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Abstract

We consider the problem of optimally placing water quality sensors in municipal water networks under the
assumption that sensors may fail. We give a non-linear formulation of the problem, then a linearization of
this formulation in the form of a mixed-integer program (MIP). We explore the scalability limits of this for-
mulation, then use it as a bounding procedure for a local search heuristic that optimizes the same objective:
minimizing the expected impact of a contamination event. This heuristic can find optimal or near-optimal
solutions on networks with over ten thousand junctions.
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1 Introduction

Previous work by this research team and others has generatedsensor placement optimization models that
optimally placeperfectsensors in water distribution networks. This simplifying assumption has allowed us
to make significant progress in our understanding of the fundamental optimization problem. However, it is
clearly an unrealistic assumption. If sensors may fail, then a sensor layout determined by a perfect-sensor
method will be flawed. Conceivably, for example, several injection scenarios of great expected impact could
be mitigated by the strategic placement of a single perfect sensor. However, it would be unwise to assume
that these potential injections are therefore mitigated. The sensor could fail, of course, and then the severe
impact would occur in its entirety.

In other work,Receiver Operator Curves(ROC curves) are being generated to track the characteristics
of various sensors at given locations throughout a water network (Klise and McKenna, 2005; McKenna et al.,
2006). Assuming that the sensor returns continuous numericvalues, say for the level of total organic carbon,
the ROC curve plotssensitivity(the percentage of true positive events that are caught) versus 1-specificity,
where specificity is the probability of a false positive reading. A point on the ROC curve is determined only
after an event detection threshold has been set. For a pathological example, consider a threshold set at zero,
where greater values are indicative of contamination. In this case, contaminant detection is signaled at every
time step. In other words, all true events are caught (the sensitivity is 100%) and all non-events are also
signaled as positives (the specificity is 0%). This holds whether the sensor is a random number generator or
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an idealized perfect sensor. Dialing this threshold up to medium values, and then high values, we generate
many points along this curve.

We assume that ROC curve information is available, and that experts have used human judgment to set a
threshold that gives the highest possible sensitivity, given that the specificity must be very high. That is, we
assume that false positive events are not tolerated more than once every few months. Higher false positive
rates would probably cause a utility to start ignoring its sensor events. At threshold values with such high
specificity, we may be forced to tolerate sensitivities in the 50% range or even lower. With sensors failing
to detect true events (givingfalse negatives) so frequently, it becomes increasingly important to modeltheir
failures before committing to a placement.

2 Problem Input

As in previous work (Berry et al., 2005, 2006) , we take as input data a network model from which a program
such as EPANET can calculate hydraulics and perform water quality simulations. In addition, we consider
an ensemble of contamination events described by concentration, start time, duration, and location. New to
the imperfect sensor models are two additional input parameters:

• We assign each node in the network to adetection class. For example, some areas of the network may
experience large variations in water quality, while othersmay not. The first group of locations may be
characterized by ROC curves that predict lower sensitivitythan the second group.

• We assignfalse negative probabilitiesto each class of potential sensor locations by appealing to ROC
curves.

With these data we can find an optimal or near-optimal solution to the sensor placement problem, as-
suming that a sensor placed at a location will fail to detect atrue event with the false negative probability
associated with that location.

In Section 3, we review the MIP formulations for our basic models – those that assume perfect sensors.
Then in Section 4 we give our new model for handling imperfectsensors. The latter is an extension of the
basic model.

3 The Base Imperfect-Sensor MIP Model

In this section we review our base integer programming (IP) formulation of the sensor placement optimiza-
tion problem. We assume a fixed budget ofp sensors, each of which can be placed at any junction in a
distribution network. We do not allow installation of sensors on pipes at this time because that would re-
quire water quality information along the pipes. We rely on water quality simulations from EPANET, which
does not currently provide contaminant concentration information along pipes. We assume that sensors are
capable of detecting contaminants at any concentration level, and we assume that a general alarm is raised
when contaminant is first detected by a sensor, such that all further consumption is prevented.

