

An Overview of the Thyra Interoperability Effort for Abstract Numerical Algorithms within Trilinos

Roscoe A. Bartlett

Department of Optimization and Uncertainty Estimation

Sandia National Laboratories

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental Thyra ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0 =>September 2006?
- Wrapping it up

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental Thyra ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0 =>September 2006?
- Wrapping it up

Trilinos website

<http://software.sandia.gov/trilinos>

Trilinos is being developed to:

- Provide a **suite of numerical solvers** to support predictive simulation for Sandia's customers
- Provide a **decoupled and scalable development environment** to allow for **algorithmic research** and **production capabilities**
- Provide support for growing SQA requirements
- **Strategic Goals?**

At its most basic level Trilinos provides:

- A **common source code repository** and management system (CVS based)
- **Configuration and building support** (autoconf/automake based)
- A common infrastructure for SQA
 - **Bug reporting and tracking** (i.e. Bugzilla)
 - **Automated regression testing and reporting** (test harness, results emails and webpage)
- Developer and user **communication** (i.e. Mailman email lists)
- Common integrated **documentation** system (Trilinos website and Doxygen)
- Provides independent development environment in terms of “**packges**”

Objective	Package(s)	Trilinos Package Summary
Linear algebra objects	Epetra, Jpetra, Tpetra	Trilinos 7.0 September 2006
Krylov solvers	AztecOO, Belos, Komplex	
ILU-type preconditioners	AztecOO, IFPACK	
Multilevel preconditioners	ML, CLAPS	
Eigen problems	Anasazi	
Block preconditioners	Meros	
Direct sparse linear solvers	Amesos	
Direct dense solvers	Epetra, Teuchos, Pliris	
Abstract interfaces	Thyra	
Nonlinear system solvers	NOX, LOCA, CAPO	
Time Integrators/DAEs	Rythmos	
C++ utilities, (some) I/O	Teuchos, EpetraExt, Kokkos	
Trilinos Tutorial	Didasko	
“Skins”	PyTrilinos, WebTrilinos, Star-P, Stratimikos	
Simulation-Constrained Optimization	MOOCHO	
Archetype package	NewPackage	
Other new in 7.0 release	Galeri, Isorropia, Moertel, RTOp	

- **Scalable Solvers:** As problem size and processor counts increase, the cost of the solver will remain a nearly fixed percentage of the total solution time.
- **Hardened Solvers:** Never fail unless problem essentially unsolvable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.
- **Full Vertical Coverage:** Provide leading edge capabilities from basic linear algebra to transient and optimization solvers.
- **Grand Universal Interoperability:** All Trilinos packages will be interoperable, so that any combination of solver packages that makes sense algorithmically will be possible within Trilinos.
- **Universal Solver RAS:** Trilinos will be:
 - Reliable: Leading edge hardened, scalable solutions for each of these applications
 - Available: Integrated into every major application at Sandia
 - Serviceable: Easy to maintain and upgrade within the application environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Trilinos Development Team

Ross Bartlett

Lead Developer of Thyra and MOOCHO
Developer of Rythmos

Paul Boggs

Developer of Thyra

Todd Coffey

Lead Developer of Rythmos

Jason Cross

Developer of Jpetra

David Day

Developer of Komplex

Clark Dohrmann

Developer of CLAPS

Michael Gee

Developer of ML, NOX

Bob Heaphy

Lead developer of Trilinos SQA

Mike Heroux

Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex, IFPACK, Thyra, Tpetra
Developer of Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk

Developer of Anasazi

Robert Hoekstra

Lead Developer of EpetraExt
Developer of Epetra, Thyra, Tpetra

Russell Hooper

Developer of NOX

Vicki Howle

Lead Developer of Meros
Developer of Belos and Thyra

Jonathan Hu

Developer of ML

Sarah Knepper

Developer of Komplex

Tammy Kolda

Lead Developer of NOX

Joe Kotulski

Lead Developer of Pliris

Rich Lehoucq

Developer of Anasazi and Belos

Kevin Long

Lead Developer of Thyra,
Developer of Belos and Teuchos

Roger Pawlowski

Lead Developer of NOX

Michael Phenow

Trilinos Webmaster
Lead Developer of New_Package

Eric Phipps

Developer of LOCA and NOX

Marzio Sala

Lead Developer of Didasko and IFPACK
Developer of ML, Amesos

Andrew Salinger

Lead Developer of LOCA

Paul Sexton

Developer of Epetra and Tpetra

Bill Spotz

Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley

Lead Developer of Amesos and New_Package

Heidi Thornquist

Lead Developer of Anasazi, Belos and Teuchos

Ray Tuminaro

Lead Developer of ML and Meros

Jim Willenbring

Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams

Developer of Epetra, EpetraExt, AztecOO, Tpetra

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental Thyra ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
- Wrapping it up

Categories of Abstract Problems and Abstract Algorithms

Trilinos Packages

⌚ **Linear Problems:** Given linear operator (matrix) $A \in \mathbf{R}^{n \times n}$

⌚ **Linear equations:** Solve $Ax = b$ for $x \in \mathbf{R}^n$ Belos

⌚ **Eigen problems:** Solve $Av = \lambda v$ for (all) $v \in \mathbf{R}^n$ and $\lambda \in \mathbf{R}$ Anasazi

⌚ **Nonlinear Problems:** Given nonlinear operator $f(x, p) \in \mathbf{R}^{n+m} \rightarrow \mathbf{R}^n$

⌚ **Nonlinear equations:** Solve $f(x) = 0$ for $x \in \mathbf{R}^n$ NOX

⌚ **Stability analysis:** For $f(x, p) = 0$ find space $p \in \mathcal{P}$ such that $\frac{\partial f}{\partial x}$ is singular LOCA

⌚ **Transient Nonlinear Problems:**

⌚ **DAEs/ODEs:** Solve $f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x'_0$
for $x(t) \in \mathbf{R}^n, t \in [0, T]$

⌚ **Optimization Problems:**

⌚ **Unconstrained:** Find $p \in \mathbf{R}^m$ that minimizes $g(p)$

Rythmos

⌚ **Constrained:** Find $x \in \mathbf{R}^n$ and $p \in \mathbf{R}^m$ that:
minimizes $g(x, p)$
such that $f(x, p) = 0$

MOOCHO

Introducing Abstract Numerical Algorithms

What is an abstract numerical algorithm (ANA)?

An ANA is a numerical algorithm that can be expressed abstractly solely in terms of vectors, vector spaces, linear operators, and other abstractions built on top of these without general direct data access or any general assumptions about data locality

Example Linear ANA (LANA) : Linear Conjugate Gradients

Given:

$A \in \mathcal{X} \rightarrow \mathcal{X}$: s.p.d. linear operator

$b \in \mathcal{X}$: right hand side vector

Find vector $x \in \mathcal{X}$ that solves $Ax = b$

Key Point

If implemented well with the right infrastructure, ANAs can be extremely reusable!

