• P(D|M) (evidence) is a normalization term calculated by 
summing the posteriors before normalization has 
occurred (total CDF = 1)



Statistically Recognizable Abnormalities

Emulate MPI failure – suspend 
one node, temperature rises in 
polling nodes

Room temperature 
changes – affect nodes 
in uncorrelated job 
groups



Demo: Example Analysis 
Sequence• General overview of variables:

– Fan Initial
• Faster around gaps

– Altering Airflow - Fan
• Problem solved when plugged racks

– Temperature
• Jobs come in and out (propagation of jobs onto the cluster starting at higher 

numbers)
• Natural vertical gradient
• Also hot near floor
• Node 86

• Inference Model (Non-uniform and non-linear environmental effects)

– Fit to Normal distribution with 2nd order polynomial (function of height) as its 
mean

– (screen data) converging likelihood, increasing confidence

• Abnormality Detection  (Model comparison with the inferred curve)

– Node 86



Distribution of data values around inferred values- idle case (1 timestep)
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Distribution of data values around inferred values- loaded case (38 timesteps)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-6.41667 -5.25 -4.08333 -2.91667 -1.75 -0.583333 0.583333 1.75 2.91667 4.08333 5.25

data_val - inferred_val (binned)

Di
st

ri
bu

tio
n 

of
 d

at
a 

va
lu

es
 a

ro
un

d 
in

fe
rr

ed
 v

al
ue

s

data

std_normal
inferred
distribution



Natural Variations in Individual 
Nodes



Characteristics Persist Across Different 
Job and Environmental Conditions 



Notes
• Jags are the same in different circs, even if the curves (absolute and 

relative) arent. Individual variations overwhelm the conditions ?

• Research things: 

– how does model change as room temp change ? Does that differ from 
how model changes when nodes run harder (CPU utiliation)

– Model – not over fitting



Recognizable Abnormalities (cont’d)

Partially blocked fan 
– fan speed 
increases in 
response to rising 
temperatures, while 
fans on other nodes 
remain at constant 
speed



Non-Uniform, Non-Linear 
Environmental Effects



Analysis and Monitoring
• Analysis research 

– Understanding the system, changing likelihood's, other machine 
learning issues (clustering, adaptive methods etc.), time 
dependencies, dynamic issues, plotting capabilities, other 
variables (e.g., memory error rates). 

– Many different jobs – what is a statistically significant set? 

– Failure prediction and interactions with resource management 

• Monitoring -- System administrators
– Initial set up (HP) and effects of changes 

– Silently models, monitors and provides descriptive colour maps. 

– Currently addressing a subset of the problem – thermal 
issues/airflow/cooling



Needs associated with RAS

• Advance warning of impending faults

• Fault detection

• Diagnostic help to identify actual problem(s)

• Interface to batch scheduler

• Interface to trigger check-point



Real-Time Requirements 
for Statistical Approach

Data sampling intervals short relative to 
change in monitored variables
Data processing must keep pace with 
sampling
Only do comparisons when data is stable



Probabilistic Characterization 
Using Bayesian Inference

The keystone of our approach is Bayesian inference. 
Reminder: Bayes’ Theorem:

P(X|D,M) = P(D|X,M) x P(X|M) / P(D|M)

or less formally:    posterior  = likelihood  x prior   / evidence

– X is a set of model parameters to be inferred (e.g., polynomial 
coefficients and variance in the model above);

– D is the data, i.e., measurements of the variables that are present in 
the model. 

– M is the probabilistic model (e.g., temperature is distributed as a 
Gaussian r.v. whose parameters have a polynomial dependence on 
height in the cluster;



• After model inference has been done (either with training data or "live" 
data), we have a stochastic model whose parameters optimally fit the data.

– E.g., for idle rack 3:
• T ~ N(0.005 h2 -0.1 h + 23, 1.5)

– Outliers can be defined automatically based on user-defined 
thresholds

• RP({h=10,T=23} | {0.005, -0.1 ,23, 1.5},M) ≈ 95%
• RP({h=10,T=25} | {0.005, -0.1 ,23, 1.5},M) ≈ 25%

Abnormality Detection Using the Inferred 
Model



Approach Summary

• Use statistical approach for probabilistic modeling using 
Bayesian inference 

• Use these probabilistic characterizations to identify outliers, 
hot spots, etc. 

• Use the constant influx of incoming data to update and 
improve the existing probabilistic models (machine learning).

• Scope the problem (thermal issues) for technique 
development then expand (memory errors, fans, voltages, 
cross-correlations)



How Is This Different and Where Is the 
Intelligence?

• Thresholds in terms of probability rather than raw data
• Determined by statistical processing on real data
• Numerical threshold values are learned and dynamic

– Will change in response to aging, environmental effects, etc.

• Environmental modeling



Ganglia on Shasta



Temp vs. Time Plots on Shasta Cluster