We model a water distribution network as a graphG = (V,E), where vertices inV represent junctions,
tanks, or other sources, and edges inE represent pipes, pumps, and valves. In higher-granularity(i.e.,
skeletonized) network models, each vertex may represent anentire neighborhood or other geographic region.
We assume that demands follow a small set of patterns, e.g., one pattern per hour throughout the day. Each
pattern represents the demand during a particular time interval on a “typical” day. Because each pattern
holds steady for one or more hours, we assume the gross flow characteristics induced by these demands
holds steady during the time period associated with that pattern.
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Let A denote the set of contamination scenarios against which a sensor configuration consisting ofp
sensors is intended to protect. A contamination scenario consists of individual contamination events, each
of which can be characterized by quadruples of the form(vx, ts, tf ,X), wherevx ∈ V is the origin of the
contamination event,ts andtf are the contamination event start and stop times, andX is the contamination
event profile, e.g., arsenic injected at a particular concentration at a given rate. The quadtuples can easily
be extended to account for multiple coordinated contamination events. Lettas andtaf respectively denote the
start and stop times of the contamination event for scenarioa. The impact of a given contamination scenario
can be evaluated using water quality analysis software (e.g., EPANET (Rossman, 1999)) to compute the
contaminant concentration at each junction in the network from time tas to an arbitrary pointth ≥ tas in
the future. The results of such an analysis are expressed in terms of concentration time-seriesτj for each
vj ∈ V , with samples at regular (arbitrarily small) intervals within [tas , th]. Our discussion throughout the
paper assumes that when contamination scenarios consist ofmultiple events, these events involve identical
contaminant types. It should be clear from our definition of contamination events that this is not necessarily
true, and thus the approach described here naturally generalizes.

It is usually straightforward to compute the total impact,da(t), the total network-wide impact of a con-
tamination scenarioa at any given timet ≥ tas . A key characteristic of our base formulation is that it captures
a wide range of possible definitions of impact including population exposed to contamination, volume of
contaminant released from the network, total length of contaminated pipe, etc. In general, impact increases
monotonically with time to detection. Letγaj denote the earliest timet at which a hypothetical sensor at
junction vj can detect contaminant due to a contamination scenarioa. If no contaminant ever reachesvj,
thenγaj = t∗, wheret∗ denotes the stop time imposed on the water quality simulations; otherwise,γaj

can be easily computed fromτj. We next definedaj = da(γaj), i.e., the total impact of a contamination
scenarioa if the contaminant is first detected by a sensor atvj . Finally, letq denote a “dummy” location that
corresponds to failed detection of contamination scenarioa. The impactdaq is defined as the total impact of
contamination scenarioa if it is not detected beforet∗.

Our formulation models the placement ofp sensors on a setL ⊆ V vertices, with the objective of
minimizing the expected impact of a setA of contamination scenarios. A likelihoodαa ≥ 0 is assigned to
each contamination scenarioa ∈ A, such that

∑

a∈A αa = 1. Let La be the subset of vertices inL ∪ {q}
that could possibly be contaminated by scenarioa. The design objective is then expressed as:

∑

a∈A

αa

∑

i∈La

daixai,

wherexai is an indicator variable with value equal to1 if location i raised the alarm (i.e., first detected
contaminant) for contamination scenarioa and0 otherwise. Ifxai = 1, we say that locationi witnesses(or
is a witness for) contamination eventa.

Our complete base model formulation – which we denote by BSP –is easily expressed as the following
MIP:

(BSP) minimize
∑

a∈A

αa

∑

i∈La

daixai

where



























∑

i∈La
xai = 1 ∀a ∈ A

xai ≤ si ∀a ∈ A, i ∈ La − {q}
∑

i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

The binary decision variablesi for each potential sensor locationi ∈ L equals1 if a sensor is placed at
location i and0 otherwise. The first set of constraints assures that exactlyone sensor raises the alarm for
(witnesses) each contamination scenario. The second set requires that a location cannot raise any alarm
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unless there is an installed sensor. The last constraint enforces the limit on the total number of sensors. The
objective function chooses the best (lowest impact, eligible given the constraints) sensor as a witness for
each contamination scenarioa.

