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Abstract

The Internet and other large computer networks have
become an integral part of numerous daily processes.
Security at the network layer is necessary to main-
tain infrastructure survivability in the case of cyber
attacks aimed at routing protocols. In order to min-
imize undesired overhead associated with added se-
curity at this level, the notion of selective security is
proposed. This research identifies elements in net-
work topologies that are most important to the sur-
vivability of the network. The results show that the
strategic placement of network security at critical ele-
ments will improve overall network survivability with-
out the necessity of universal deployment.

1 Introduction

The Internet is the foundation of world-wide digital
communication. Many critical applications depend
on this enormous infrastructure for their functional-
ity. The survivability of this and other large net-
works is vital to maintaining stability in many daily
processes. This research aims to increase the depend-
ability of a network by identifying and securing the
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most critical points within it.

At the heart of large network infrastructures, such
as the Internet, are the network-layer protocols. At
this layer routing mechanisms establish virtual links
to fully connect entire networks, making global com-
munication possible. These protocols were originally
designed to operate in a trusted environment, without
the threat of malicious nodes. This assumption has
led to vulnerabilities in the network core. It has been
commented that “abuse of the routing mechanisms
and protocols is probably the simplest protocol-based
attack available” [7]. The increased availability of
tools allowing direct access of network resources to
malicious users has made these attacks a reality [25].
Specific attacks targeting the routing infrastructure
include routing table poisoning attacks, packet mis-
treatment attacks, and denial-of-service (DoS) at-
tacks [9].

Security for higher-level (e.g., transport, applica-
tion layers) protocols has been the focus of much re-
cent research, but without security at the lower lay-
ers, computer networks are left vulnerable to attack.
Security proposals for various routing protocols have
surfaced in research, but the deployment rate of these
mechanisms is low. Often this neglect is attributed
to the performance cost, political logistics, and un-
certainty associated with configuring something new
onto all nodes in a stable network environment [19].

Rather than universal application of arbitrary se-
curity at all points within a given network, this re-



search suggests a selective deployment of network-
layer security to protect critical elements—elements
whose failure or attack would be most detrimental to
network survivability. Overhead incurred by secur-
ing these critical elements is justified because of the
risk associated with leaving them vulnerable. When
the most critical elements of a network are secured
against attack, the collective network graph remains
more resilient to attackers.

This paper defines survivability in terms of the
network routing infrastructure. Using metrics for
measuring network performance, critical elements are
identified, whose functionality determines in large
part the survivability of the entire network. Related
research and simulation results from empirical analy-
sis are used to fortify the claim that securing critical
elements will reduce the risk of a network catastro-
phe in the case of attack. The research and conclu-
sions presented in this paper will provide a basis upon
which a future selective security model might be de-
signed and implemented.

2 Network-layer Security

Deployed network-layer protocols are some of the
most vital mechanisms maintaining connectivity
across local, national, and international boundaries.
Though transparent to the end user, routing proto-
cols are an integral part of every network system.
This section gives an overview of the network layer
and introduces the concept of selective security.

2.1 The Network Layer

The routing infrastructure maintains paths from all
nodes to all other nodes within a network. Internet
routing is hierarchical. Autonomous systems (AS)
are networks managed by a central entity and uti-
lize an interior routing protocol to manage routing
within the network, such as the Open Shortest Path
First (OSPF) protocol [23] or the Routing Informa-
tion Protocol (RIP) [22]. The Internet is a complex
network of AS that communicate using an exterior
routing protocol, such as the Border Gateway Proto-
col (BGP) [28].

When successful protocol attacks are executed at
the network layer, the effects are far-reaching. In
1997 routers at MAI Network Services, an Internet
service provider (ISP) headquartered in Virginia, re-
layed bad router information from one of its cus-
tomers onto Sprint’s backbone. The bogus informa-
tion propagated throughout Sprint’s network, adver-
tising MAI’s network as the best route to get any-
where, and causing routers operated by Sprint and

other ISPs to transmit all Internet traffic to MAI’s
network [29]. MAI’s network was overwhelmed al-
most instantly by the extreme load, but routers na-
tionally, and perhaps internationally, continued to
forward data, creating a “black hole” scenario for sev-
eral hours. During the outage, Sprint reported that
most of its network was at 10% utilization, while the
affected area was completely overloaded [31].