Linear Conjugate Gradient Algorithm

Compute $r^{(0)} = b - Ax^{(0)}$ for the initial guess $x^{(0)}$.

for $i = 1, 2, \dots$

$$\rho_{i-1} = \langle r^{(i-1)}, r^{(i-1)} \rangle$$

$$\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \quad (\beta_0 = 0)$$

$$p^{(i)} = r^{(i-1)} + \beta_{i-1}p^{(i-1)} \quad (p^{(1)} = r^{(1)})$$

$$q^{(i)} = Ap^{(i)}$$

$$\gamma_i = \langle p^{(i)}, q^{(i)} \rangle$$

$$\alpha_i = \rho_{i-1}/\gamma_i$$

$$x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)}$$

$$r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)}$$

check convergence; continue if necessary

Types of operations Types of objects

linear operator applications

Linear Operators

- A

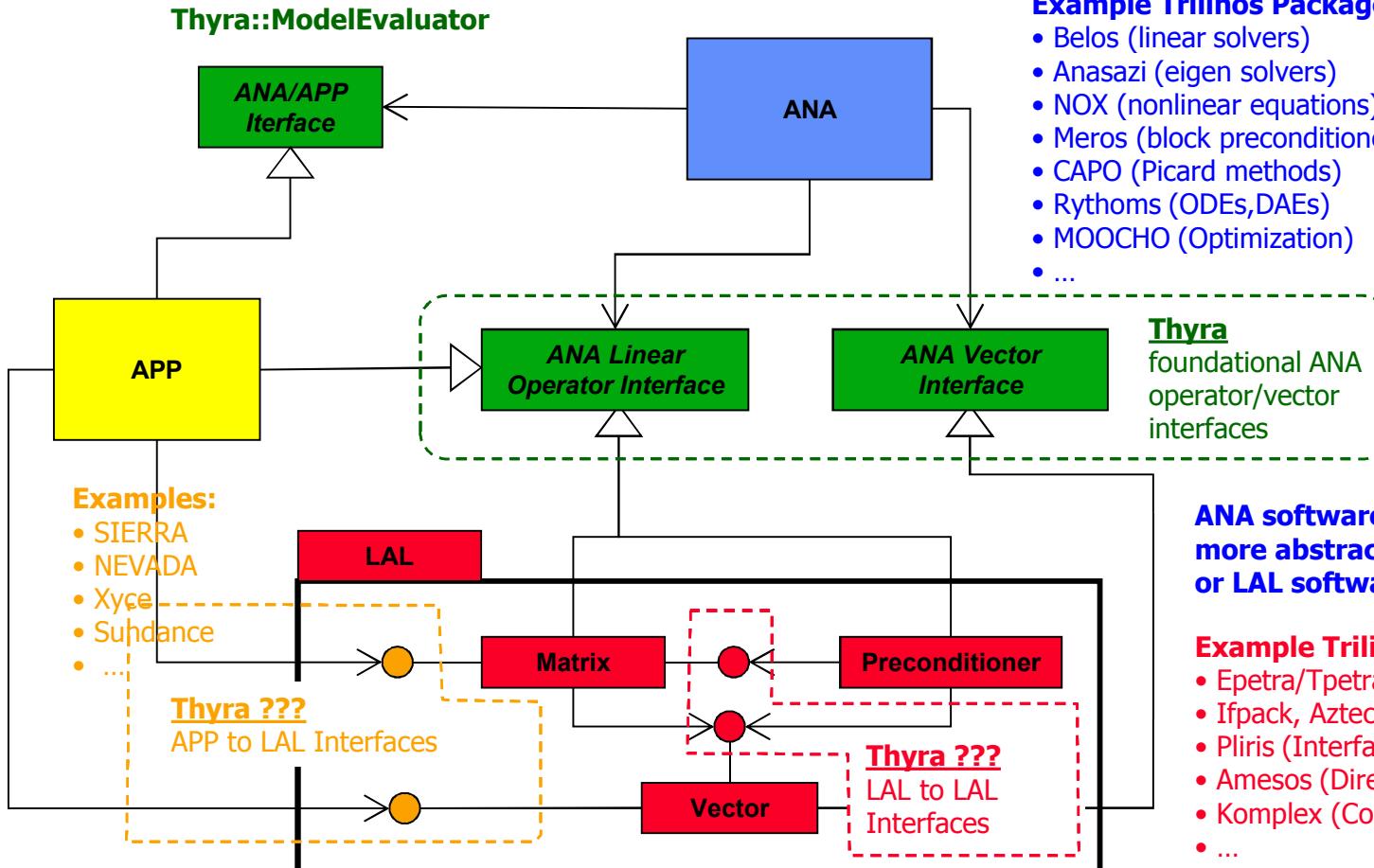
vector-vector operations

Vectors

- r, x, p, q

Scalar operations

Scalars


- $\rho, \beta, \gamma, \alpha$

scalar product
 $\langle x, y \rangle$ defined by
vector space

Vector spaces?

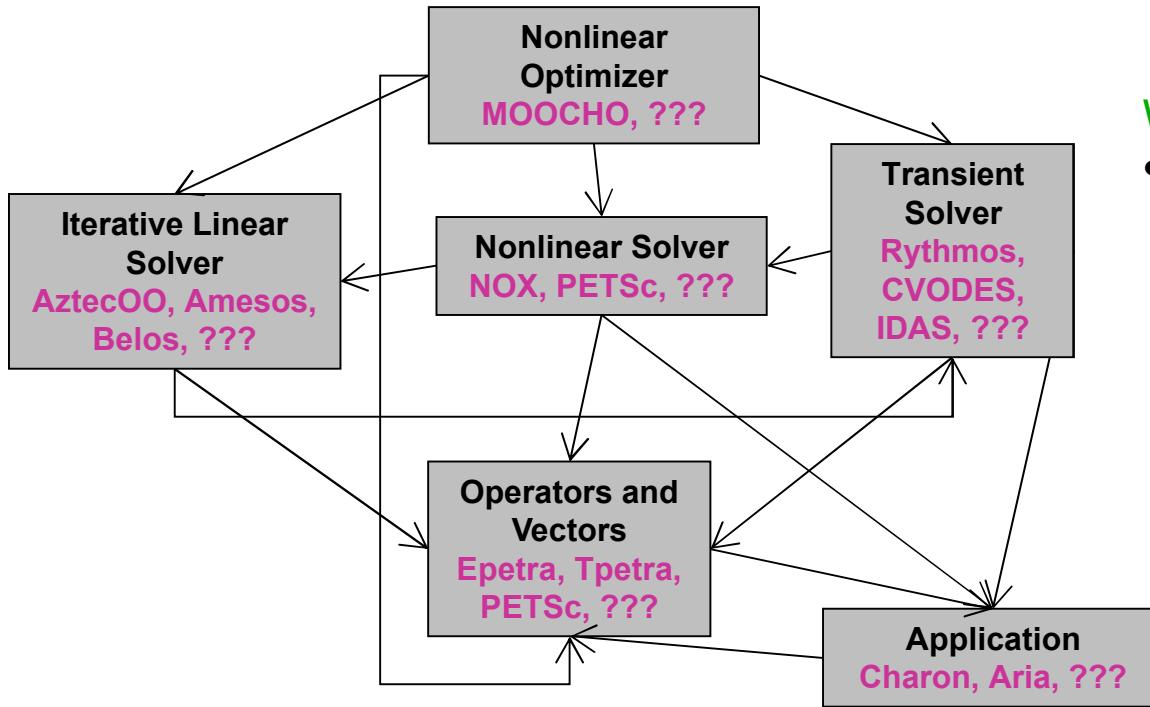
- \mathcal{X}

Software Componentization and Trilinos Interfaces

Three Different Types of Software Components

- 1) **ANA : Abstract Numerical Algorithm** (e.g. linear solvers, eigen solvers, nonlinear solvers, stability analysis, uncertainty quantification, transient solvers, optimization etc.)
- 2) **LAL : Linear Algebra Library** (e.g. vectors, sparse matrices, sparse factorizations, preconditioners)
- 3) **APP : Application** (the model: physics, discretization method etc.)