BSP was first described by Berry et al. (2004). Remarkably, the BSP is identical to the well-known
p-median facility location problem (Mirchandani and Francis, 1990). In thep-median problem,p facilities
(e.g., central warehouses) are to be located onm potential sites such that the sum of distancesdaj between
each ofn customers (e.g., retail outlets)a and the nearest facilityj is minimized. In contrasting the BSP and
p-median problems, we observe equivalence between (1) sensors and facilities, (2) contamination scenarios
and customers, and (3) contamination impacts and distances. While the BSP allows placement ofat mostp
sensors,p-median formulations generally enforce placement of allp facilities; in practice, the distinction is
irrelevant unlessp approaches the number of possible locations.

Finally, we use a slightly revised formulation of BSP in teva-sp and our computational experiments.
We have observed that for any given contamination scenarioa, there are often many total impactsdaj that
have the same value. If the contaminant reaches two junctions at approximately the same time, then these
two junctions could witness the contamination event with the same impact values. For example, this occurs
frequently when we use a coarse reporting time-step with thewater quality simulation. This observation has
led us to consider the following generalization of BSP:

(cBSP) minimize
∑

a∈A

αa

∑

i∈L̂a

daixai

where































∑

i∈L̂a
xai = 1 ∀a ∈ A

xai ≤ si +
∑

j∈La\L̂a:daj=dai
sj ∀a ∈ A, i ∈ L̂a

∑

i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

whereL̂a ⊆ La such thatdai 6= daj for all i, j ∈ L̂a. This revised formulation treats sensor placement
locations as equivalent if their corresponding contamination impacts are the same for a given contamination
event. In doing so, the fundamental structure of this formulation changes only slightly, but this IP may
require significantly less memory (by eliminating duplicatedai values). However, it is important to note that
cBSP andBSP have the same set of feasible solutions, so they can be used tofind the same optimal sensor
placements. In preliminary experiments,cBSP was often ten times smaller thanBSP , and corresponding
reductions in optimization runtime have been observed.

We can achieve further reduction in problem size by strongerwitness aggregation: grouping witnesses
whose impacts are close to each other, but not equal. The impact of the group is the impact of its worst
member (conservatively). The optimal solution to this problem is only approximately optimal for the original
problem. We can trade off size of formulation (and speed of solution) for approximation quality.

For simplicity of presentation, our subsequent discussionwill refer to BSP when describing these two
formulations. However, thecBSP is the actual MIP model used in teva-sp.

4 ROC-Based Imperfect Sensor Model

As suggested above, the new model presented in this section assumes that each sensor location has a false
negative probability and a false positive rate. We assume that sensor failures are independent. We expect that
the performance of a sensor will depend on its environment. It can also depend on the components within
the sensor (if the sensor is really a package of multiple sub-sensors). However, for this first discussion,
we will assume that there is only one type of sensor and only a small fixed number of environments (say,
low, medium, and high water quality variation). Though a real network may have many microenvironments
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depending upon the sensitivity of the sensor, we expect thatinitially at least, those who generate input data
will use this kind of course granularity. We assume we can derive probabilities for false negatives and false
positives (false alarm rate) from sources of sensor uncertainty data, such as ROC curves or vendor-specific
time-between-failure information. We treat false negatives and false positives separately in Sections 4.1 and
4.2, respectively.

4.1 False Negatives

In the base sensor placement formulation (BSP ), we place sensors to minimize the expected impact taken
over the given contamination scenarios. Each scenario has asingle (best) witness if sensors are perfect.
Given a probability of detection (or sensitivity) at junction j, pj, we can change the precise impact for
a scenario to an expected impact. For scenarioa, sort the potential witnesses by increasing impact (better
witnesses have lower impact on the network and population).LetLaj ⊂ La be the set of junctions preceding
and including junctionj in the ordered witness list for the contamination scenarioa (witnesses that would
be at least as good as locationj). Let xaj be the probability that a sensor placed at junctionj is the first to
detect the contamination scenario. Thus thexaj are no longer binary, but are still bound between0 and1.
The objective function doesn’t change.

