
An Overview of the Thyra Interoperability Effort for
Abstract Numerical Algorithms within Trilinos

Roscoe A. Bartlett

Department of Optimization and Uncertainty Estimation

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2006-5781C

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0 =>September 2006?

• Wrapping it up

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0 =>September 2006?

• Wrapping it up

Overview of Trilinos

Trilinos is being developed to:

• Provide a suite of numerical solvers to support predictive simulation for
Sandia’s customers

• Provide a decoupled and scalable development environment to allow for
algorithmic research and production capabilities

• Provide support for growing SQA requirements

• Strategic Goals?

At its most basic level Trilinos provides:

• A common source code repository and management system (CVS based)

• Configuration and building support (autoconf/automake based)

• A common infrastructure for SQA

– Bug reporting and tracking (i.e. Bugzilla)

– Automated regression testing and reporting (test harness, results emails and
webpage)

• Developer and user communication (i.e. Mailman email lists)

• Common integrated documentation system (Trilinos website and Doxygen)

• Provides independent development environment in terms of “packges”

Trilinos website

http://software.sandia.gov/trilinos

Objective Package(s)

Linear algebra objects Epetra, Jpetra, Tpetra

Krylov solvers AztecOO, Belos, Komplex

ILU-type preconditioners AztecOO, IFPACK

Multilevel preconditioners ML, CLAPS

Eigen problems Anasazi

Block preconditioners Meros

Direct sparse linear solvers Amesos

Direct dense solvers Epetra, Teuchos, Pliris

Abstract interfaces Thyra

Nonlinear system solvers NOX, LOCA, CAPO

Time Integrators/DAEs Rythmos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos

Trilinos Tutorial Didasko

“Skins” PyTrilinos, WebTrilinos, Star-P, Stratimikos

Simulation-Constrained
Optimization

MOOCHO

Archetype package NewPackage

Other new in 7.0 release Galeri, Isorropia, Moertel, RTOp

Trilinos
Package
Summary

Trilinos 7.0
September 2006

Trilinos Strategic Goals

• Scalable Solvers: As problem size and processor counts increase,
the cost of the solver will remain a nearly fixed percentage of the
total solution time.

• Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers.

• Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

• Universal Solver RAS: Trilinos will be:
– Reliable: Leading edge hardened, scalable solutions for each of these

applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Trilinos Development Team

Ross Bartlett
Lead Developer of Thyra and MOOCHO
Developer of Rythmos

Paul Boggs
Developer of Thyra

Todd Coffey
Lead Developer of Rythmos

Jason Cross
Developer of Jpetra

David Day
Developer of Komplex

Clark Dohrmann
Developer of CLAPS

Michael Gee
Developer of ML, NOX

Bob Heaphy
Lead developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex, IFPACK, Thyra, Tpetra

Developer of Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra, Thyra, Tpetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros
Developer of Belos and Thyra

Jonathan Hu
Developer of ML

Sarah Knepper
Developer of Komplex

Tammy Kolda
Lead Developer of NOX

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of Thyra,
Developer of Belos and Teuchos

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster
Lead Developer of New_Package

Eric Phipps
Developer of LOCA and NOX

Marzio Sala
Lead Developer of Didasko and IFPACK
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA

Paul Sexton
Developer of Epetra and Tpetra

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Developer of Epetra, EpetraExt, AztecOO, Tpetra

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

• Wrapping it up

Linear Problems:

 Linear equations:

 Eigen problems:

Nonlinear Problems:

 Nonlinear equations:

 Stability analysis:

Transient Nonlinear Problems:

 DAEs/ODEs:

Optimization Problems:

 Unconstrained:

 Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

Rythmos

MOOCHO

Categories of Abstract Problems and Abstract Algorithms

An ANA is a numerical algorithm that can be expressed abstractly solely in terms of vectors,
vector spaces, linear operators, and other abstractions built on top of these without general
direct data access or any general assumptions about data locality

Example Linear ANA (LANA) : Linear Conjugate Gradients

scalar product
<x,y> defined by
vector space

vector-vector
operations

linear operator
applications

Scalar
operations

Types of operations Types of objects

What is an abstract numerical algorithm (ANA)?

Linear Conjugate Gradient Algorithm

Introducing Abstract Numerical Algorithms

Key Point

If implemented well with the right infrastructure,
ANAs can be extremely reusable!

