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Thin Fuel Cell Structure:
Anode = 40M
Electrolyte = 100M
Cathode = 40M

Gold current collector
D = 1.5mm
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Transport/Reaction Simulation 
is Critical to Sandia’s Mission

Contamination Events 
for External Flows  

Partial Catalytic Oxidation

H2 Fuel Cells
Combustion

Chemical Reactor Design

Temperature (300 - 1400 oK) 

CH2HCO

Chem/Bio Atack on 
Airport   
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– Stabilized Galerkin Finite Elements
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– Homotopy/Continuation

• Analysis of CVD Reactors
– Bifurcation and Stability
– Optimization



Requirements:

• Complex Geometry

• 2D/3D Transport

• Variable density / subsonic compressible flow

• Multi-component diffusion / thermal diffusion

• Full property variation f(T,Yi)

• Non-equilibrium Chemistry

• Gas phase and surface reactions

• Steady State & Transient Solution

• Mapping of Complex Solution Spaces

• Bifurcation and Stability Analysis

• Design Optimization

MP Supercomputers:

3D Unstructured FE,

Fully-Implicit Methods,

Direct-to-Steady-State,

Robust and Scalable 

Iterative Methods, 

h - adaptivity,

Dynamic Load Balancing

Computational Simulation of Transport/Reaction Systems



Equations and Discretization



Incompressible Navier-Stokes, 
Energy and Mass Transport

Equations

Continuity

Momentum

Energy

Mass

Constitutive Models

Stress Tensor

Energy Flux

Mass Flux



Stabilized Finite Elements
(Hughes and coworkers)

The choice of discretization is critical in achieving 
efficient, robust, and accurate prediction.

Residual Form:

Continuity Equation:

Stabilized FE Variational Formulation:

Galerkin Term
(Eqns. of interest)

PSPG Term
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Stabilized Finite Elements

Residual Form:

Momentum Equation:

Stabilized FE Variational Formulation:

Galerkin Term
(Eqns. of interest)

SUPG Term
(convection dominated)

DCTerm (Shocks)



Find       such that                         where            

Nonlinear Problem

We define the Jacobian as:

Newtons Method Until converged:



Newton-Krylov Methods

Iterative Linear Solver – GMRES
Krylov Subspace of the form:

Preconditioning
Right preconditioning
Domain Decomposition
MultiLevel (algebraic and geometric)

Issues:
Very Large Problems -> Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Preconditioners



Parallel Scaled Efficiency of 1- level DD Preconditioners: 
Steady Reacting H2, O2 Opposed Jet Reactor

O2, Ar

H2, Ar

(10 species, 19 reactions)



Multilevel Preconditioner Scaling Study: 
3D Thermal Buoyancy Driven Convection



Robust Nonlinear 
Solution Techniques



MB f xc  Bcd+=

Broyden’s Method

Newton’s Method
MN f xc  Jc d+=

Tensor Method    
MT f xc  Jcd

1
2
---Tcdd+ +=

Nonlinear Solution Algorithms

Iterative Linear Solvers, Adaptive Forcing Terms

Line Search
Interval Halving

Quadratic
Cubic

More’-Thuente

Homotopy
Artificial Parameter Continuation
Natural Parameter Continuation

Trust Region
Dogleg

Inexact Dogleg

Globalizations



Contours of Mk

xk

Globalized Methods

Newton’s Method

xk 1+ xk sk+=

Mk s  F xk  J xk sk+=

J xk sk F xk –=

F(x*) = 0          min f(x) = ½ ||F(x)||2

Line Search

xk 1+ xk ks
k

+=

1. Compute direction, sk

2. Compute distance, k

Trust Region

xk 1+ xk sk+=

1. Compute distance, k

2. Compute direction



Line Search Algorithms
1. Compute a descent direction 
2. Compute a distance

f xk ksk+ 
T

sk  f xk 
T

sk

“Curvature”