Computing the witness probabilities directly involves products of the sensor-placement variables and is
therefore nonlinear:

xaj = pjsj

∏

i∈Laj−{j}

(1 − pisi),

Ignoring the sensor-placement variablessi for the moment, this expression is the probability that all the
witnesses that are better thanj fail times the probability that the sensor at locationj succeeds in detecting the
event. We multiply by the sensor-placement variables to account for actual placement (a previous witness
doesn’t have to fail if it has no sensor; locationj cannot succeed if it has no sensor).

We now describe one way to linearize these constraints for the xaj . If the number of sensors and
environments (number of probabilities/behaviors) is constant, then this linearization does not explode com-
binatorially. We demonstrate this for three classes of environments, which we equivalently call sensor types.
This shows reasonable generality without being too cumbersome. Let the three false negative probabilities
for types1, 2, and3 bepα, pβ, andpγ respectively.

Consider injection scenarioa. This injection will have only one witness, but what the witness is now
depends not only on the placement of the sensors but also on the (probabilistic) instantiations of the false
negatives. Let’s assume the set of potential witnesses for injectiona, La are sorted by increasing impact, so
the best witness is first in the list. If there is a sensor at that first location and the sensor detects injection
a, then it is the witness. No other sensors have an opportunityto be a witness. If the first sensor fails, then
the second sensor has an opportunity to be the witness. If it succeeds, then it is the witness with no other
locations having a chance, and so on. Thus the possible outcomes of the random sensing events are disjoint.

For ease of exposition, we define a set of auxiliary variableszai to be the probability that all sensors
in Lai fail to detect injectiona. This probability considers both sensor placement decisions and detection
failure. In the actual IP model, we express thezai in terms of other variables. To compute thezai, with
a polynomial number of variables, we take advantage of the small number of sensor types. We do not
care which individual locations inLai have sensors, we only care about the number of each type that have
sensors. In particular, if there arej type-1 sensors (with sensitivitypα), k type-2 sensors (with sensitivity
pβ), andl type-3 sensors (with sensitivitypγ), then we have

zai = (1 − pα)j(1 − pβ)k(1 − pγ)l.
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We now give constraints that allow the IP to determine these counts. This will require a number of
related classes of new variables:

• Let caijkl be a binary variable that is1 if and only if the IP places sensors so that locationsLai have
exactlyj type-1 sensors,k type-2 sensors, andl type-3 sensors.

• LetLα
ai ⊆ Lai be the type-1 locations inLai.

• LetLβ
ai ⊆ Lai be the type-2 locations inLai.

• LetLγ
ai ⊆ Lai be the type-3 locations inLai.

• Let cα
aij equal 1 if there arej type-1 sensors inLai and 0 otherwise.

• Let cβ
aik equal 1 if there arek type-2 sensors inLai and 0 otherwise.

• Let cγ
ail equal 1 if there arel type-3 sensors inLai and 0 otherwise.

Any givenLai and sensor placementsi, has a specific count of sensor types. So exactly one of thecaijkl

is equal to1. We do not need to enforce this explicitly since it will be implied by the other constraints.
We do, however, explicitly enforce this constraint on the indicator counts for the separate sensor types:

|Lα
ai
|

∑

j=0

cα
aij = 1 (1)

|Lβ
ai
|

∑

k=0

c
β
aij = 1 (2)

|Lγ
ai
|

∑

l=0

c
γ
aij = 1 (3)

Equations 1-3 specify (decide) the number of sensors of eachtype inLai. We make sure the individual
sensor placement decisions give the correct counts of each type:

|Lα
ai
|

∑

j=0

jcα
aij =

∑

m∈Lα
ai

sm (4)

|Lβ
ai
|

∑

k=0

jc
β
aij =

∑

m∈Lβ
ai

sm (5)

|Lγ
ai
|

∑

l=0

jc
γ
aij =

∑

m∈Lγ
ai

sm (6)