Although the cause of the mentioned routing inci-
dent was not a malicious attack, it demonstrates the
ripples that can be felt throughout large networks,
even when only one small part is compromised. Care
should be taken to secure the network layer against
undesired mishaps or attacks.

2.2 Selective Security

To protect network-layer protocols from attacks, re-
search has produced security mechanisms. Often,
however, development of these low-level security
mechanisms does not reach a stable state, or they
are simply not deployed. An example is the protocol
for OSPF with Digital Signatures [24]. Although the
draft for this was written in 1997, the status of the
protocol is still “experimental” in 2006.

Why does routing security often fall short of de-
ployment? Universal deployment of security mech-
anisms may seem unappealing for various reasons,
which may include inter-organization logistics or pol-
itics, performance concerns, or concerns with com-
plicating a stable network environment. The objec-
tive of selective security mechanisms is to effectively
secure critical elements while striving to maintain a
lower overhead (computational, political, or other-
wise) than that accrued if all nodes were secured in
a similar fashion.

An analysis of network-layer protocols will show
that some network elements are more essential than
others in maintaining a dependable network. The
routing infrastructure exhibits a hierarchical charac-
teristic, which means that elements have varying im-
portance respective to the survivability of the overall
infrastructure. Subsequent sections show that cer-
tain behaviors of network topologies place a higher
reliance on particular elements in order to maintain
survivability. Selective security techniques will apply
the necessary measures to protect network elements
of higher importance.

Two questions must be addressed in regard to the
idea of selective network-layer security. First, what
is the plausibility of applying various security mech-
anisms to nodes within the same infrastructure? The
answer for each case depends on the specific proto-
col to which security is being applied. As an exam-



ple, using authentication on only select routers in an
OSPF network might require a non-trivial change to
the specification. However, the OSPF with Digital
Signatures specification currently allows for the pos-
sibility of non-authenticated areas—divisions within
an OSPF network—working with authenticated ar-
eas [24]. A scheme with more variance from the orig-
inal specification may have more trouble getting ap-
proved and deployed than one that closely compares
with the original.

The second question regarding selective security
is how well selectively deployed security mechanisms
will protect the network from protocol attacks. This
issue should also be analyzed by (1) identifying
the protocol to which security will be applied and
(2) identifying specific attacks to the protocol.

Effective design of a selective security mechanism
should involve an analysis of the protocol that is be-
ing protected. An example of an ineffective selective
security method is an OSPF with Digital Signatures
network in which critical routers sign their update
packets, but few other routers check the signatures.
This is analogous to requiring patrons to show a cur-
rent drivers license at an airport where only few at-
tendants are verifying this document. When design-
ing a technique for selective security, the critical ele-
ments should be thoroughly secured in order to assure
network survivability. For this to happen, it may be
necessary to secure more than the selected important
elements; perhaps the security of some superset of
those elements is required.

Akin to designing a security model for any other
environment, designing a selective security model for
routing protocols involves consideration of possible
attacks aimed at the protocol. For example, protec-
tion against a routing table poisoning attack can be
applied using the hashing or digital signing of up-
date packets. However, this implementation would
not protect against a router DoS attack.

Selective security is an abstract term in itself, and
specific implementations may vary. This research
does not directly discuss implementation of selective
security, but rather helps identify critical points in
the network that should be secured against attack.

3 Network Topologies

Communications networks respond differently to ap-
plied instances of attack or failure. This section ex-
amines some of the characteristics of the Internet and
other large networks in order to identify critical ele-
ments within them. Characteristics of scale-free and
random networks are discussed in this research.