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental Thyra ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
- Wrapping it up


- **Scalable Solvers:** As problem size and processor counts increase, the cost of the solver will remain a nearly fixed percentage of the total solution time.
- **Hardened Solvers:** Never fail unless problem essentially unsolvable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.
- **Full Vertical Coverage:** Provide leading edge capabilities from basic linear algebra to transient and optimization solvers.
- **Grand Universal Interoperability:** All Trilinos **packages** will be interoperable, so that any combination of solver packages that makes sense algorithmically will be **possible** within Trilinos.
- **Universal Solver RAS:** Trilinos will be:
 - **Reliable:** Leading edge hardened, scalable solutions for each of these applications
 - **Available:** Integrated into every major application at Sandia
 - **Serviceable:** Easy to maintain and upgrade within the application environment.

Thyra is being developed to address this issue

Courtesy of Mike Heroux, Trilinos Project Leader

Interoperability is Especially Important to Optimization

Numerous interactions exist between layered abstract numerical algorithms (ANAs) in a transient optimization problem

What is needed to solve problem?

- Standard interfaces to break $O(N^2)$ 1-to-1 couplings
 - Operators/vectors
 - Linear Solvers
 - Nonlinear solvers
 - Transient solvers
 - etc.

Thyra is being developed to address interoperability of ANAs

Key Points

- Higher level algorithms, like optimization, require a lot of interoperability
- Interoperability and layering must be “easy” or these configurations will not be achieved in practice

Examples of ANA Interoperability and Layering : Rythmos

Solve $f(\dot{x}(t), x(t), t) = 0, t \in [t_0, t_f], x(t_0) = x_0, \dot{x}(t_0) = \dot{x}_0$

for $x(t) \in \mathbf{R}^n, t \in [t_0, t_f]$

Time Stepper

Advance $x(t_k)$ to $x(t_{k+1})$
where $t_{k+1} = t_k + \Delta t_k$



Implicit Backward Euler method

Solve $f\left(\frac{x_{k+1} - x_k}{\Delta t_k}, x_{k+1}, t_{k+1}\right) = 0$ for x_{k+1}

Nonlinear equations

Solve $r(z) = 0$ for $z \in \mathbf{R}^n$

Newton's method (e.g. NOX)

Choose initial guess z_0 , tolerance η
for $k = 0, 1, \dots$

If "converged" **Stop!**

Solve $\frac{\partial r(z_k)}{\partial z} \delta z_k = -r(z_k)$ for δz

Choose α using a line search method

$z_{k+1} = z_k + \alpha \delta z_k$

end for

Linear equations

Solve $Ax = b$ for $x \in \mathbf{R}^n$

Preconditioned GMRES

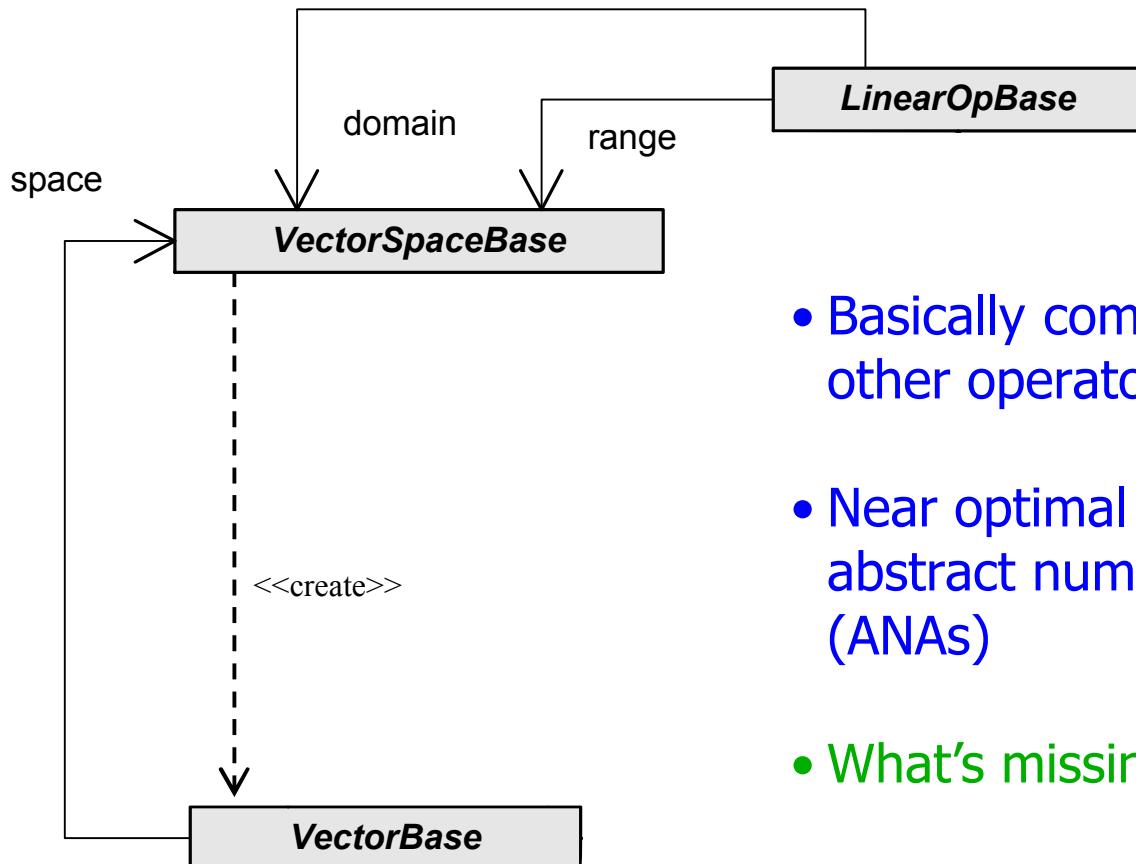
Iterate to "convergence"

$PAx = Pb$

Operator and Preconditioner applications

Apply $y = Ax$

Apply $y = Px$


Matrix-free
or Matrix?

Preconditioners can be defined in many different ways

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- [Fundamental Thyra ANA operator/vector interfaces](#)
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
- Wrapping it up

Fundamental Thyra ANA Operator/Vector Interfaces

- Basically compatible with many other operator/vector interfaces
- Near optimal for many but not all abstract numerical algorithms (ANAs)
- What's missing?
=> Multi-vectors!

Introducing Multi-Vectors

What is a multi-vector?

- An m multi-vector V is a tall thin dense matrix composed of m column vectors v_j

$$V = \begin{bmatrix} v_1 & v_2 & \dots & v_m \end{bmatrix} \in \mathcal{S} \times \mathbf{R}^m$$

What ANAs can exploit multi-vectors?

- Block linear solvers (e.g. block GMRES)
- Block eigen solvers (i.e. block Arnoldi)
- Compact limited memory quasi-Newton
- Tensor methods for nonlinear equations

Why are multi-vectors important?

