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Objective
• Determine and understand microstructure-property 

relations, and thermal behavior of laser engineered 
net shaped (LENS®) PH13-8Mo stainless steel.

• PH13-8Mo Stainless Steel.
– Is a low carbon (<0.03) precipitation hardenable, martensitic 

stainless steel.
– Has the highest combination of corrosion resistance, strength and 

toughness in all the stainless steels 
– Is an Ideal choice for extreme environmental conditions

• Applications include forged airframe parts, fasteners, 
undercarriage, petrochemical, and safety and  security 
components. 

PH 13-8 Mo stainless is a registered trademark of Armco Inc.
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Background on LENS
LENS® Is an alternative technique for consolidating metal powders to net-shape



5

Laser Engineered Net-Shaping (LENS®) Details

 CAD solid model
 Electronically 

slice to horizontal 
layers

 Automatically controlled 
laser powder deposition

 Forms part line by line, layer 
by layer 

 Without tooling

 Full dense 
 Net-shaped
 Finished 

functional blade

 A novel rapid manufacturing process: Using a focused high-powered 
laser beam to melt the injected powder to net shape components.

SNL, 2001
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Advantages & Applications 

Advantages:
 Small heat affected zone with high 

cooling rate.
 Excellent  material properties due 

to fine microstructure features.
 Easy composite and functionally 

graded material deposition with 
high accuracy.

 Fully dense net shape part 
deposition bypassing initial forming 
operation .

 Flexibility and accurate 
manufacturing. 

 Minimal material waste.

Applications:
 Rapid prototypes

 Functional, smart
 Modification & repair

 Failures in field , 
fabrication

 Small lot production
 Spare parts, new / 

development parts
 Improve properties of 

existing alloys and 
composites

 Develop new alloys and 
composites
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• CW Nd:YAG laser (1064 nm) to create a 
melt pool 

• 4-nozzle coaxial powder feed system
• 5-axis positioning control system assisted 

by CAD model
• Controlled environment glove box
• Energy density in the range of 30,000-

100,000W/cm2

Components of LENS System used for This Study

 LENS® workstation 750 equipped with 
in-situ melt pool size sensor (MPS) 
control and Z-height sensor control 
(ZHC) close-loop subsystems.

Melt Pool 
Sensor 
Control

Z-Height 
Control
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PH13-8Mo Powder

Sym. wt% in 
Product

Fe Balance

Cr 12.6

Ni 8.2

Mo 2.2

Al 1.1

C 0.026

Mn 0.01

Si 0.02

P <0.005

Chemical Composition

Gas atomized powder
-100+325mesh (45-150m)
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Samples & Process Parameters

K

Shape No. Power 
(W)

Speed
(mm/s)

Others

Cubic 
10x10
x10
mm

A 355 14.8 A/Deceleration = 
847mm/s2

B 355 14.8 A/Deceleration = 
212mm/s2

C 355 14.8 Shutter Delay 100 ms

D 270 12.7

E 440 16.9

F 355 14.8 Hatch: 0. 51 mm

G 355 14.8 Lay thickness: 0.38 mm

H 355 14.8 Normal condition *

Cubic 
10x10
x51 
mm

I 355 14.8

J 355 16.9

K** 355 14.8

L 355 12.7

M 440 16.9

N 270 12.7

Thin 
wall

W1 355 14.8 Contour 22x51x0.25 mm

W2 355 14.8 Single 38mm x 51mm

W3 355 14.8 Single 83mm x 51mm
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E

Emax

Ec

X

W

H

Laser Beam and Melt Pool Track

Hatch Space

Layer
Thickness

Re-melting
layer

 Melt Pool Track of overlap between 
adjacent lines and re-melting previous 
deposited layer
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Layer Features and Microstructure

 Defects of porosity and un-melted 
particles of around 100m in size 
were found
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500nm

Martensite Phase

Martensite laths

Retained
austenite in the
martensite matrix
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Dislocations

Dislocations produced by austenite-
martensite transformation and left by 
the advancing boundary, 
and thermal stress/strain
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XRD Diffraction
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Mechanical Properties of Cube Samples

H1150:
Homogenization: 
1038°C(1900°F), 
1.5hr; 
Aging: 621°C 
(1150°F), 4hr
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Effects of Process Parameters on YS

18 20 22 24 26 28 30 32

82

84

86

88

90

92

P, RA=35%

L, RA=41%
M, RA=18%

Kh, RA=27%

I, RA=33%

Q, RA=34%

J, RA=34%

N, RA=24%

 

 

Yi
el

d 
St

re
ng

th
 (k

si
)

Laser Power Exposure (Power/Speed) (J/mm)

Yield strength vs. 
laser power 
exposure 
(power/speed).



18

Micro-Hardness
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Defects Initiated Ductile Fracture

 Micro-dimple morphology
 Ductile fracture
 Crack initiation from particles at the 

bottom of dimples

 Porosity and unmelted particles in 
the material, and observed on the 
fracture surface, affect strength

Premature fracture due to defects is the  reason for low ductility
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Mechanical Properties of Thin Wall Samples

No. YS
(ksi)

UTS
(ksi)

EL
(%)

1 84 154 9.8

2 80 146 8.5

3 78 152 6.7

4 85 155 10.1

5 82 153 9.4

C 87 157 13.2
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Tmp = 1480oC
Ts = 20oC
t = 33s

Thermal behavior 
associated with the 
LENS process 
involves numerous 
reheating cycles. 
As a result, the 
temperature history of 
the deposited 
materials is a dampen 
pulse wave.

Thermal History during LENS® Processing
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Variation of Temp. and Cooling Rate 
during early stage of 1st and 10th layer deposition

In the initial stages of deposition, 
the deposited materials experience 
a significant rapid cooling effect, 
and can attain a very high cooling 
rate, ~104K/s.
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In the later deposition, the rapid 
cooling effect decreases and even 
disappears.

1st layer

10th layer
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Variation of temperature at 
different position during 
and after deposition

Reheating cycles have 
tempering and aging effects;

When temperature > 400C, 
NiAl particles will 
precipitate coherently with 
the matrix, leading to 
strengthening.
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Summary
• LENS® process evaluated for making net shaped components from 

gas atomized PH13-8Mo powder;
• The mechanical strengths of the LENS® deposited PH13-8Mo 

material were equivalent to the heat treated and aged wrought 
materials; 

• Microstructure contains 0.2m wide martensite laths  nearly parallel 
with retained austenite. High density of dislocation and fine lath size 
is responsible for the high hardness

• Porosity and un-melted particles in the laser deposited materials 
caused reduced ductility, despite presence of a ductile dimple 
fracture mode;

• Thermal behavior associated with the LENS process involved 
numerous reheating cycles, which may have temper and aging 
effects, and may promote NiAl particle precipitation. 
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Effects of Interval Time
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• Interval time

• Travel speed
• Part dimension
• Laser stay time

between layer
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