While (not converged) k=0, 1, …

Compute sk

While (LS Criteria not conv.) i=0, 1, … 

Compute i via interpolation

0 1

“Sufficient Decrease”

f xk  k fk
T

sk+

f xk ksk+  



Trust Region Algorithm

f xk 
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2
--- F xk 

2

2
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k

f xk  f xk sk+ –

Mk 0  Mk sk –
-------------------------------------------=

Mk s  fk fk
T

s
1
2
---s

T
Bks+ +=min

s ks.t.

xk

xN

xC

While (not converged) k=0,1, …

While k < min and  > min

Calculate sk based on k

Parameters
Contraction Trigger
Expansion Trigger
Contraction Factor
Expansion Factor
Ratio min/max
Radius min/max

Adjust k
xDogleg



Robustness Study on
MPSalsa Benchmarks

Method Forcing

Term Easy Difficult Easy Difficult Easy Difficult

Full Step constant 0 1 5 5 3 4

adaptive 0 1 4 5 1 4

Quadratic constant 0 0 4 5 1 1

Line Search adaptive 0 0 0 0 0 0

Cubic constant 0 0 4 5 0 0

Line Search adaptive 0 0 0 0 1 1

More'-Thuente constant 0 0 4 5 0 0

Line Search adaptive 0 0 0 0 1 1

Dogleg constant 0 1 4 5 0 0

Trust Region adaptive 0 1 1 4 0 0

2D Thermal Convection 2D Lid Driven Cavity 2D Backward Facing Step

Number of failures for 2D test problems

• All globalizations of interest improve robustness.

• All globalizations are equally effective.

• Adaptive forcing terms improve robustness dramatically (resolving less, 
but more important modes in GMRES loop)!

• Overall, the combination of adaptive forcing term and globalization is 
very effective, however no combination succeeded in every case. 



Efficiency

Method Forcing Inexact Backtracks GMRES Normalized

Term Newton per INS iterations Time

Steps per INS

Quadratic constant 8.90 0.17 126.48 1.00

Line Search adaptive 16.42 0.14 46.49 0.79

Cubic constant 8.86 0.18 126.44 1.00

Line Search adaptive 16.37 0.14 46.26 0.78

More'-Thuente constant 8.43 0.18 126.14 0.93

Line Search adaptive 15.25 0.17 50.70 0.93

Dogleg constant 9.99 0.29 131.09 1.11

Trust Region adaptive 14.04 0.19 63.00 0.80

• For a particular choice in forcing term, most globalizations 
performed similarly.

• Adaptive forcing terms reduced the mean # of GMRES iterations 
(reduced oversolving).

• Small constant forcing terms required fewer inexact Newton steps 
(achieved greater residual reduction).

• Adaptive forcing terms yielded better run times. 



Adaptive Forcing Terms 
(MPSalsa - 2D Thermal Convection)

In General:
• Adaptive forcing terms are less efficient for EASY problems.
• Adaptive forcing terms are more efficient for DIFFICULT problems.

• Constant:

• Adaptive:

k = 1.0e-4
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“Type 1” – Eisenstat and Walker 1994
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Numerical Issues L-2 Norms

Re Quadratic Cubic

1000 21 21

2000 30 30

3000 F F

4000 66 66

5000 85 85

6000 F 186

7000 F F

8000 136 136

9000 F F

10000 179 172

Row Sum Scaled Norms

Re Quadratic Cubic

1000 24 24

2000 33 33

3000 52 52

4000 52 57

5000 60 58

6000 76 75

7000 101 94

8000 140 106

9000 143 150

10000 163 160

Inexact Newton with adaptive forcing: 

MPSalsa 2D Lid driven cavity:
• Precondition via right scaling
• Unknowns scaled via left scaling with 

Jacobian row sums.

• Globalizations are sensitive to scaling. 
– Get a different direction out of linear solver 
– Sufficient decrease condition may not be satisfied 

anymore!