3.1 Scale-free Networks

The complexities of the Internet topology and World-
wide Web are attributed to the unmanaged and rapid
growth that has occurred since its inception. The
complex nature of these networks makes them diffi-
cult to classify. Related research has categorized sim-
ilar infrastructures for social and biological systems
that occur in nature [4, 32]. Albert and Barabdsi, et
al. have observed that such large networks organize
themselves into a scale-free state, and the results of
their research are used to identify critical elements in
large networks [5, 2].

Scale-free networks are characterized by their con-
nectivity distribution P(k), the probability that a
node in the network is connected to k other nodes.
In scale-free networks P(k) decays as a power-law:
P(k) ~ k=7 [5]. Relatively few nodes are highly
connected in a scale-free network; the majority of
nodes have very few neighbors. This relationship
places enormous significance on the nodes with the
highest degree. Figure 3.1 shows the graph (a) and
connectivity distribution (b) of a scale-free network
generated and visualized using the Pajek Program
for Large Network Analysis [6]. The network follows
the Barabéasi-Albert extended model [1] and is com-
prised of 100 nodes connected by 400 directed links.
Its connectivity distribution approximates the model
P(k) ~ k=16, which is also graphed in Figure 3.1b.

One set of Internet topology data used for analy-
sis in this research consists of data from the SCAN
project obtained in 1999 using the Mercator soft-
ware [17] merged with data also obtained in 1999
from the Internet Mapping Project at Lucent Bell
Laboratories [20]! These studies produced a topology
consisting of 284,805 connected Internet routers, with
connectivity P(k) ~ k=23, This data is hereafter re-
ferred to as the “scan+lucent” data. The connectiv-
ity distribution of the “scan+lucent” data is shown
in Figure 2. The probability that a network node is
connected to 100 others is P(100) = 2.5 x 107, while
the probability that a node only has one neighbor is
extremely high P(1) = 0.53.

The scale-free distribution carries with it proper-
ties of extreme robustness when nodes are disabled
at random. However, it network functionality de-
grades rapidly when the most connected nodes are
targeted [3]. Because the concentration of highly-
connected nodes represents only a small percentage
of the whole network, a loss of a small percentage
of these critical nodes is extremely damaging to the
functionality of the network. Section 5.1 discusses

I The Internet Mapping Project is now run by Lumeta Cor-
poration. More information can be found at their Web site [13].
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Figure 1: The graph (a) and connectivity distribu-
tion (b) of a scale-free network with 100 nodes con-
nected by 400 directed links. The network was gen-
erated and visualized using the Pajek Program for
Large Network Analysis [6] and follows the model
P(k) ~ k=16 which is plotted against its connec-
tivity distribution.
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Figure 2: The connectivity distribution of the
“scan+lucent” network. The line below the plot
points represents the connectivity distribution for the
scale-free model P (k) ~ k=23,

the identification of critical elements in scale-free net-

" works.

3.2 Random Networks

Relatively smaller networks, such as AS managed by
a sole entity, are often classified as random networks.
There are many models describing random networks.
Erdds and Rényi define a model G(n,P{u,v} =
p(n)), 0 < p(n) < 1, in which each possible edge
between two vertices u and v is added with proba-
bility p(n) to the graph [8]. At p(n) = % any graph
with n nodes is equiprobable. Figure 3 shows the
graph (a) and connectivity distribution (b) of a ran-
dom network that was generated and visualized using
the Pajek Program for Large Network Analysis [6].
This network follows the Erdds-Rényi model [8] and
has 100 nodes connected by 398 directed links and
approximates a normal distribution with y = 7.94
and o = 3.09.

Networks following a random graph model exhibit
characteristics different from those of scale-free net-
works. Most notably, random graphs generally follow
a pattern of homogeneity; the connectivities of the
nodes in this model are approximately the same, and
each node in the network contributes equally to the
stability of the entire network graph: if any network
node is lost, the damage is approximately the same as
if any other node were lost instead [3]. Thus, attacks
directed at the most connected network nodes will
not harm the network more than attacks at random
nodes.