- Cache performance
- Reduce global communication

Examples of multi-vector operations

- Block update

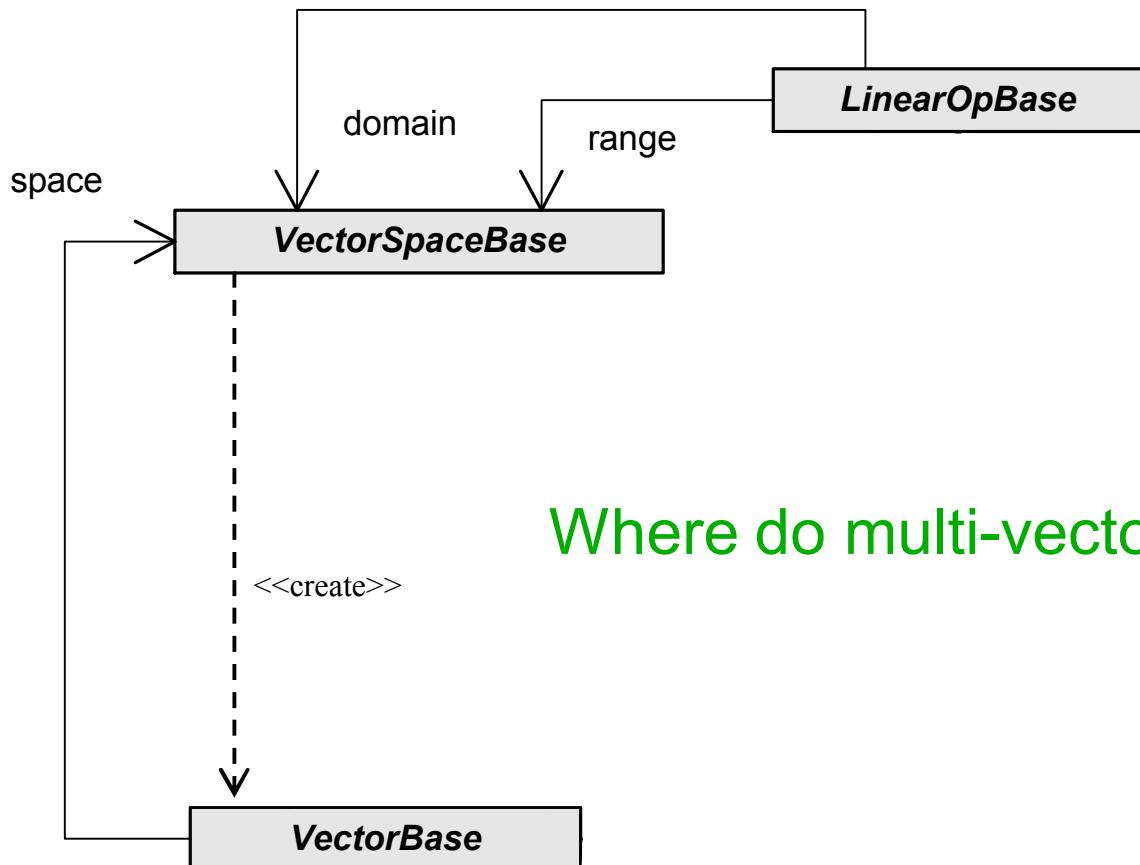
$$Y = Y + X \quad Q$$

Example: $m = 4$ columns

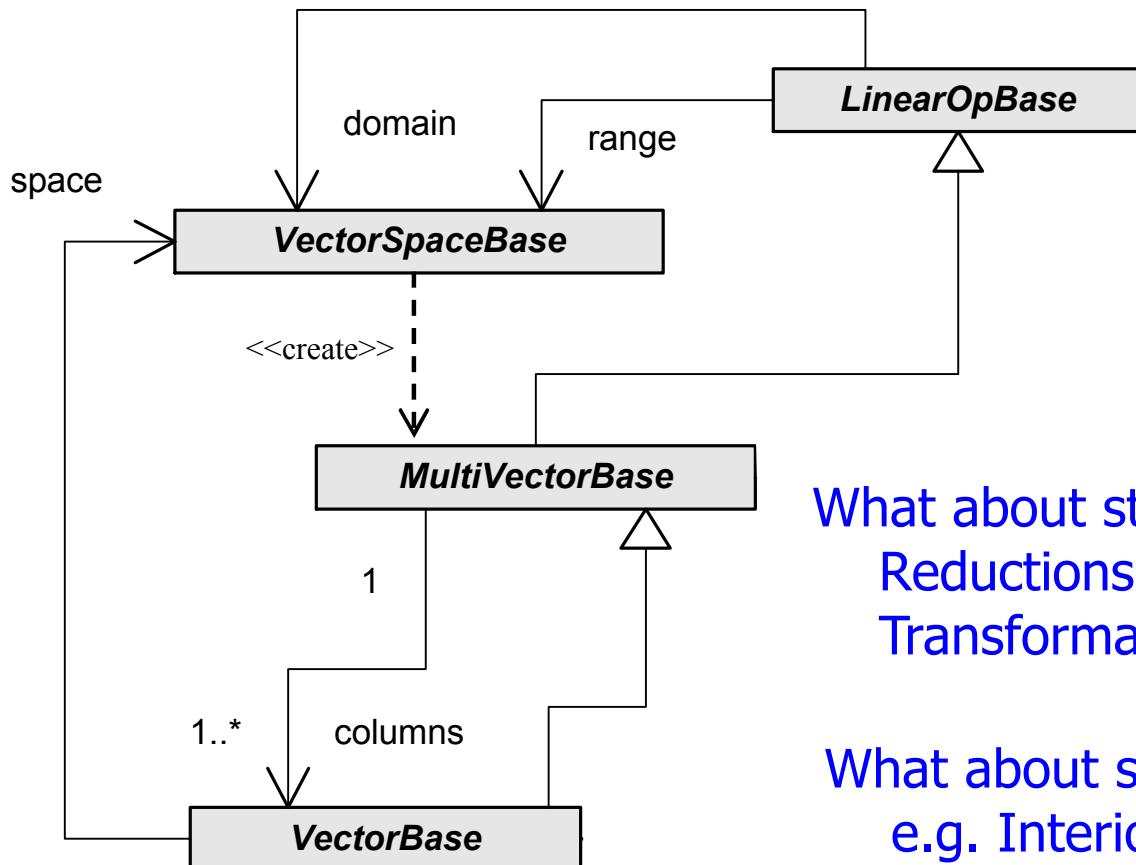
$$V = \begin{bmatrix} \parallel & \parallel & \parallel & \parallel \end{bmatrix} = \begin{bmatrix} \parallel & \parallel & \parallel & \parallel \end{bmatrix}$$

- Operator applications (i.e. mat-vecs)