• Users can override the norms and merit 
functions used throughout NOX!

– NOX::Parameter::Arbitrary::UserNorm
– NOX::Parameter::Arbitrary::MeritFunction
– NOX::Parameter::Arbitrary::PrePostIterate



Part 3: Enabling Technology
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Solver Technology

Sandia’s MP Solver Suite

Two-level design:
– Self-contained packages
– Leveraged common tools.

Allows rapid algorithmic development 
and delivery

Leveraging investments in software 
infrastructure without compromising 
individual package autonomy

Statistics:

Trilinos 6.0 released 9/05,  >1000 
downloads

Focus on continued package development 
and software engineering 

Awards
– R&D 100 (in 2004)
– IEEE HPC Software Challenge Award
– Sandia ERA team award and LM NOVA 

nomination

Users by Region (865 Total)

294

262

157

98

35

10

9

Europe

US (except Sandia)

Sandia (includes
unregistered)

Asia

Americas (except US)

Australia/NZ

Africa



Full Vertical 
Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rhythmos

Nonlinear Problems
NOX

Eigen Problems:

Linear Equations:

Linear Problems
AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:



NOX Interface

Solver
Layer

Abstract Vector & Abstract Group
Abstract

Layer

Solvers
- Line Search 
- Trust Region Directions

- e.g., Newton
Line Searches
- e.g., Polynomial

Status Tests
- e.g., Norm F

• Don’t need to directly access the vector or matrix entries, only 
manipulate the objects.

• NOX uses an abstract interface to manipulate linear algebra objects.

• Isolate the Solver layer from the linear algebra implementations used by 
the application.

• This approach means that NOX does NOT rely on any specific linear 
algebra format.

• Allows the apps to tailor the linear algebra to their own needs!

– Serial or Parallel

– Any Storage format: User Defined, LAPACK, PETSc, Epetra 



NOX Framework

Solver
Layer

Abstract Vector & Abstract Group
Abstract

Layer

Linear 
Algebra
Interface

Implementations
- EPetra
- PETSc

- LAPACK
- USER DEFINED

EPetra Dependent Features
- Matrix-Free Newton-Krylov
- Trilinos Preconditioners
- Jac Esitmation: Graph 
Coloring / Finite Diff.

Solvers
- Line Search 
- Trust Region Directions

- e.g., Newton
Line Searches
- e.g., Polynomial

Status Tests
- e.g., Norm F

Application
Interface

Layer

User Interface
- Compute F
- Compute Jacobian
- Compute Preconditioner



Bifurcation and Stability Analysis



Why Do We Need Stability Analysis 
Algorithms for Large-Scale Applications?

Nonlinear systems exhibit 
instabilities, e.g.:

• Multiple steady states

• Ignition           

• Symmetry Breaking

• Onset of Oscillations

• Phase Transitions

These phenomena must 
be understood in order to 
perform computational 
design and optimization.

Established bifurcation 
analysis libraries exist:

• AUTO (Doedel)

• CONTENT (Kuznetsov)

We need algorithms, software, 
and experience to impact  
ASCI- and SciDAC-sized 
applications.



Examples of Hysteresis / Turning Point 
Bifurcations (Eigenvalue =0)
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LOCA:  Library of Continuation Algorithms
Salinger, Phipps, et. al.