The results of simulations involving attack and sur-
vivability, as well as methods for identifying critical
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Figure 3: The graph (a) and connectivity distribu-
tion (b) of a random network with 100 nodes con-
nected by 398 directed links. The network was gen-
erated and visualized using the Pajek Program for
Large Network Analysis [6] and approximates a nor-
mal distribution with 4 = 7.94 and ¢ = 3.09.

elements in random networks are discussed in Sec-
tion 5.2.

4 Measuring Network Perfor-
mance and Survivability

Defining survivability is a crucial step in identifying
critical network elements. This section defines sur-
vivability and outlines several metrics for quantifying
network performance in a communications network.

4.1 Network Survivability

A survivable system is able to fulfill its mission, in a
timely manner, in the presence of attacks, failures, or
accidents [14]. Vital systems not exhibiting surviv-
ability may result in catastrophic consequences when
undesired events are experienced—even the loss of
human life.

An analysis of potential failures in real net-
work environments demonstrates the notion of sur-
vivability in relation to the mission of an or-
ganization. AT&T—a large telecommunications
company—maintains a standard service-level agree-
ment guaranteeing 99.99% network availability to its
customers. That is equivalent to 43 minutes of allow-
able down time per month. In 2001 the malfunction
of a single switch on AT&T’s ATM network over-
loaded 7% of all the network switches for about four
hours, greatly exceeding the allowed down time in its
service agreement [26].

Even the Internet—which urban legends claim
could withstand the effects of a nuclear bomb [33]—is
not without an “Achilles’ Heel”. If the functionality
of just 5% of the Internet’s most highly-connected
nodes is lost through attack, the complete infrastruc-
ture becomes fragmented and unusable [3].

The first step in maintaining network survivability
is to identify the network’s “mission”, so that execu-
tion efficiency of that mission can be evaluated in the
presence of attack [14]. This research deals with gen-
eral computer communications networks, which are
expected to maintain a certain level of performance.
It is therefore necessary to identify metrics for quan-
tifying network performance in scale-free and random
graphs. Metrics from queuing models are helpful for
the monitoring, analysis, and quantifying of network
behavior under a range of failures and attacks [18].
Topological characteristics desirable for good network
performance are also outlined.
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Figure 4: A queuing model for a network router inter-
face. The parameters A\, Ty,, Ts, and p affect network
performance.

4.2 Queuing Model

Network delay is a critical performance metric which
can be degraded in the presence of network attacks.
Queuing theory can be used to estimate the incn-
reased delay caused by a network attack. A network
router can be analyzed as a single-server queue (see
Figure 4) [30]. Data packets arrive at the router at
rate A and must be serviced with average service time
Ts. When A is such that arriving packets cannot im-
mediately be serviced, arriving packets must “wait”
in line (queue) to be serviced behind other packets
that arrived previously. When the router interface is
available to service the next packet, a packet is se-
lected from the w waiting packets according to some
policy (e.g., a first-in-first-out or FIFO policy). The
link utilization p is the fraction of time that the dis-
patching interface is “busy” servicing packets, mea-
sured over some period of time [30]:

p = AT (1)
When p = 1.0, the interface is saturated. Thus, the
theoretical maximum input rate that can be handled
by a router is [30]:

1
)\max R
Ts

(2)
However, the finite buffer size of a router usually lim-
its the maximum input rate to 70-90% of the theo-
retical maximum. Queuing delay T, is the average
time spent waiting to be serviced, and is calculated
using Little’s formula [30]:

(3)

As a link approaches capacity (i.e., p — 1.0), delay
becomes arbitrarily high [11].

The parameters of the above router queuing model
will affect the overall flow of traffic through a net-
work. The total data successfully transmitted across
a network over a period of time is known as aggre-
gate throughput H. Because seamless data transfer is

the primary goal of a communications network, anal-
ysis of aggregate throughput amid varying conditions
provides a measure of network efficiency, and higher
throughput is an indicator of better performance.