For example, in equation 4, the left side is equal to the number of type-1 sensors selected by thecα
aij

variables and the right side is the number of type-1 locations that receive a sensor.
We now link the indicator variables for the individual sensor types to the overall count variables:
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cα
aij =

|Lβ
ai
|

∑

k=0

|Lγ
ai
|

∑

l=0

caijkl, 0 ≤ j ≤ |Lα
ai| (7)

c
β
aik =

|Lα
ai
|

∑

j=0

|Lγ
ai
|

∑

l=0

caijkl, 0 ≤ k ≤ |Lβ
ai| (8)

c
γ
ail =

|Lα
ai
|

∑

j=0

|Lβ
ai
|

∑

k=0

caijkl, 0 ≤ l ≤ |Lγ
ai| (9)

For example, Equation 7 enforces that ifcα
aij is 1 for somej (the IP has decided there will bej type-1

sensors inLai), then the indicator variable specifying all countscaij′k′l′ = 1 must have the appropriate
type-1 count (j′ = j).

Finally, we finish by linking across pairs of types:

c
β
aik + c

γ
ail − 1 ≤

|Lα
ai|

∑

j=0

caijkl, 0 ≤ k ≤ |Lβ
ai|, 0 ≤ l ≤ |Lγ

ai (10)

cα
aij + c

γ
ail − 1 ≤

|Lβ
ai
|

∑

k=0

caijkl, 0 ≤ j ≤ |Lα
ai|, 0 ≤ l ≤ |Lγ

ai (11)

cα
aij + c

β
aik − 1 ≤

|Lγ
ai
|

∑

l=0

caijkl, 0 ≤ j ≤ |Lα
ai|, 0 ≤ k ≤ |Lβ

ai (12)

For example, Inequality 10 only has an effect if the IP has decided there will bek type-2 sensors andl
type-3 sensors inLai). In this case, then the indicator variable specifying all countscaij′k′l′ = 1 must have
the appropriate type-2 and type-3 counts (k′ = k andl′ = l).

Once the (complete) count variables are correctly set, we can compute thezai:

zai =

|Lα
ai
|

∑

j=0

|Lβ
ai
|

∑

k=0

|Lγ
ai
|

∑

l=0

caijkl(1 − pα)j(1 − pβ)k(1 − pγ)l (13)

We are now prepared to compute (via constraints) the witnessprobabilitiesxai. We can compute the
first witness probability directly, since the first sensor (as long as it exists), has an opportunity to sense the
event. It succeeds with probabilityp1 (wherep1 is one of the three sensing probabilitiespα, pβ , pγ .

xa1 = p1s1 (14)

Because there is only one witness for each injection (outcomes are disjoint), we have the following set
of constraints:

zai = 1 −
i

∑

r=1

war,∀i = 1 . . . |La| (15)

This says that the probability we have not detected an event by the time the firsti potential witnesses
have had an opportunity to sense is equal to one minus the probability that one of these potential witnesses
succeeded. Because the IP has “computed” each of thezai directly from the count variables and the value
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of wa1 directly, these constraints completely determine the other witness probability variables in order from
2 on up.

Thus the formulation for incorporating only false negatives adds constraints 1-15 to theBSP formula-
tion. We can remove the constraintsxai ≤ si, since those are implied by other constraints.

Unfortunately, this formulation has a large number of binary variables, so we must consider modifica-
tions to make it more practical. It’s possible this version will be tractable for two sensor types.

4.2 False Positives

We can consider false positives under both normal operatingconditions and during (or right before) an event.

