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DH is used for high-temperature radiation flow and ICF experiments.
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Radial power is maximized using an outside array diameter of 40 mm

containing 240 wires.

MI = MO/2

ØI = ØO/2

NI = NO/2

MT = MO+ MI

Baseline Baseline

Baseline Baseline

Slow shock
Poor ion-electron
coupling in shock



Adding inner array increases axial power by only 23±15% in contrast to

RMHD simulations which predicted factor of 2-3 increase.

Simulation assumes O/I collision is hydrodynamic
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Only slight inflection in current radius 
when heavy outer array passes 

through light inner array and current 
switches to inner.

Significant inflection in current radius 
when light outer array passes through 

heavy inner array and current 
switches to inner.

Comparison of radiation with current radius suggests current switching 
from O to I occurs after O/I collision begins.

Radial
Power

Radial
Power



Average current follows leading edge of MRT instability
with main mass distribution ~3 mm ahead for baseline.

Average Current Leading    Trailing
Radius Edge        Edge

L(nH)= 2l(cm) ln(R0/R)

Inner  Array                   Outer Array

Mass Density

t= -24 ns

 ~ 0.4 
mm/ns

RMHD

RMHD wave lengths agree 
with measured
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8-mm target length maximizes axial power: bounded by 
wire-electrode effects for L < 7 mm and reduced KE/cm 

and increased instabilities for L > 10 mm.

Suggests plasma interaction 
with electrodes.

Falls 2x faster than 
KE/cm decrease.

Suggests instability 
effects.

REH Ø = 2.4 mm



18 viewing slots imprints on developing shock.

18 peaks measured azimuthally 
just when shell impacts target.

Azimuthal variation is less 
when using pedestals.

18

Target

Pedestal

5-mm wide slot 

Developing shock
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explains top/bottom axial power 

asymmetry.
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The early tungsten near the cathode may be due to arcing
between the wires and cathode.
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3-D Gorgon simulation (C. Jennings)



Gorgon simulation using cathode indentation shows
W precursor from arcing is eliminated at target.

No Indentation

Indentation

Radius (mm) Radius (mm)
10 2010 20
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Axial zippering at target leads to further axial radiation
asymmetry.



Radial electric field ER modulates current shunting in wires.

G. Sarkisov, etal, Phys. Rev. E 66, 046413 (2002)



Simulated time difference of zipper t1 is in agreement 
with measured difference.

t1 = 4.0±0.5 ns

AK voltage (S. Rosenthal) X-ray streak camera image

Gorgon simulation (C. Jennings)



Top / bottom axial power asymmetry increases with ER.

* ER normalized to baseline ER



Data suggests keeping relative radial electric field ER below
~0.8 for axially symmetric implosion.

Reverse-mass configuration



Summary

I. Axial power is maximized using an outer array diameter of 40 mm
containing 240 wires and using a target height of 8 mm.

II. The O/I collision is transparent like.

III. The viewing slots result in imprinting on the developing shock within the
target.

IV. Pedestals remove the bulk precursor plasma (due to arcing at wire-electrode

contact) crossing the REHs thus improving axial radiation symmetry.

V. Residual axial radiation asymmetry ma be controlled by the axial
uniformity of the initial energy deposition into the wires, which is
correlated to the magnitude of the negative radial electric field along
the wire surface. 