The metrics described in this section will be used
in Section 5 to evaluate network performance after
networks have been targeted for attack. This will
be a measure for how much elements affect overall
network survivability.

4.3 Topological Characteristics

Topological characteristics can be used to indicate
some measure of performance of the network. Sev-
eral metrics have been defined to describe the inter-
connectedness of a network—a property describing
how closely-linked the topology is. In a graph G,
the distance d(u,v) between two nodes u and v is
defined as the length of the shortest path joining u
and v. If d(u,v) = oo for any two network nodes,
the network is fragmented—that is, there are isolated
clusters of nodes in the network. Diameter D(G) is
defined as the maximum distance between any pair
of nodes in G and corresponds to the delay of data
passed through the network [10]. The average dis-
tance (d) over all pairs of nodes in a network is also
helpful in determining network efficiency [2]. Small
diameter and average distance are desirable charac-
teristics for a communications network, and result in
higher network performance [16].

If a network becomes fragmented as the result of
the failure or attack of one or more nodes or links, re-
maining nodes are grouped into clusters according to
which nodes or links have been disabled. As the net-
work is fragmented into clusters, nodes have no reli-
able path for transmitting data to and from the nodes
outside their cluster (see Figure 5), and the network’s
ability to successfully transfer data is diminished. In
order to maintain reliable network communication se-
curity should guard against attacks that will fragment
the network.

Analysis of network fragmentation suffered and in-
crease in (d) incurred will be used in Section 5 to
quantify network survivability when arbitrary net-
work elements are protected against network-layer at-
tacks.

5 Identifying Critical Network
Elements

This section presents methods for quantifying the
value of a network element within the network. The
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results are based on previous research as well as em-
pirical data gathered from network simulation.

Different graph models, such as those discussed
in Section 3, present different challenges for mea-
suring survivability, using the metrics introduced in
Section 4. However, strategies can be deployed to
identify critical elements in networks having varying
characteristics. In particular, methods of identifica-
tion within scale-free and random networks will be
discussed.

5.1 Critical Elements of Scale-free
Networks

The scale-free networks discussed in Section 3.1 are
distinguished by a small concentration of highly con-
nected nodes. The work of Albert and Barabdsi, et
al. has shown that as the nodes of a large network are
disabled in order of decreasing connectivity, the net-
work becomes fragmented and unusable when only
5% have been directly disabled [3]. Results of simu-
lations produced in this research are comparable to
the results published by Albert and Barabasi, et al.;
the most connected nodes in a scale-free network are
most critical to the network’s survivability.

5.1.1 Simulation Environment

In order to analyze survivability of a scale-free net-
work, a software tool was created for simulating net-
work attacks. The topological information from the
“scan-+lucent” network was imported into this simu-
lator, and the simulator removed network nodes from
the graph iteratively, without replacement. In order
to reduce the computation time required to calculate
essential network metrics on this large network, 200
of the original 284,805 nodes were disabled at each
iteration for this simulation, and the resulting net-
work after each iteration was the largest cluster of
connected, functioning nodes. At each time step the
resulting network was analyzed.

The simulation was performed once without any
protection and once with the 10% most connected
nodes secured against attack. In both runs the nodes
with the highest degree were targeted. An additional
run simulate attacks at random nodes. The attack
model applied is construed as either a crippling of
the node itself or the incapacitating of the set of links
connecting it to other network nodes.

5.1.2 Simulation Analysis

In the attack model, wherein network nodes were dis-
abled in order of decreasing connectivity, the frag-
mentation in the network severely crippled its abil-
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Figure 6: Network stability of the “scan-+lucent” net-
work under different attack strategies. When over 1%
of the nodes are randomly removed from the network,
the network retains over 97% of its original nodes,
but when 1% of the most connected nodes are re-
moved from the network, the size of the functional
network drops below 60% of its original size. If only
the 10% most connected nodes are protected, and
the network suffers a directed attack,’ the network
remains resilient.

ity to function (see Figure 5.1.2). When 1% of the
most connected nodes were effectively disabled by at-
tackers, the largest connected cluster remaining was
comprised of less than 60% of the original nodes.