Software Componentization and Trilinos Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations, preconditioners)

ANA

APP

ANA/APP
Iterface

ANA Vector
Interface

ANA Linear
Operator Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigen solvers, nonlinear solvers, stability
analysis, uncertainty quantification, transient solvers, optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:
• Belos (linear solvers)
• Anasazi (eigen solvers)
• NOX (nonlinear equations)
• Meros (block preconditioners)
• CAPO (Picard methods)
• Rythoms (ODEs,DAEs)
• MOOCHO (Optimization)
• …

Example Trilinos Packages:
• Epetra/Tpetra (Mat,Vec)
• Ifpack, AztecOO, ML (Preconditioners)
• Pliris (Interface to direct solvers)
• Amesos (Direct solvers)
• Komplex (Complex/Real forms)
• …

Three Different Types of Software Components

Thyra
foundational ANA
operator/vector
interfaces

Thyra ???
APP to LAL Interfaces

Thyra ???
LAL to LAL
Interfaces

Thyra::ModelEvaluator

Examples:
• SIERRA
• NEVADA
• Xyce
• Sundance
• …

LAL

Matrix Preconditioner

Vector

ANA software allows for a much
more abstract interface than APP
or LAL software!

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

• Wrapping it up

Trilinos Strategic Goals

• Scalable Solvers: As problem size and processor counts increase,
the cost of the solver will remain a nearly fixed percentage of the
total solution time.

• Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers.

• Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

• Universal Solver RAS: Trilinos will be:
– Reliable: Leading edge hardened, scalable solutions for each of these

applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Thyra is being
developed to
address this
issue

Numerous interactions exist between layered abstract numerical
algorithms (ANAs) in a transient optimization problem

Iterative Linear
Solver

AztecOO, Amesos,
Belos, ???

Operators and
Vectors

Epetra, Tpetra,
PETSc, ???

Nonlinear Solver
NOX, PETSc, ???

Nonlinear
Optimizer

MOOCHO, ???

Key Points

• Higher level algorithms, like optimization, require a lot of interoperability

• Interoperability and layering must be “easy” or these configurations will not
be achieved in practice

What is needed to solve problem?
• Standard interfaces to break O(N2)

1-to-1 couplings
– Operators/vectors
– Linear Solvers
– Nonlinear solvers
– Transient solvers
– etc.

Application
Charon, Aria, ???

Transient
Solver

Rythmos,
CVODES,
IDAS, ???

Interoperability is Especially Important to Optimization

Thyra is being
developed to address
interoperability of
ANAs

Examples of ANA Interoperability and Layering : Rythmos

Time Stepper Implicit Backward Euler method

Nonlinear equations Newton’s method (e.g. NOX)

Linear equations Preconditioned GMRES Operator and Preconditioner
applications

Preconditioners can be defined in many different ways

Matrix-free
or Matrix?

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

• Wrapping it up

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

Fundamental Thyra ANA Operator/Vector Interfaces

• Basically compatible with many
other operator/vector interfaces

• Near optimal for many but not all
abstract numerical algorithms
(ANAs)

• What’s missing?

=> Multi-vectors!

<<create>>

What is a multi-vector?

• An m multi-vector V is a tall thin dense
matrix composed of m column vectors vj

Example: m = 4 columns

V = =

What ANAs can exploit multi-vectors?
• Block linear solvers (e.g. block GMRES)
• Block eigen solvers (i.e. block Arnoldi)
• Compact limited memory quasi-Newton
• Tensor methods for nonlinear equations

Why are multi-vectors important?
• Cache performance
• Reduce global communication

Examples of multi-vector operations

=

Y = A X

Q = XT Y

Y = Y + X Q

• Block dot
products (m2)

• Block update

• Operator
applications

(i.e. mat-vecs)

= +

=

Introducing Multi-Vectors

Fundamental Thyra ANA Operator/Vector Interfaces

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

Where do multi-vectors fit in?
<<create>>

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

Fundamental Thyra ANA Operator/Vector Interfaces

What about standard vector ops?
Reductions (norms, dot etc.)?
Transformations (axpy, scaling etc.)?

What about specialized vector ops?
e.g. Interior point methods for opt

<<create>>

Key Point

It is easy to come up with a list of 100 or more
vector/array operations from a simple literature search

into active-set, interior-point, and other algorithms!

Fundamental Thyra ANA Operator/Vector Interfaces

The Key to success!
Reduction/Transformation
Operators

• Supports all needed element-wise
vector operations

• Data/parallel independence
• Optimal performance

R. A. Bartlett, B. G. van Bloemen Waanders and M. A. Heroux. Vector
Reduction/Transformation Operators, ACM TOMS, March 2004

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

A Few Quick Facts about
Thyra Interfaces

• All interfaces are expressed as
abstract C++ base classes
(i.e. object-oriented)

• All interfaces are templated on
a Scalar data

(i.e. generic)

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

• Wrapping it up

History Behind Thyra

Hilbert Class Library (HCL)
Symes et. al. 1995?