4.2.1 Limiting False Positives under Normal Operation

We can enforce a global limit on the false positive rate. We assume we have (independent) false positive
ratesfi for each possible sensor locationi. These rates will be predicted by the ROC curves associated with
each possible sensor location. Thus we simply enforce the false positive tolerance directly:

∑

i∈L

fisi ≤ ρ. (16)

4.2.2 Penalizing False Positive Interference with Event Detection

We now consider the extremely unlikely case in which a false positive occurs during an injection event.
Recall that we have assumed that the event detection thresholds are set to limit the false positive rates to
very low numbers, such as one per three months. Still, if a false positive actually occurs during a real
injection event, it would be a potentially serious problem.If we assume that the water utility is willing and
able to send out only one truck to verify the event with a manual sample, it would be a disaster if, during a
real injection, the truck responded to a false positive reading and went to an uncontaminated section of the
network. The utility would have apparent confirmation of a false alarm, when a real event was in progress.
Thus, we penalize such a false positive during an injection by forcing a worst case impact, as if the injection
had never been detected. This holds even if other sensors later detect the injection.

Consider the faulty-sensor IP that handles false negativesand enforces a tolerance on false positives
during normal operation. We assume all optimal solutions tothat IP will have the false-positive constraint
(16) satisfied with equality. That is, in order to minimize impact, the IP will almost certainly be pushing the
boundary on false positives. Therefore, we assume that the false positive rate in the sensor system is simply
the constantρ. We can think of this as an arrival rate and compute (offline) the probability of a false positive
during any particular time interval (this is independent ofthe actual time; as with all Poisson processes, it
will depend only on the interval length). We denote this probability p(t), wheret is the length of the time
interval in minutes.

We can model the effect of false positives that occur during the window of the injection. However,
we currently only discuss the highest-order effect. If we assume a delay of a full day between responses,
then any false positive occurring within 24 hours of the injection start time will remove any possibility of
detecting that injection. The probability of this isp(1440), given that there are1440 minutes in a day.
Therefore, we need only modify Equation 15, subtractingp(1440) from the right side. This reflects the
initially reduced probability of witnessing injectiona.
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5 A Local Search Heuristic for the Imperfect Sensor Model

In Watson et al. (2005), variations of a GRASP local search heuristic are applied to the sensor placement
problem under perfect-sensor assumptions (Resende and Werneck, 2004). These heuristics operate by iter-
atively improving an initial (possibly random) solution, in this case a sensor placement, and then evaluating
every “neighboring” solution. The neighborhood operationmight consist, for example, of trying to replace
each sensor in the current solution with a sensor at some currently uncovered location. The best neighboring
solution then becomes the current solution, and the neighborhood search process is repeated until a locally
optimal solution is identified.

Fortunately, the structure of the data associated with water sensor placement problems is remarkably
amenable to solution via the GRASP heuristic. In fact, during the processing of many perfect-sensor problem
instances on many different networks, we have not seen a casein which our MIP formulations have found a
solution any better than the heuristic’s solution. To phrase this differently, whenever the MIP has solved, it
has proven the heuristic solution to be optimal. This applies to networks with thousands of nodes.

It is a straightforward matter to adapt the GRASP heuristic to handle the imperfect sensor case. The
only difference is that the objective value of each neighboring solution is now computed using the imperfect
sensor objective. Efficient computation of these objectivevalues is possible, but the data structures and
algorithms are beyond the scope of this conference paper.

As we shall see, the remarkable success of this local search heuristic continues with the new imperfect
sensor model.

6 Experiments

We have implemented our imperfect sensor optimization models in three different ways:

• As a non-linear mathematical program

• As a MIP

• As a local search heuristic

In each of these implementations, we have omitted the logic associated with false positive detection. This
logic could be included easily, but recall that we assume that the specificity imposed by human interpreters
of ROC curves will be extremely high, making false positivesextremely unlikely. In this context, we chose
for our experiments to handle false negatives only.

Details of our non-linear mathematical program are omitted, as are results. Open-source non-linear
solvers with default settings generally were not able to solve this formulation. Commercial solvers were
able to solve the “small” and “medium” instances described in Section 6.2 below, but the resulting fractional
solutions are not globally optimal, and therefore are not lower bounds on the optimal solution. With im-
proved non-linear global optimizers, this non-linear formulation may become a powerful tool for bounding.