$$Y = A \quad X$$

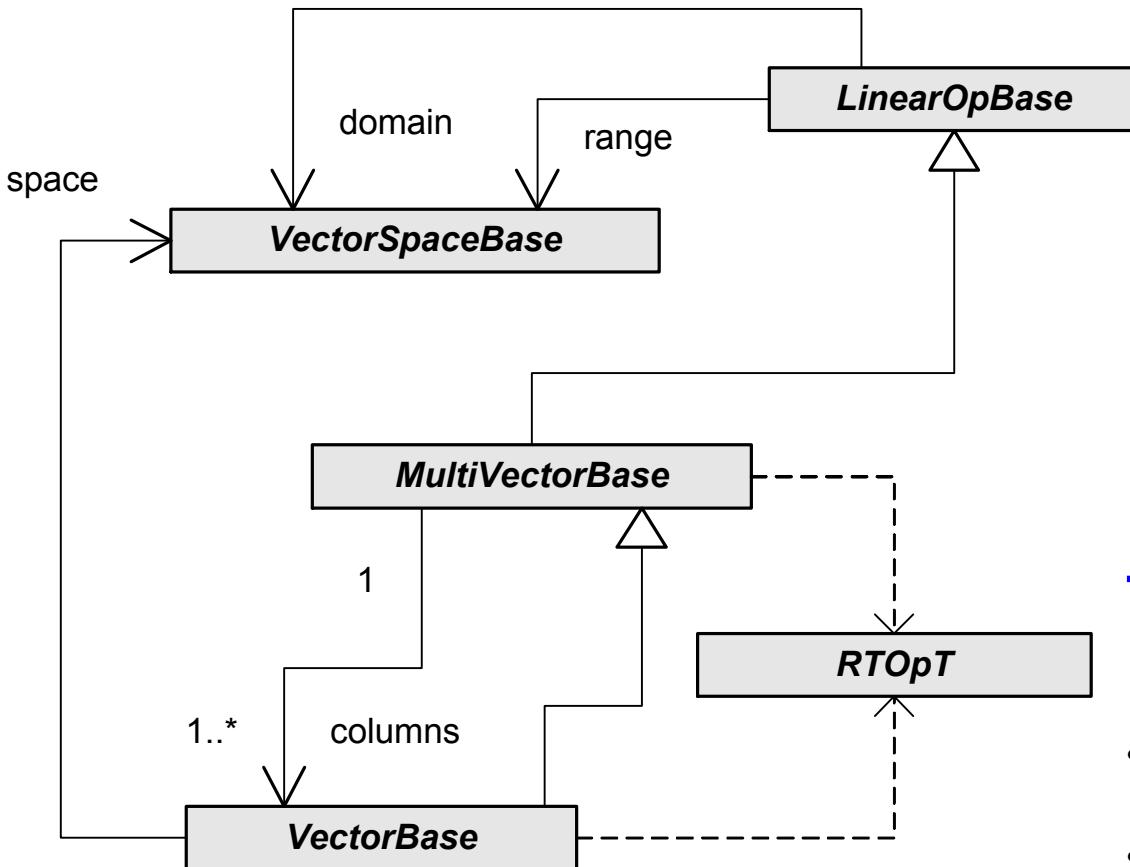

- Block dot products (m^2)

$$Q = X^T \quad Y$$


Fundamental Thyra ANA Operator/Vector Interfaces

Where do multi-vectors fit in?

Fundamental Thyra ANA Operator/Vector Interfaces


What about standard vector ops?
Reductions (norms, dot etc.)?
Transformations (axpy, scaling etc.)?

What about specialized vector ops?
e.g. Interior point methods for opt

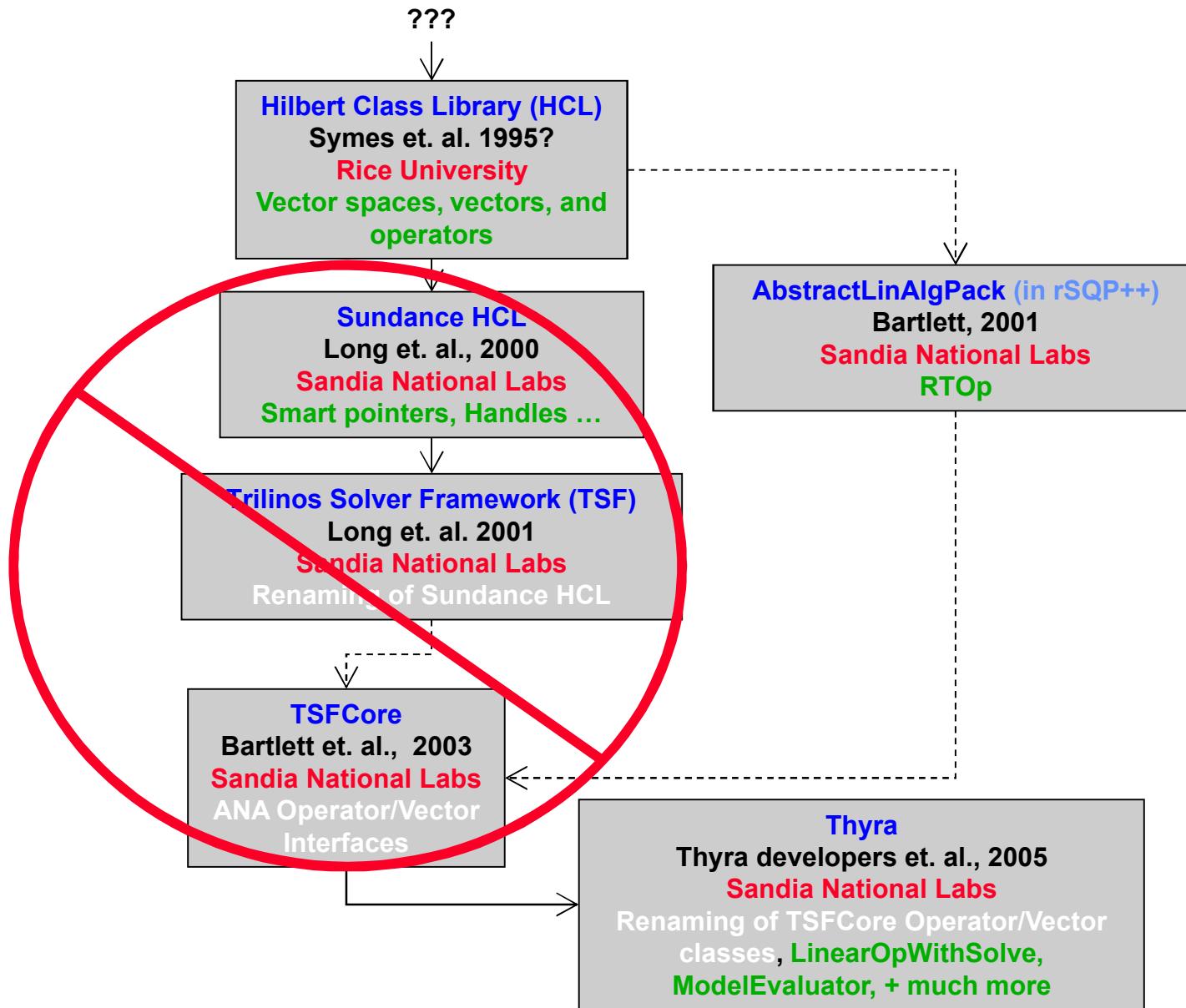
Key Point

It is easy to come up with a list of 100 or more vector/array operations from a simple literature search into active-set, interior-point, and other algorithms!

Fundamental Thyra ANA Operator/Vector Interfaces

A Few Quick Facts about Thyra Interfaces

- All interfaces are expressed as abstract C++ base classes (i.e. **object-oriented**)
- All interfaces are templated on a `Scalar` data (i.e. **generic**)