Rice University
Vector spaces, vectors, and

operators

AbstractLinAlgPack (in rSQP++)
Bartlett, 2001

Sandia National Labs
RTOp

Sundance HCL
Long et. al., 2000

Sandia National Labs
Smart pointers, Handles …

Trilinos Solver Framework (TSF)
Long et. al. 2001

Sandia National Labs
Renaming of Sundance HCL

TSFCore
Bartlett et. al., 2003

Sandia National Labs
ANA Operator/Vector

Interfaces

???

Thyra
Thyra developers et. al., 2005

Sandia National Labs
Renaming of TSFCore Operator/Vector

classes, LinearOpWithSolve,
ModelEvaluator, + much more

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental Thyra ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

• Wrapping it up

Use Cases and the Scope of Thyra

Package i

Implementation k Implementation l

Package j

Thyra ANA/Client Support

Thyra ANA Interface
Thyra ANA Interoperability Interfaces
• Defines basic functionality needed for ANAs
• Critical for scalable interoperability!

Thyra ANA/Client Support Software
• Defines conveniences to aid in writing ANAs
• Avoids duplication of effort
• Useful but optional!

Thyra Adapter Support Software
• Defines infrastructure support and concrete

implementations to make it easy to provide
concrete implementations for Thyra ANA interfaces

• Avoids duplication of effort
• Useful but optional!

Thyra Adapter Support

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0 => September 2006?

• Wrapping it up

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

– Implicit linear operators and handle classes with operator overloading

– Linear solves and preconditioners

– Nonlinear model evaluator

• Wrapping it up

Thyra Implicit ANA Operator/Vector Subclasses (Client Support)

VectorSpaceBase
blocks

1…m

ProductVectorSpace

VectorBase
blocks

1…m

ProductVector

<<create>>

“Composite” subclasses allow a collection of objects to be
manipulated as one object

 Product vector spaces and product vectors:

 Product vector spaces:

 Product vectors:

 Blocked linear operator:

 Multiplied linear operator:

 Added linear operator:

blockRange

blockDomain LinearOpBase

BlockedLinearOp

blocks

1…*

MultipliedLinearOp

1…*

AddedLinearOp

1…*

ScaledAdjointLinearOp

1

“Decorator” subclasses wrap an object and
changes its behavior

 Scaled/Adjoint(transposed) linear operator:

Handle Classes for Matlab-like Linear Algebra (Client Support)

template<class Scalar>
bool silliestCgSolve(
const LinearOperator<Scalar> &A
,const Vector<Scalar> &b
,const int maxNumIters
,const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tolerance
,Vector<Scalar> x
)

{
// Create some typedefs
…
// Initialization of the algorithm
const VectorSpace<Scalar> space = A.domain();
Vector<Scalar> r = b - A*x;
ScalarMag r0_nrm = norm(r);
if(r0_nrm==zero) return true;
Vector<Scalar> p(space), q(space);
Scalar rho_old = -one;
// Perform the iterations
for(int iter = 0; iter <= maxNumIters; ++iter) {
// Check convergence and output iteration
const ScalarMag r_nrm = norm(r);
const bool isConverged = (r_nrm/r0_nrm)<=tolerance;
if(r_nrm/r0_nrm < tolerance) return true; // Success!
// Compute the iteration
const Scalar rho = inner(r,r);
if(iter==0) copyInto(r,p);
else p = Scalar(rho/rho_old)*p + r;
q = A*p;
const Scalar alpha = rho/inner(p,q);
x += Scalar(+alpha)*p;
r += Scalar(-alpha)*q;
rho_old = rho;

}
return false; // Failure

}

Key Points

• Handle classes hide memory management

• Matlab-like notation for linear algebra!

• Template meta-program methods used
to reduce operator-overloading overhead
and avoid creation of temps.

• Works with any linear operator and vector
implementation (e.g. Epetra, PETSc, etc.)

• Works in any computing configuration, i.e.
serial, SPMD, client/server etc.!

• Works with any Scalar type (i.e. float,
double, complex<double>, extended

precision, etc.) that has a traits class

• Still some more work to be done

• Better elimination of some temporaries

• Support for multi-vectors

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

– Implicit linear operators and handle classes with operator overloading

– Linear solves and preconditioners

– Nonlinear model evaluator

• Wrapping it up

Preconditioners and Preconditioner Factories

Create preconditioner prec with preconditioner

operators PL and/or PR such that PLA, or APR, or
PLAPR is “easier” to solve than unpreconditioned A.