We had more immediate success in finding bounds with the linearized MIP formulation described in
Section 4, though this success was limited to networks with hundreds of nodes rather than thousands. We
were able to use this model to find optimal solutions. These solutions matched those of the revised local
search heuristic, proving its output to be optimal for theseinstances.

6.1 Evaluating Solutions

Recall the formulation of the objective function in our models:
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Witness 1 2 3 none
Probability (xai) 0.3 0.2 0.15 0.35
Impact 100 200 300 5000

Table 1: Example computation of the objective function withimperfect sensors. The expected impact of this
injection is0.3(100) + 0.2(200) + 0.15(300) + 0.35(5000).

∑

a∈A

αa

∑

i∈La

daixai

In the context of perfect sensors, this says that the cost of asolution is the sum over all possible injections
of the contaminant at each junction. Givena, exactly one of the witness variablesxai is 1. In other words,
a perfect sensor at locationi witnesses the injection, and we are therefore certain (up tothe quality of the
simulations) that the impact of that injection isdai. Note thatdai may be an impact incurred after some
assumed response delay. Still, knowing that the sensor at locationi is perfect, we know when to start the
response timer.

When we have imperfect sensors, this objective function is interpreted differently. In particular, the
witness variablesxai are now witness probabilities. For a trivial example, consider Table 1. A hypothetical
injection hits three nodes at locations that could host a sensor. After hitting these three, it may continue
to impact them for some time, and may hit other nodes that can’t host sensors. In the table, we see that a
hypothetical solver has found that location 1 has a 30% chance of being the first witness of the contaminant,
location 2 has a 20% chance of being the first witness, location 3 has a 15% chance, and there is a 35%
chance that all three will fail. The expected impact of this injection, therefore, is a discrete random variable,
and its expected value is

0.3(100) + 0.2(200) + 0.15(300) + 0.35(5000) = 1865.

The imperfect sensor solution, therefore, is an expected value of the expected values of the impacts of the
individual injections.

A sensor placement found by any of our models (perfect or imperfect sensors) may be evaluated in the
context of either perfect or imperfect sensors. Our methodology for measuring the value of the imperfect
sensor model will leverage this property.

6.2 Test Instances

We evaluate our models on three different water networks: a “small” instance with about 400 nodes, a
“medium” instance with about 3000 nodes, and a “large” instance with about 11000 nodes. Figure 1 shows
morphed pictures of these networks to give some idea of theirtopology without revealing true coordinates.
The latter are significantly different from those shown in the pictures. These are the same three instances
used in Berry et al. (2006). As in that work, for each instancewe create injection ensembles containing
injections at each non-zero demand node, for a single start time. The injection duration is 24 hours, and the
strength is a large number of cells per liter (which we omit intentionally).

For each instance, we consider two different sets of three detection classes:

• false negative probabilities 0.25, 0.5, and 0.75.

• false negative probabilities 0.7, 0.75, and 0.80.
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(a) (b) (c)

Figure 1: Three network instances: (a) a “small” instance with about 400 nodes, (b) a “medium” instance
with about 3000 nodes, and (c) a “large” instance with about 11000 nodes.

Network Perf. Sens. Sol.(PSS)PSS/Imp. Obj. Imperf. Sens. Sol. %of PSS impact.
small 63.25* 298.55 182.35* 61%

medium 1061.09* 2869.62 2288.43 80%
large 518.29 1070.62 720.82 67%

Table 2: Results for the number of people sickened during a biological event under sensor placement found
by perfect-sensor and imperfect sensor models. The third column gives impacts with sensors placed accord-
ing to the perfect sensor solution. The fourth column lists the result of evaluating the perfect sensor solution
in the context of sensor failures. The fifth column shows the evaluation of the imperfect sensor solution, and
the fifth shows the benefit of using the imperfect sensor formulation. The asterisks indicate solutions that
have been proven to be optimal by our MIP formulations.