LOCA provides:

• Parameter Continuation:  Tracks a family of 
steady state solutions with parameter

• Linear Stability Analysis:  Calculates leading 
eigenvalues via Anasazi (Thornquist, 
Lehoucq)

• Bifurcation Tracking:  Locates neutral stability 
point (x,p) and tracks as a function of a 
second parameter

Application code provides:

• Nonlinear steady-state residual and Jacobian fill:

• Newton-like linear solves:

External force

Second parameter

E
xt
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1

1
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Codimension 1 Bifurcations

Turning Point

Pitchfork

Hopf

• Combustion

• Buckling of an Arch

• Buckling of a Beam

• Pattern formation

• Cell differentiation 
(morphogenesis)

• Vortex Shedding

• Predator-Prey models

• Flutter



Parameter Continuation, Linear Stability 
Analysis and Bifurcation Point Equations

R 0=

Jn 0=

 n 1=

R + 0=

Jn 0=

x   0=

 n 1=

R 0=

Jy Mz+ 0=

Jz My– 0=

 y 1=

 z 0=

R x p  0=

R x p  0=

dx
ds
------ x xo–  

2dp
ds
------ p po–  s–+ 0=

Jz Mz= J M– 
1–

J M– z
 –
 –
------------ 

 z=

Steady Solution (N) Arclength Continuation (N+1)

Eigenvalue Problem (N) Generalized Cayley Transformation (N)

Turning Point (2N+1) Pitchfork (2N+2) Hopf (3N+2)



Turning Point Identification

… but 4 solves of J per Newton iteration 
are used to drive J singular!

Turning Point Bifurcation Full Newton Algorithm

Bordering Algorithm



J M

– M J

g

h

 Jy 
p

-------------
 Jy 
x

-------------b 
 Mz 
p

---------------- 
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----------------b+ + +

 Jz 
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-------------b 
 My 
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----------------– 

 My 
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----------------b–+

=

Bordering Algorithm for Hopf Tracking

Ja R–=

Jb
R
p
-------–=

J M

– M J
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Mz

My–
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– M J
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----------------a–

=

J 0 0 0 R
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x
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x
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p
--------------------+
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x
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x
--------------------– M– J My–

Jz 
p
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p
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0 
t

0 0 0

0 0 
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z



p

R–

Jy– Mz–

Jz– My+

1  y–

 z

=

R x p  0=

Jy Mz+ 0=

Jz My– 0=

 y 1– 0=

 z 0=

p
 d  e   d  f  e –+

 c  h   e  g –
--------------------------------------------------------------------------=


1  e   g p+ +

 c 
-----------------------------------------------------–=

y y– e– gp– c–=

z z– f– hp– d–=

x a bp+=



CVD Reactor Design and Scale-up:
Buoyancy force can lead to undesirable flows

Chemical Vapor Deposition of Semiconductors: GaN, GaAs



1. Velocity is tied to rotation rate:

2. Rotational Reynolds Number:

3. Length scale for Rayleigh 
number is the von Karman 
boundary layer thickness:

Model Parameters

• Real Variables

– Pressure

– Susceptor Temperature

– Inlet Temperature

– Rotation Rate

– Inlet Velocity

• Dimensionless Variables

– Reynolds Number

– Rayleigh Number

– Nusselt Number

– Prandtl Number

• Geometry

Re
Ri

2


-----------=

Ra
gT

2
Ri


--------------------------

gTRi


--------------------= =

  =

uz uzo 0.885 o=



MPSalsa: 2D and 3D 
Parallel Reacting Flow Code

GaAs 
CVD

Ethane
Catalysis

Turbulent
Combustion

Temperature

CH2HCO

• Formulation: Galerkin/Least-Squares Finite Elements 
(GLSFEM) 

– Adaptive Mesh refinement

– Static and Dynamic Load Balancing (Chaco, Zoltan)

– Parallel FE Database (Nemesis)

• Physics: Laminar and turbulent, incompresible and ideal 
gas, full multicomponent and mixture averaged tranport, 
finite rate chemical reactions (CHEMKIN, Surface 
CHEMKIN, and TRANFIT).

• Transient Solver: Fully implicit 1st and 2nd order (alpha 
method), operator splitting for multiple time scales.

• Steady State Solver: fully coupled inexact Newton method 
w/ backtracking

• Linear solvers: iterative methods based preconditioned 
Krylov methods. Multilevel preconditioning (Aztec/ML).