In contrast, Figure 5.1.2 also shows the result of
losing large numbers of nodes due to random attacks.
Although 1% of the nodes were directly attacked,
the network retained over 97% of its original nodes.
When the 10% most connected nodes were secured
from attack (Figure 5.1.2) the network retained over
95% of the original nodes for operation.

The average distance (d) of the “scan+lucent” net-
work was calculated at each iteration of attack and
failure using a statistical sample of the entire remain-
ing network. The average distance from each of 1000
randomly-selected nodes to all other nodes was cal-
culated:

ZuGS ZUGG\U#u d(U”U)
IS|(IG1 = 1)

(d) = (4)
where S is the set of randomly selected nodes, and G
is the set of entire network nodes.

It should be noted that in general as the number
of links increases in a network with a fixed number
of nodes, (d) decreases [3]. This makes it difficult to
compare (d) values for networks with different num-
bers of nodes or links. For this reason the term rel-
ative average distance (d*) is introduced, which is a

Changes in average distance amid random/dirercted attacks
in the "scan+lucent" network
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Figure 7: Changes in the relative average distance
(d*) between nodes of the “scan+lucent” network
in the presence of different attack strategies, shown
with 95% confidence intervals. The value (d*) re-
mains nearly unchanged even after 1% of the nodes
are randomly removed from the network. However,
(d*) increases linearly as nodes are removed in or-
der of decreasing connectivity. Protection of the 10%
most connected nodes shows little change in (d*), al-
though the network suffers a directed attack.

ratio of the calculated average distance to the number
of unique source/destination pairs in G, multiplied by
a constant c¢ in order to bring the values being com-
pared into a more reasonable range for comparison:

. (d)

‘= faie - ©)

The simulation results with ¢ = 100 are shown in
Figure 7 with a 95% confidence interval. The value
(d*y increased linearly when the nodes were disabled
in order of decreasing connectivity, but for the simu-
lation involving simple failures (d*) remained almost
unchanged, despite the loss of over 1% of the net-
work’s nodes. When the 10% most connected nodes
are protected against attack, (d*) again shows little
change, even when the target of a direct attack.

The results of the simulations performed on the
scale-free “scan+lucent” network support the claim
that critical elements can be identified in scale-free
networks. When the most connected nodes are se-
cured against attack in a scale-free network, ma-
jor network fragmentation will be prevented. In
addition, if the most connected nodes are secured
from attack, (d*) will not increase significantly, al-
though other random nodes may have lost function-
ality. These attributes make the network more sur-
vivable.



5.2 Critical Elements of Random Net-
works

Because of the topological differences between scale-
free and random networks, the analysis and conclu-
sions drawn about scale-free networks in Section 5.1
do not necessarily apply to random networks. The
research of Albert and Barabdsi, et al. [3] shows that
nodes attacked in order of decreasing degree and at
random disable the network in a similar fashion. In
this section link analysis is used to identify critical
elements in random networks.

5.2.1 Max-flow Min-cut

Communications networks support a finite flow of
data through their systems. Each link {u,v} has a
limited capacity C(u,v) that affects the overall be-
havior of traffic flow in the network. The mazimum
flow (max-flow) is the greatest rate at which data
can be sent from a source s to a destination ¢ with-
out violating capacity constraints [12]. Data flows in
the network are referred to as commodities, and each
commodity has a demand D(s, t) [21].

A cut (U,U) of a graph G is a partition of G into
Uand U = G — U. The capacity of this cut is the
sum of the capacities linking U and U:

>

{u,v}ueUnveUVveUAueU

CU,0) = C(u,v)  (6)

The sum of demands whose source and sink are on
opposite sides of the cut is the demand of the cut
separating U and U:

{s,t}|s€UNteUVteUAseU

D(U,U) = D(s,t)  (7)

In a wniform multicommodity flow problem, it is as-
sumed that there is a commodity for each unique
node pair in the network, and each commodity has
the same demand. The demand of such a cut is sim-

ply [12, 21]: B B
DU,U) = U||U| (8)

In this paper uniform multicommodity flow problems
are used as a case study for examination.