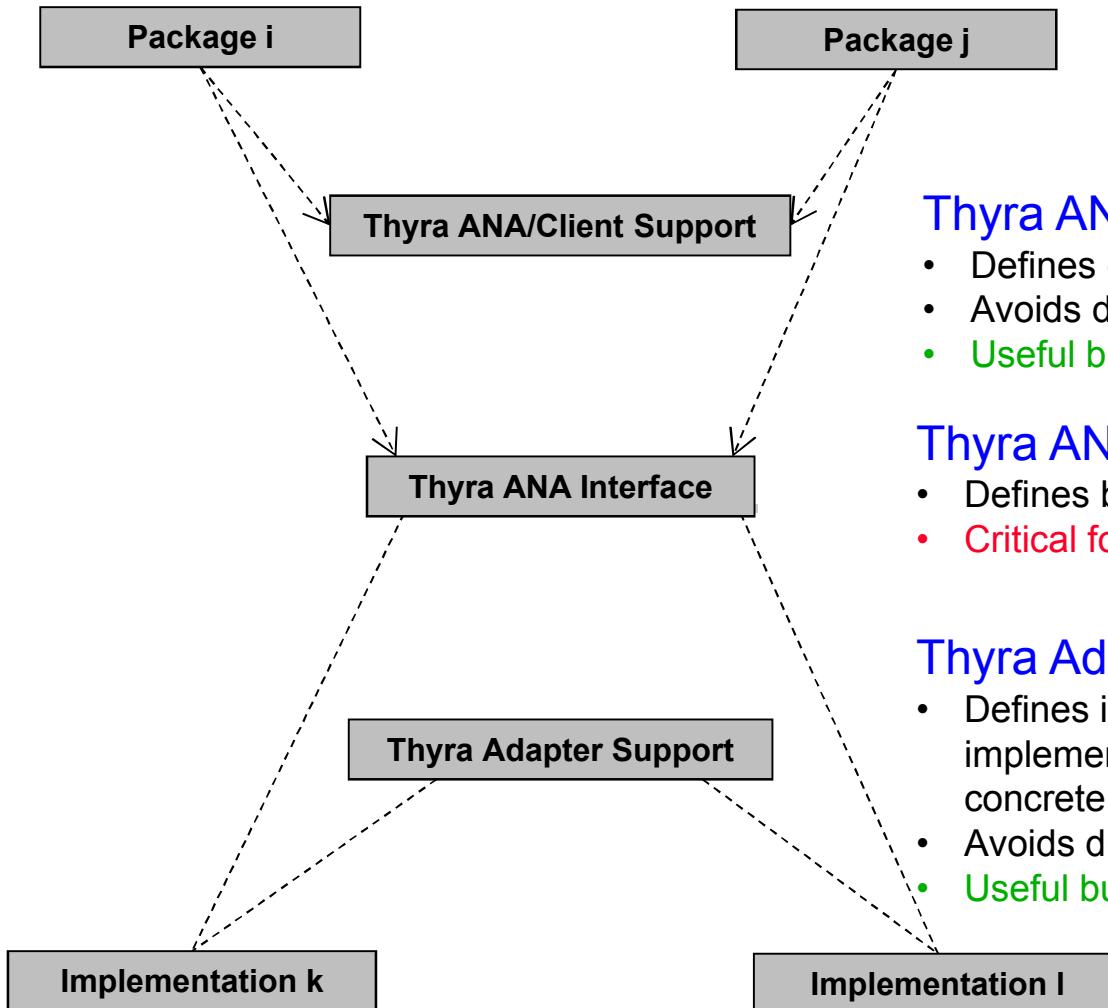

The Key to success! Reduction/Transformation Operators

- Supports all needed element-wise vector operations
- Data/parallel independence
- Optimal performance

R. A. Bartlett, B. G. van Bloemen Waanders and M. A. Heroux. *Vector Reduction/Transformation Operators*, ACM TOMS, March 2004

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental Thyra ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
- Wrapping it up

History Behind Thyra


Outline

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental Thyra ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
- Wrapping it up

Use Cases and the Scope of Thyra

Thyra ANA/Client Support Software

- Defines conveniences to aid in writing ANAs
- Avoids duplication of effort
- **Useful but optional!**

Thyra ANA Interoperability Interfaces

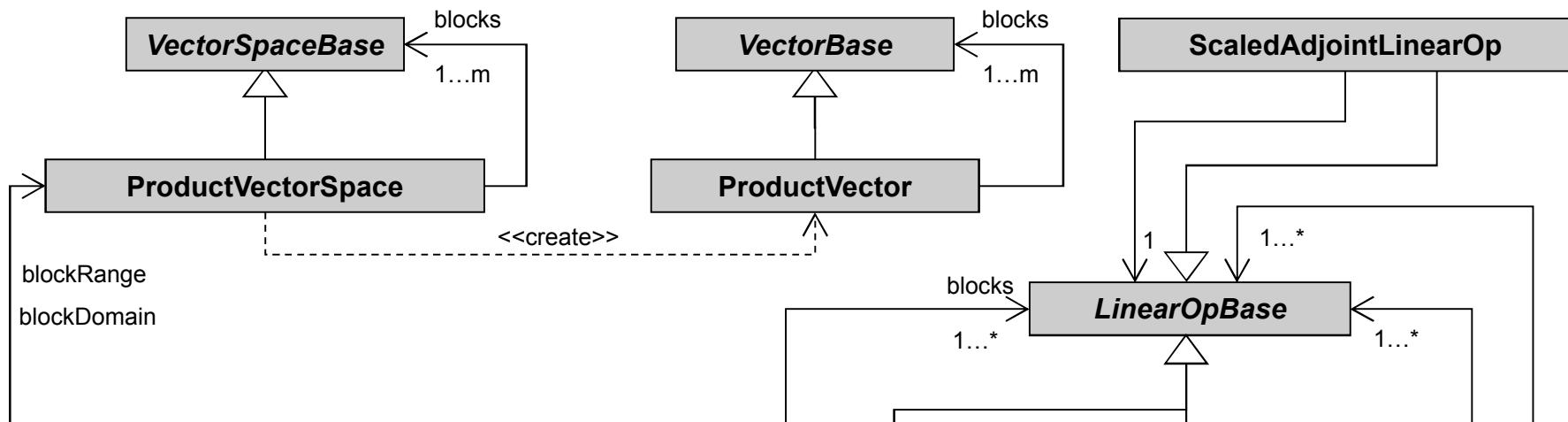
- Defines basic functionality needed for ANAs
- **Critical for scalable interoperability!**

Thyra Adapter Support Software

- Defines infrastructure support and concrete implementations to make it easy to provide concrete implementations for Thyra ANA interfaces
- Avoids duplication of effort
- **Useful but optional!**

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0 => September 2006?
- Wrapping it up

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
 - Implicit linear operators and handle classes with operator overloading
 - Linear solves and preconditioners
 - Nonlinear model evaluator
- Wrapping it up


Thyra Implicit ANA Operator/Vector Subclasses (Client Support)

“Composite” subclasses allow a collection of objects to be manipulated as one object

⌚ Product vector spaces and product vectors:

⌚ Product vector spaces: $\mathcal{X} = \mathcal{V}_1 \times \mathcal{V}_2 \times \dots \times \mathcal{V}_m$

⌚ Product vectors: $x^T = [v_1^T \ v_2^T \ \dots \ v_m^T]$

⌚ Blocked linear operator:

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

⌚ Multiplied linear operator:

$$M = ABCD$$

⌚ Added linear operator:

$$M = A + B + C + D$$

“Decorator” subclasses wrap an object and changes its behavior

⌚ Scaled/Adjoint(transposed) linear operator:

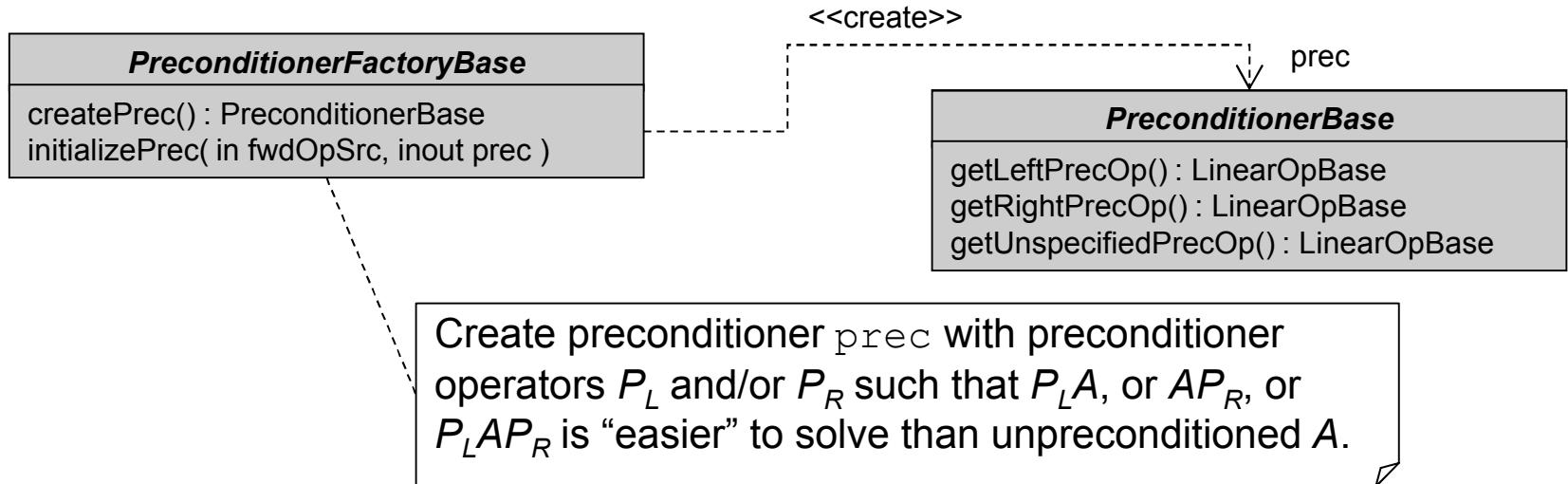
$$M = \alpha A^H$$

Handle Classes for Matlab-like Linear Algebra (Client Support)

```
template<class Scalar>
bool silliestCgSolve(
    const LinearOperator<Scalar>
    , const Vector<Scalar>
    , const int
    , const typename Teuchos::ScalarTraits<Scalar>::magnitudeType
    , Vector<Scalar>
)
{
    // Create some typedefs
    ...
    // Initialization of the algorithm
    const VectorSpace<Scalar> space = A.domain();
    Vector<Scalar> r = b - A*x;
    ScalarMag r0_nrm = norm(r);
    if(r0_nrm==zero) return true;
    Vector<Scalar> p(space), q(space);
    Scalar rho_old = -one;
    // Perform the iterations
    for( int iter = 0; iter <= maxNumIters; ++iter ) {
        // Check convergence and output iteration
        const ScalarMag r_nrm = norm(r);
        const bool isConverged = (r_nrm/r0_nrm)<=tolerance;
        if( r_nrm/r0_nrm < tolerance ) return true; // Success!
        // Compute the iteration
        const Scalar rho = inner(r,r);
        if(iter==0) copyInto(r,p);
        else p = Scalar(rho/rho_old)*p + r;
        q = A*p;
        const Scalar alpha = rho/inner(p,q);
        x += Scalar(+alpha)*p;
        r += Scalar(-alpha)*q;
        rho_old = rho;
    }
    return false; // Failure
}
```

&A
&b
maxNumIters
tolerance
x

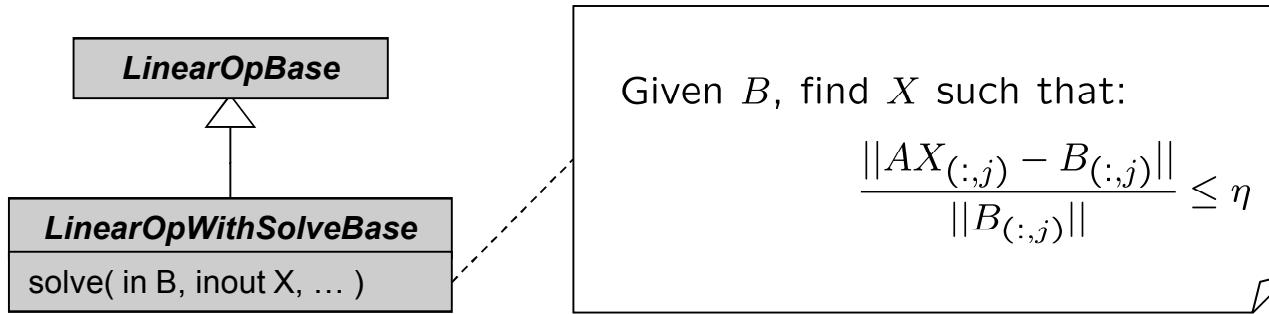
Key Points


- Handle classes **hide** memory management
- Matlab-like notation for linear algebra!
 - Template meta-program methods used to **reduce operator-overloading overhead and avoid creation of temps.**
- Works with **any linear operator and vector implementation** (e.g. Epetra, PETSc, etc.)
- Works in **any computing configuration**, i.e. serial, SPMD, client/server etc.!
- Works with **any Scalar type** (i.e. float, double, complex<double>, extended precision, etc.) that has a traits class
- Still some more work to be done**
 - Better elimination of some temporaries
 - Support for multi-vectors

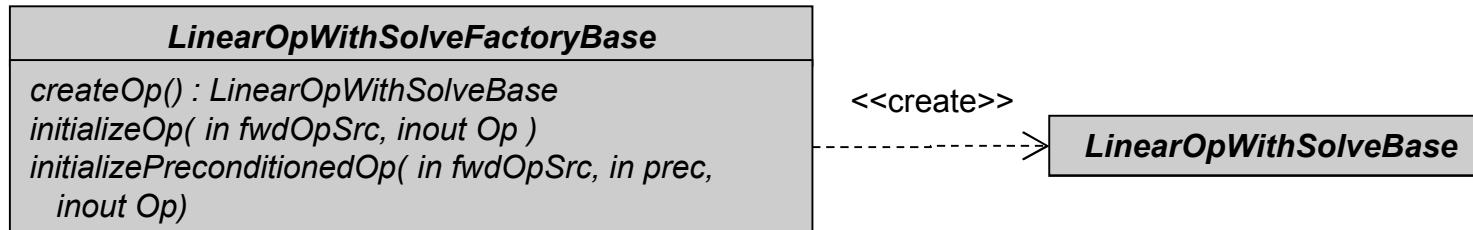
- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- **New to Thyra in Trilinos 7.0**
 - Implicit linear operators and handle classes with operator overloading
 - **Linear solves and preconditioners**
 - Nonlinear model evaluator
- Wrapping it up

Preconditioners and Preconditioner Factories

PreconditionerFactoryBase : Creates and initializes **PreconditionerBase** objects



- Allows unlimited creation/reuse of preconditioner objects
- Supports reuse of factorization structures
- Adapters currently available for Ifpack and ML
- New Stratimikos package provides a single parameter-driver wrapper for all of these


Linear Operator With Solve and Factories

LinearOpWithSolveBase : Combines a linear operator and a linear solver

- Appropriate for both direct and iterative solvers
- Supports multiple simultaneous solutions as multi-vectors
- Allows targeting of different solution criteria to different RHSs
- Supports a “default” solve

LinearOpWithSolveFactoryBase : Uses LinearOpBase objects in initialize LOWSB objects

- Allows unlimited creation/reuse of LinearOpWithSolveBase objects
- Supports reuse of factorizations/preconditioners
- Supports client-created external preconditioners (which are ignored by direct solvers)
- Appropriate for both direct and iterative solvers
- **Concrete adaptors for Amesos, AztecOO, and Belos (not released) are available**
- **New Stratimikos package provides a single parameter-driven wrapper to all of these!**

- Overview of Trilinos
- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- **New to Thyra in Trilinos 7.0**
 - Implicit linear operators and handle classes with operator overloading
 - Linear solves and preconditioners
 - **Nonlinear model evaluator**
- Wrapping it up

Overview of Nonlinear Model Evaluator Interface

Approach: Develop a single, scalable interface to address many different types of numerical problems (e.g. nonlinear equations, stability/bifurcation methods, uncertainty quantification, ODEs/DAEs, optimization ...) and combinations of problem types.