• Bifurcation Analysis: Zero, first, and arc-length 
continuation.  Turning point, pitchfork and Hopf bifurcation 
tracking (LOCA). 

• Scalable Linearized Stabiity Analysis: Arnoldi’s method 
with Cayley transforms (P_ARPACK - being generalized in 
Anasazi).

• Optimization: rSQP and DAKOTA.



Good and bad flows are found to 
coexist at certain values of (Ra, Re)

Good Flow

Bad Flow

30500 Unknowns



Good and bad flows are found to 
coexist at certain values of (Ra, Re)

30500 Unknowns



Tracking of bifurcation leads to design rule

Ra 1.75Re
0.5

1
100
Re
---------+

 
 =

Ideal gas curves collapse onto 
Boussinesq for good choice of  To

Boussinesq

Pawlowski, Salinger, Romero, Shadid 2001

Simple Fit



Results Determined to be Insensitive 
with respect to Two Key Parameters

Turning point tracking runs at Re=3000



Mapping Complex Solution Spaces: 
CVD Reactor Design and Scale-up

Chemical Vapor Deposition of Semiconductors: GaN, GaAs

R i



Re 
Ri

2



M = 2 instability



Stability of Rotating Disk Reactor: 
Global stability limit and linear stability 

results

Multiplicityvon Karman Oscillations

A: Stable non-unique 
solution

B: Unstable 
non-unique 
solution

C: Stable 
non-unique 
solution

Time 
dependent 
solution

Fixed Re

LOCA - Salinger, Pawlowski, Phipps



Structure of Solution Space with Variation 
of 2 Parameters (Ra, Re) is Complex

Good Flow

Bad Flow



Direct Tracking of Turning Point Leads to 
Scale-up Stability Design Rule 

Pawlowski, Salinger, Romero, Shadid 2001

Ra 1.75Re
0.5

1
100
Re
---------+

 
 =

Power Law Correlation 
Fit to Simulation Results:

Simulation

Correlation

“Good”

“Bad”

F(x,Re*,Ra*) = 0

F v = 0

Tv 1  0

Solve extended system
with Newton’s method



Optimization



Optimization Algorithms, such as rSQP, 
Need Same Calls as Bifurcation Algs

Collaboration with Biegler, CMU



Chemical Vapor Deposition Reactor for 
Growing Epitaxial Silicon on 8” Wafer 



150K Node Mesh: Bottom View

Inner
Inlets

Outer
Inlets

OutletHeated, rotating, wafer

Narrow gap with purge flow



Chemistry Model for Silicon Epitaxy      
from Trichlorosilane in Hydrogen Carrier

SiCl3H g   SiCl2


 HCl g ++

SiCl2
 H2 g  Si s  2HCl g  + ++

Langmuir-Hinshelwood
Surface Reactions:

SiCl3H

HCl

H2

3 Species Model

XTCS=0.024

XHCl=0.000

XH2=0.976

YTCS=0.625

YHCl=0.000

YH2=0.375

Physical Properties are a function of local  Y and T, using Chemkin
, Cp, Dk, Dk

T

Tin 300K

Reaction Model of  Kommu, Wilson, and Khomami (2000):

Twafer=1398K

No Gas Phase Reactions:



Nonlinear Solution Strategy and Details

First solution at realistic conditions: ~30 steady state solves:
(1) Solve for flow at low P, const T, const Y, coarse mesh.   (2) Ramp up P.
(3) Ramp up T.                               (4) Ramp up Surf Reaction. 
(5) Turn on Thermal Diffusion. (6) Reconverge on fine mesh (1.2M unks).