PreconditionerFactoryBase

createPrec() : PreconditionerBase
initializePrec(in fwdOpSrc, inout prec)

PreconditionerFactoryBase : Creates and initializes PrecondtionerBase objects

<<create>>

prec

• Allows unlimited creation/reuse of preconditioner objects
• Supports reuse of factorization structures
• Adapters currently available for Ifpack and ML
• New Stratimikos package provides a singe parameter-driver wrapper for all of these

PreconditionerBase

getLeftPrecOp() : LinearOpBase
getRightPrecOp() : LinearOpBase
getUnspecifiedPrecOp() : LinearOpBase

Linear Operator With Solve and Factories

LinearOpBase

LinearOpWithSolveBase

solve(in B, inout X, …)

• Appropriate for both direct and iterative solvers
• Supports multiple simultaneous solutions as multi-vectors
• Allows targeting of different solution criteria to different RHSs
• Supports a “default” solve

LinearOpWithSolveFactoryBase

createOp() : LinearOpWithSolveBase
initializeOp(in fwdOpSrc, inout Op)
initializePreconditionedOp(in fwdOpSrc, in prec,

inout Op)

LinearOpWithSolveBase : Combines a linear operator and a linear solver

LinearOpWithSolveFactoryBase : Uses LinearOpBase objects in initialize LOWSB objects

LinearOpWithSolveBase

<<create>>

• Allows unlimited creation/reuse of LinearOpWithSolveBase objects
• Supports reuse of factorizations/preconditioners
• Supports client-created external preconditioners (which are ignored by direct solvers)
• Appropriate for both direct and iterative solvers
• Concrete adaptors for Amesos, AztecOO, and Belos (not released) are available
• New Stratimikos package provides a single parameter-driven wrapper to all of these!

Outline

• Overview of Trilinos

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

– Implicit linear operators and handle classes with operator overloading

– Linear solves and preconditioners

– Nonlinear model evaluator

• Wrapping it up

Overview of Nonlinear Model Evaluator Interface

Approach: Develop a single, scalable interface to address many different types of numerical
problems (e.g. nonlinear equations, stability/bifurcation methods, uncertainty
quantification, ODEs/DAEs, optimization …) and combinations of problem types.

• (Some) Input arguments:

• State and differential state:

• Parameter sub-vectors:

• Time (differential):

• (Some) Output functions:

• State function:

• Auxiliary response functions:

• State/state derivative operator:

Key Points

• Flexible/extendable specification of model inputs and outputs

• Address a large number steady-state and transient numerical
problems and applications

• Designed for augmentation!

Some Examples of Supported Nonlinear Problem Types

Nonlinear equations:

Stability analysis:

DAEs/Implicit ODEs:

Explicit ODEs:

DAE/Implicit ODE Forward
Sensitivities:

Unconstrained Optimization:

Constrained Optimization:

ODE Constrained
Optimization:

Explicit ODE Forward
Sensitivities:

Outline

• Introduction of abstract numerical algorithms (ANAs) and Trilinos software and
interfaces

• The need for interoperability and layering

• Fundamental ANA operator/vector interfaces

• History behind Thyra

• Use cases and the scope of Thyra

• New to Thyra in Trilinos 7.0

• Wrapping it up

Dependencies between Thyra Software “Collections”

Fundamental ANA
Operator/Vector Interfaces

Fundamental ANA Operator
Solve Interfaces

Fundamental ANA
Nonlinear Model Evaluator

Interfaces

Extended ANA
Operator/Vector Interfaces

Key Points

• These interfaces are as minimal as possible and
the dependencies between them is carefully
regulated!

• The support software is carefully separated from
the interoperability interfaces!

ANA Operator/Vector Client
Support Software

ANA Operator/Vector
Adapter Support Software

Summary

• Thyra interfaces provide minimal but efficient connectivity between ANAs
and linear algebra implementations and applications

• Thyra is the critical standard for interoperability between ANAs in Trilinos

• Thyra can be used in Serial/SMP, SPMD, client/server and master/slave

• Thyra provides a growing set of optional utilities for ANA development and
subclass implementation support

• Thyra support for nonlinear ANAs (i.e. the model evaluator) is being
developed as well as general support for linear solvers

• Thyra interfaces and adapters are provided for preconditioner factories and
linear solver factories (Stratimikos)

• Thyra adapters are available for Epetra, Amesos, AztecOO, Belos, Anasazi,
Rythmos, and MOOCHO with others on the way (e.g. NOX, …)

• Python/Thyra wrappers are on the way as well (Bill Spotz)!

Trilinos website

http://software.sandia.gov/trilinos

