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DH is used for high-temperature radiation flow and ICF experiments.
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Radial power is maximized using an outside array diameter of 40 mm
containing 240 wires.
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Adding inner array increases axial power by only 23+15% in contrast to
RMHD simulations which predicted factor of 2-3 increase.
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Simulation assumes O/l collision is hydrodynamic




Measurements suggest outer array passes through
inner array with current switching from outer to inner.
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Comparison of radiation with current radius suggests current switching
from O to | occurs after O/l collision begins.
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Average current follows leading edge of MRT instability
with main mass distribution ~3 mm ahead for baseline.
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8-mm target length maximizes axial power: bounded by
wire-electrode effects for L < 7 mm and reduced KE/cm
and increased instabilities for L > 10 mm.
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18 viewing slots imprints on developing shock.

Developing shock
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DH temperature reaches ~230 eV at peak axial power.

*(Apruzese et al POP 12, 1, 2005)
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More tungsten present in bottom REH
explains top/bottom axial power
asymmetry.
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Annular pedestals eliminate early-time tungsten plasma and
roughly equalize axial powers.
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The early tungsten near the cathode may be due to arcing
between the wires and cathode.
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Gorgon simulation using cathode indentation shows
W precursor from arcing is eliminated at target.
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Axial zippering at target leads to further axial radiation
asymmetry.
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Radial electric field E; modulates current shunting in wires.
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Simulated time difference of zipper At1 is in agreement
with measured difference.
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Top / bottom axial power asymmetry increases with E..

* Egr normalized to baseline Eg
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Data suggests keeping relative radial electric field E; below
~0.8 for axially symmetric implosion.
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Summary
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Axial power is maximized using an outer array diameter of 40 mm
containing 240 wires and using a target height of 8 mm.

The O/l collision is transparent like.

The viewing slots result in imprinting on the developing shock within the
target.

Pedestals remove the bulk precursor plasma (due to arcing at wire-electrode
contact) crossing the REHs thus improving axial radiation symmetry.

Residual axial radiation asymmetry ma be controlled by the axial
uniformity of the initial energy deposition into the wires, which is
correlated to the magnitude of the negative radial electric field along
the wire surface.
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