- **(Some) Input arguments:**

- State and differential state: $x \in \mathcal{X}$ and $\dot{x} = \frac{dx}{dt} \in \mathcal{X}$
- Parameter sub-vectors: $p_l \in \mathcal{P}_l$ for $l = 1 \dots N_p$
- Time (differential): $t \in \mathbf{R}$

- **(Some) Output functions:**

- State function: $(\dot{x}, x, \{p_l\}, t) \Rightarrow f \in \mathcal{F}$
- Auxiliary response functions: $(\dot{x}, x, \{p_l\}, t) \Rightarrow g_j \in \mathcal{G}_j$, for $j = 1 \dots N_g$
- State/state derivative operator: $(\dot{x}, x, \{p_l\}, t) \Rightarrow W = \alpha \frac{\partial f}{\partial \dot{x}} + \beta \frac{\partial f}{\partial x}$

Key Points

- Flexible/extendable specification of model inputs and outputs
- Address a large number steady-state and transient numerical problems and applications
- Designed for augmentation!

Some Examples of Supported Nonlinear Problem Types

Nonlinear equations:

Solve $f(x) = 0$ for $x \in \mathbf{R}^n$

Stability analysis:

For $f(x, p) = 0$ find space $p \in \mathcal{P}$ such that $\frac{\partial f}{\partial x}$ is singular

Explicit ODEs:

Solve $\dot{x} = f(x, t) = 0, t \in [0, T], x(0) = x_0,$
for $x(t) \in \mathbf{R}^n, t \in [0, T]$

DAEs/Implicit ODEs:

Solve $f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x'_0$
for $x(t) \in \mathbf{R}^n, t \in [0, T]$

Explicit ODE Forward
Sensitivities:

Find $\frac{\partial x}{\partial p}(t)$ such that: $\dot{x} = f(x, p, t) = 0, t \in [0, T],$
 $x(0) = x_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$

DAE/Implicit ODE Forward
Sensitivities:

Find $\frac{\partial x}{\partial p}(t)$ such that: $f(\dot{x}(t), x(t), p, t) = 0, t \in [0, T],$
 $x(0) = x_0, \dot{x}(0) = x'_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$

Unconstrained Optimization:

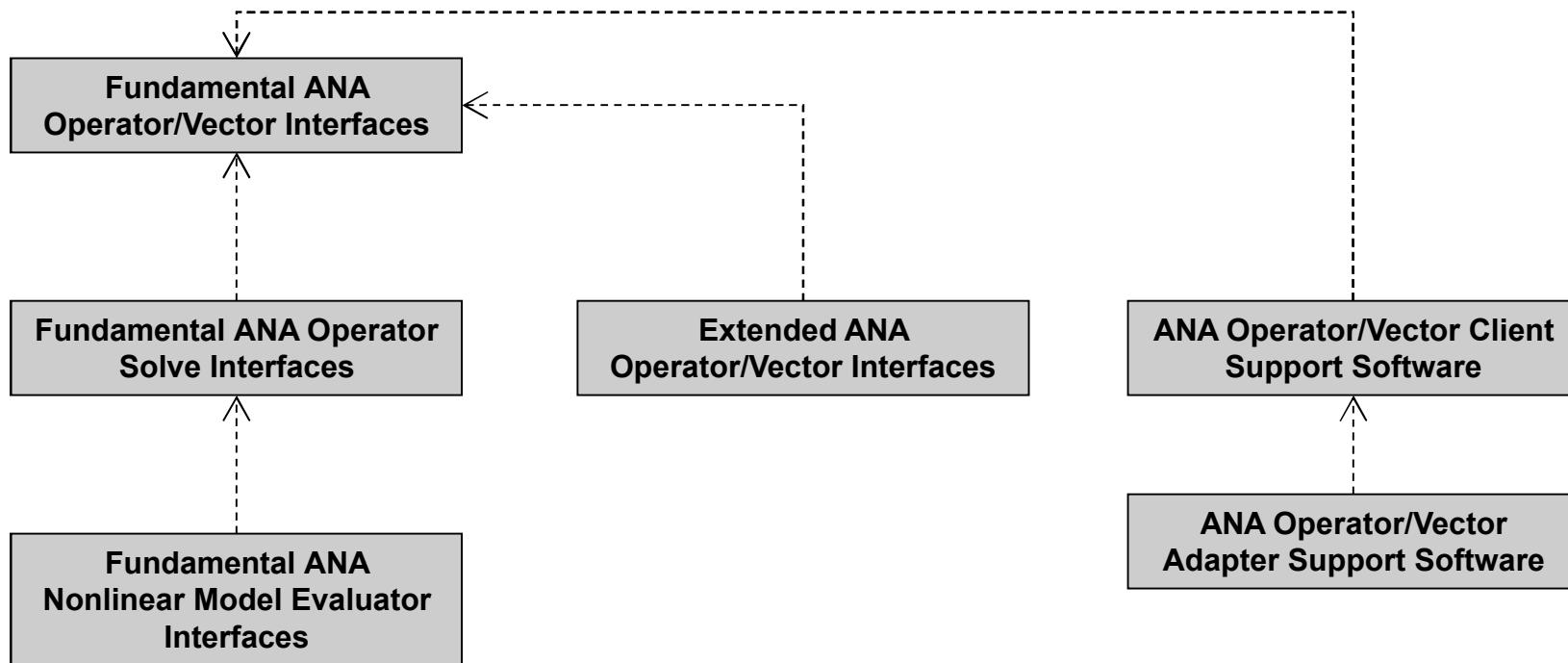
Find $p \in \mathbf{R}^m$ that minimizes $g(p)$

Constrained Optimization:

Find $x \in \mathbf{R}^n$ and $p \in \mathbf{R}^m$ that:
minimizes $g(x, p)$
such that $f(x, p) = 0$

ODE Constrained
Optimization:

Find $x(t) \in \mathbf{R}^n$ in $t \in [0, T]$ and $p \in \mathbf{R}^m$ that:
minimizes $\int_0^T g(x(t), p)$
such that $\dot{x} = f(x(t), p, t) = 0$, on $t \in [0, T]$
where $x(0) = x_0$



Outline

- Introduction of abstract numerical algorithms (ANAs) and Trilinos software and interfaces
- The need for interoperability and layering
- Fundamental ANA operator/vector interfaces
- History behind Thyra
- Use cases and the scope of Thyra
- New to Thyra in Trilinos 7.0
- Wrapping it up

Dependencies between Thyra Software “Collections”

Key Points

- These interfaces are as minimal as possible and the dependencies between them is carefully regulated!
- The support software is carefully separated from the interoperability interfaces!

- **Thyra** interfaces provide minimal but efficient connectivity between ANAs and linear algebra implementations and applications
- **Thyra** is the **critical** standard for interoperability between ANAs in Trilinos
- **Thyra** can be used in Serial/SMP, SPMD, client/server and master/slave
- **Thyra** provides a growing set of **optional** utilities for ANA development and subclass implementation support
- **Thyra** support for nonlinear ANAs (i.e. the model evaluator) is being developed as well as general support for linear solvers
- **Thyra** interfaces and adapters are provided for preconditioner factories and linear solver factories (**Stratimikos**)
- **Thyra** adapters are available for Epetra, Amesos, AztecOO, Belos, Anasazi, Rythmos, and MOOCHO with others on the way (e.g. NOX, ...)
- **Python/Thyra** wrappers are on the way as well (Bill Spotz)!

Trilinos website

<http://software.sandia.gov/trilinos>