The min-cut of a network graph 6(G) is the cut
with the lowest capacity-to-demand ratio [21]:

o, 0)

0G) = min 55 5

(9)
The set of links comprising the min-cut might be
characterized as a “bottleneck” in the network—
vulnerable but vital strands which attach two net-
work partitions. The vulnerability lies in the high

utilization of those links spanning the cut. If one
or more of that set are disabled, as the result of an
attack, network congestion will likely increase. The
load that was once distributed across several links will
now rest on the remaining links, potentially overload-
ing their already weighted load. If all of the links are
successfully disabled, then the network becomes frag-
mented.

The min-cut problem suggests a solution to identi-
fying critical elements in random networks. If the
links comprising the min-cut of a network are at-
tacked, the effects of fragmentation or congestion will
be felt throughout the network. However, if these
links are secured, the network is more survivable to
attacks.

5.2.2 Link Valuability

The solution to the min-cut is a set of links within
a network. Therefore, using only these metrics, it is
difficult to quantify and compare the values of differ-
ent links within the network. In order to effectively
do this, link valuability ¥ of a link {u,v} is defined
for uniform multicommodity network here:

D(U,T)

_ ZU|u€U/\v€U\/vEU/\uEU Cc(U,0)
CUlueUAveUVveUAuclU|

(10)
where c is a constant used only to bring the values be-
ing compared into a more reasonable range for com-
parison. Link valuability is the average demand-to-
capacity ratios of all network cuts of which it is a
part. By definition as link valuability increases, the
expected utilization of the link will increase, and the
link’s importance with respect to overall network sur-
vivability will increase.

Iu, v)

5.2.3 Simulation Environment

In order to test how well the link valuability prop-
erty holds, a simulation was designed to test the
performance of a dumbbell-shaped graph that shares
the homogeneous property of random networks (i.e.,
nearly all links have the same number of neighbors).
This 4-graph, shown in Figure 8, is comprised of ten
nodes, and was simulated using the network simula-
tor ns-2 [15]. Each network link had a capacity of
5.0Mbps. The network was designed to make links
{3,5} and {4,6} the most critical to the infrastruc-
ture. Using ¢ = 107, these links each had a valuabil-
ity 9¥(3,5) = ¥(4,6) = 5.739, and the other links had
valuabilities ranging from 5.565 to 5.655. A link-state
routing protocol was used in the network to establish
routes.
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Figure 8: A dumbbell-shaped homogeneous network
used for network simulation and analysis in which
links {3, 5} and {4, 6} have higher valuability than the
others: (a) FTP traffic flows from sources at nodes 0
2 to sinks at nodes 7-9 over highly utilized links {3,5}
and {4, 6}; (b) link {3, 5} has been disabled, and traf-
fic originating at nodes 0, 1, and 2 is passed only
through link {4, 6} to destination nodes. Figures gen-
erated using the Network Animator (Nam) [15].
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Figure 9: Correlation of aggregate throughput H
from simulations involving CBR traffic in a dumbbell-
shaped network with the link valuability 9(u,v) of a
particular link {u,v} dropped in each simulation. As
the valuability of a failed link increases, the aggregate
throughput in the network decreases.

A series of simulations was run in which 1.0Mbps
constant bit rate (CBR) traffic was transmitted from
each of nodes 0-2 to each of nodes 7-9 over the the
user datagram protocol (UDP). In each simulation a
particular link was disabled at 5.0 seconds of simu-
lation time. The network traffic then continued to
run for 15.0 additional seconds in order to monitor
network performance folloying the link attack, and
the metrics measured at each sampling interval were
averaged over the entire 15.0 seconds. A simulation
was run once for each link in the network, disabling
the link on that run.