Typical “forward” nonlinear solve on 48-(3GHz) Processors: 18 Minutes
Newton Iterations: 5 

Linear Solve (ILU, GMRES, 300iter; tol=10-4): 160sec
Jacobian Fill (Element-level Numerical):         100sec



Uniform Deposition Profiles are 
Desirable for High Quality Silicon Films

f
1
2
--- di dave 1– 

2

radii
=

Objective Function:

1D

di

2D

0D

3D



Operating Parameters and Other B.C.’s

Bottom View

Vi=30cms
XTCS=2.4%

Vi= P1
XTCS=P4

Vi= P1
XTCS=P4

Vp= P3, XTCS=0% = P2

Ti=300K Tw=1398K

P1: Side Inlets 
Velocity Vi

30cms 15-60 P3: Purge Flow 
Velocity Vp

10cms 0-50

P2: Wafer 
Rotation 

10RPM 0-150 P4 : Side Inlets 
Mole Frac. Xi

0.024 0.018-0.30



Comparison Optimization Algorithms 
Interface Requirements

NAND{Dakota(Dot-SQP)}      SAND{Moocho(rSQP)}

1. Nonlinear Solve (c=0) with 
convergence criterion

2. Objective Function (f)
3. 1 Convergence Criterion (f)

1. Constraint Vector ( c) 
2. Jacobian Solve (J-1 to 10-8)
3. Sensitivity vectors (dc/du)
4. Objective Function (f)
5. Obj Fn Gradient (df/dy)
6. Adjoint J Solve (J-T to 10-8)
7. 2 Convergence Criteria (c,f)
8. Needs Good Scaling, c vs f!

Requirements from Application Code

min f y u 
c y u  0=

CPU time versus Developer time.



Implementation of SAND Derivatives can 
be difficult and time consuming

dc/du calculations: All Dirichlet BCs  => c(u) is linear
dc/du precalculated with F.D.

df/dy calc difficult: changed f(y) from previous NAND work
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2-Parameter Results
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4-Parameter Results 
(starting near 2-parameter optimum)
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Comparison of 2D Profiles
Initial Solution 2-Parameter Opt. 4-Parameter Opt



Summary of Results: SAND 4x faster then 
NAND, bigger difference with more params 

Method NAND SAND NAND SAND

Params 2 2 4 4

Iterations 6 14 17 33

Jacobian Fills 120 15 391 34

Jacobian Solves 120 43 391 107

Total Time 7.2hrs 2.2hrs 25.2hrs 6.2hrs

Final Objective Function 5.0638 5.0635 0.6301 0.6338

P1: Side Inlets Velocity Vi
24.51 24.46 24.62 24.92

P2: Wafer Rotation  31.26 31.25 28.18 28.55

P3: Purge Flow Velocity Vp
Set: 10.0 16.16 17.34

P4 : Side Inlets Mole Frac. Xi
Set: 0.024 0.018* 0.018*

*bound



Comparison of More SAND and NAND 
Levels

NAND (17 SQP iters) SAND (33 SQP iters)

Level 1 
Black Box

Level 2 
Direct

Level 3 
Adjoint

Level 4  
Direct

Level 5 
Adjoint 

Level 5S

391 303 264 165 107 74
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Linear Solves

Second order corrections with 
SAND can bridge the methods

u



Freeing parameter improves uniformity 
considerably:  0.5% non-uniformity

Bound Free

Final Objective Function 0.6338 0.0207

P1: Side Inlets Velocity Vi
24.92 44.77

P2: Wafer Rotation  28.55 31.87

P3: Purge Flow Velocity Vp
17.34 4.81

P4 : Side Inlets Mole Frac Xi
1.80%* 1.08%

Initial              
4-Param Bound 
4-Param Free



Conclusions

• Stabilized FE methods can provide an effective 
formulation for a number of challenging transport / 
reaction applications.

• Scalable algorithms are required for efficient 
performance.

• Globalized Newton-Krylov methods are required to 
produce robust, accurate, and efficient codes.

• Stability, Bifurcation Analysis, and Optimization are 
critical tools for effective use of application codes.