The network nodes were partitioned into three nearly equal-sized groups in an arbitrary way (by node label
order).

The results presented in Section 6.3 are compiled under the admittedly unrealistic assumption that there
is zero response delay. In other words, the instant that a sensor happens to detect the injection all impacts
stop accumulating. We discuss the implications of this assumption and removing it below.

We consider population to be highly correlated to demand. The “people sickened” figures below make
use of this assumption rather than census or billing data.

6.3 Results

We find that the ROC-based imperfect sensor MIP is scalable upto the small instance of a few hundred
nodes, but not beyond that without further work. However, the local search heuristic can find provably
optimal solutions for these small instances. Further, it can find solutions for the medium and large instances
that are likely to be optimal or nearly optimal.

The key question is whether the extra effort involved in modeling imperfect sensors is justified. Are
sensor placements found by the perfect sensor models poor enough, when evaluated in the context of sensor
failures, to make the added complexity of the imperfect sensor model worthwhile? We explore this question
presently by discussing the results shown in Table 2. The numbers presented in this table represent the
aggregate population sickened (but not necessary killed) by the contaminant, in this case a biological agent.
We use the Murray et al. (2006) health impacts model to calculate the expected number of people exposed
to and sickened by the agent.

11



Network num samples Perf. Sens. Sol.(PSS)Imperf. Sens. Sol. ROC-based MIP bound
small 5 0.14s 0.39s 13070s

medium 5 8.74s 247s NA
large 1 36.36s 2155s NA

Table 3: Running times for the local search heuristic in its perfect sensor and imperfect sensor forms. Note
that although the times increase for the imperfect sensor form, they are still easily tractable even for large
networks. The number for the ROC-based MIP is the time until its lower bound equals the heuristic solution.

Consider the small network. The expected impact over all injections is about 63 people sickened. Taking
this same sensor placement, and calculating the expected impact when sensors can fail, we find a more
realistic expected impact of about 298 people sickened. However, the optimal solution, when failures are
allowed, is about 182 people sickened. Thus, placing sensors with the imperfect sensor model saves an
expected 116 people from exposure over the perfect sensor model. We obtain similar results for the medium
and large instances. Significant fractions of the people whowould have been exposed under the perfect
sensor model are spared under the imperfect sensor model.

Table 3 shows timing results for the local search heuristic and ROC-based MIP on these problems. Note
that the MIP takes many hours to establish a lower bound that matches the heuristic solution, thus proving it
optimal. It becomes too large to solve at all for the medium and large instances. The heuristic, on the other
hand, easily handles even the largest of these instances in less than one hour.

We give three caveats concerning these results:

• Large numbers of sensors to be placed will decrease the apparent advantage of the imperfect sensor
model.

• Long response delays will also decrease this advantage.

• Other objectives such as mass of contaminant consumed or extent of contamination may have smaller
relative advantages.

However, considering that sensor installations are very expensive, we don’t expect to be granted budgets
for hundreds of fixed sensors. As for the second point, a long response delay affects more than the relative
advantage of imperfect sensor models. If the delay extends beyond a day or two, the whole enterprise of
placing sensors becomes questionable. Much of the potential impact mitigated by sensors disappears with
long response delays. We plan to continue our comparisons between perfect and imperfect sensor models in
the presence of moderate response delays in the full paper.

We mention other objectives simply because we have anecdotal evidence that the population exposed
numbers we have given show a greater relative advantage for the imperfect sensor model than we see in
preliminary trials with other objectives. However, those trials were with larger numbers of sensors. We will
explore this issue further in the full paper.

7 Summary

We have presented a naturally non-linear formulation of theproblem of optimally placing water sensors
when sensors may fail. We linearized this model to produce a MIP and used that formulation to prove the
optimality of heuristic solutions generated for a small instance with several hundred nodes. We have also
demonstrated that the heuristic solutions can be generatedefficiency and can add significant value in terms
of reduced expected impacts.
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