A graph correlating aggregate throughput H with
link valuability ¢ in this series of simulations is shown
in Figure 9. This graph displays a correlation be-
tween ¥(u,v) and the H resulting from the attack of
link {u,v}; as 9 increases the resulting H decreases.
When these results were analyzed using the statistical
program R [27], it produced a high linear correlation
value of 0.915.

An analysis of metrics at network routers shows
how the loss of more valuable links further impacts
network performance. Figure 10 maps the 85th per-
centile of p following a link failure to the correspond-
ing valuabilities of disabled links. Utilization p in-
creases as the valuability of the disabled link in-
creases. R produces a correlation value of 0.453 for
the 85th percentile p value in the dumbbell network
with CBR traffic. Although the correlation is not as
high as that of the aggregate throughput, the results
show that failure of the most valuable links causes



Correlation of link valuability of a failed link with
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Figure 10: Correlation of 85th percentile link uti-
lization p from simulations involving CBR traffic in
a dumbbell-shaped network with the link valuabil-
ity ¥(u,v) of a particular link {u,v} dropped in each
simulation.

network utilization to increase the most.

Queuing delay T, in networks involving link at-
tack were also analyzed in the series of simulations
using CBR traffic. The 85th percentile queuing de-
lays, calculated using Little’s formula [30], is shown
in Figure 11. The latter graph shows that when the
most valuable network links fail, queuing delay is the
highest.

A network following the Erdés-Rényi model [8] was
generated with the Pajek Program for Large Network
Analysis [6], so that the results might be verified on
another random network. This 7-graph consisted of
10 nodes connected by 24 10Mbps links. Traffic in
the network was generated by 150 CBR sources dis-
tributed uniformly across the network, with corre-
sponding destinations also uniformly distributed. A
series of simulations was performed, as in the case
of the dumbbell network. A mapping of ¥(u,v) to
the aggregate throughput of network data after the
failure of corresponding link {u,v} failed is shown in
Figure 12. As in the case of the dumbbell network, as
the valuability of a failed link increases, the aggregate
throughput in the network decreases. R correlated
this data with a value of 0.634.

The results of multiple simulations using a dumb-
bell network graph with several traffic models show
that when links with higher valuabilities are disabled,
network performance suffers more than if less valu-
able links are disabled. These results were verified on
a generated random network.
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Correlation of link valuability of a failed link
with 85th percentile queuing delay in a dumbbell network
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Figure 11: Correlation of 85th percentile queuing de-
lay T, from simulations involving CBR traffic in a
dumbbell-shaped network with the link valuability
P(u,v) of a particular link {u,v} dropped in each
simulation.

Correlation of link valuability of a failed link
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Figure 12: Correlation of aggregate throughput H
from simulations involving CBR traffic in a random
network with the link valuability ¢(u,v) of a partic-
ular link {u,v} dropped in each simulation. As the
valuability of a failed link increases, the aggregate
throughput in the network decreases.



6 Conclusions

Recent technology has enhanced communication
globally with the development of large communica-
tions networks, the largest of which is the Internet.
In order to guard against network-layer protocol at-
tacks, these infrastructures should be secured. Be-
cause the computational or logistical overhead of uni-
versally securing all nodes in a particular network can
slow down or even prevent the application of secure
routing mechanisms, this research shows that critical
elements in computer networks can be identified, ele-
ments whose attack would be detrimental to the sur-
vivability of the collective network graph. Security
applied to these elements will increase the survivabil-
ity of entire networks.

This research discussed the notion of selective
network-layer security to protect against cyber at-
tacks. The characteristics of scale-free and random
network models were described, and data from a real-
world graph following these models was obtained for
survivability analysis. Network survivability was de-
fined, and link and topological metrics were used to
quantify network performance.

Attack models simulated on a scale-free network
topology showed that the nodes with the highest de-
gree are most critical to network survivability. Sim-
ulated attacks on random networks showed that the
links with the highest valuability are most critical
to network survivability. The selective deployment
of network security to critical elements can improve
overall survivability in networks of high importance.
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