The End



Stopping Criteria 
(StatusTests)

Highly Flexible Design:  Users build a convergence test hierarchy and 
registers it with the solver (via solver constructor or reset method).

– Norm F: {Inf, One, Two}  {absolute, relative}

– Norm Update X: {Inf, One, Two}

– Norm Weighted Root Mean Square (WRMS):

– Max Iterations: Failure test if solver reaches max # iters

– FiniteValue: Failure test that checks for NaN and Inf on 

– Stagnation: Failure test that triggers if the convergence rate 
fails a tolerance check for n consecutive iterations.

– Combination: {AND, OR}

– Users Designed: Derive from NOX::StatusTest::Generic



Building a Status Test

• Fail if value of          becomes Nan or Inf 

NOX::StatusTest::FiniteValue finiteValueTest;

FiniteValue: finiteValueTest

• Fail if we reach maximum iterations

• Converge if both:

MaxIters: maxItersTest

NOX::StatusTest::MaxIters maxItersTest(200);

normFTest

NOX::StatusTest::NormF normFTest(1.0e-6);

normWRMSTest

NOX::StatusTest::NormWRMS normWRMSTest();

Combo(AND): convergedTest

NOX::StatusTest::Combo convergedTest(NOX::StatusTest::Combo::AND);

Combo(OR)
allTests

NOX::StatusTest::Combo allTests(NOX::StatusTest::Combo::OR);

allTests.addStatusTest(finiteValueTest);

allTests.addStatusTest(maxItersTest);

allTests.addStatusTest(convergedTest);

convergedTest.addStatusTest(normFTest);

convergedTest.addStatusTest(normWRMSTest);



Status Tests Continued

User Defined are Derived from NOX::StatusTest::Generic
NOX::StatusTest::StatusType checkStatus(const NOX::Solver::Generic &problem)

NOX::StatusTest::StatusType
checkStatusEfficiently(const NOX::Solver::Generic &problem, 

NOX::StatusTest::CheckType checkType)

NOX::StatusTest::StatusType getStatus() const

ostream& print(ostream &stream, int indent=0) const

-- Status Test Results --
**...........OR Combination -> 
**...........AND Combination -> 
**...........F-Norm = 5.907e-01 < 1.000e-08

(Length-Scaled Two-Norm, Absolute Tolerance)
**...........WRMS-Norm = 4.794e+01 < 1

(Min Step Size:  1.000e+00 >= 1)
(Max Lin Solv Tol:  1.314e-15 < 0.5)

**...........Finite Number Check (Two-Norm F) = Finite
**...........Number of Iterations = 2 < 200

-- Final Status Test Results --
Converged....OR Combination -> 
Converged....AND Combination -> 
Converged....F-Norm = 3.567e-13 < 1.000e-08

(Length-Scaled Two-Norm, Absolute Tolerance)
Converged....WRMS-Norm = 1.724e-03 < 1

(Min Step Size:  1.000e+00 >= 1)
(Max Lin Solv Tol:  4.951e-14 < 0.5)

??...........Finite Number Check (Two-Norm F) = Unknown
??...........Number of Iterations = -1 < 200



NACA 0012 Airfoil

Interface Benefits

Premo – Compresible Flow 
2D and 3D Finite Volume Code

Method Time ||F||

Explicit 32.1 hrs 1.80E-10

Peudo-Transient 49.5 min 8.90E-13

NOX (Colored FD)

LOCA Homotopy 34.4 min 6.50E-16
NOX (Colored FD)

LOCA Homotopy 14.2 min 6.50E-14
Automatic Differentiation

Interfacing to 
LOCA took 1hr!



Bifurcation = Instability

Erratic Operation could be due to physical Instability



Stability of Rotating Disk Reactor: 
Global stability limit and linear stability results

Multiplicityvon Karman Oscillations

Fixed Re

LOCA - Salinger, Pawlowski, Phipps

Simulation

Correlation

“Good”

“Bad”


