

American Geophysical Union Fall Meeting, 11-15 December 2006, San Francisco, California, USA

Modeling of time-lapse seismic reflection data from CO₂ sequestration at West Pearl Queen Field

Lewis C. Bartel, Matthew M. Haney, David F. Aldridge, Neill P. Symons, and Gregory J. Elbring;
Geophysics Department, Sandia National Laboratories, Albuquerque, New Mexico, USA, 87185-0750

Sequestration of CO₂ in depleted oil reservoirs, saline aquifers, or unminable coal sequences may prove to be an economical and environmentally safe means for long-term removal of carbon from the atmosphere. Requirements for storage of CO₂ in subsurface geologic repositories (e.g., less than 0.1% per year leakage) pose significant challenges for geophysical remote sensing techniques. The many issues relevant to successful CO₂ sequestration (volume in place, migration, leakage rate) require improved understanding of the advantages and pitfalls of potential monitoring methods. Advanced numerical modeling of time-lapse seismic reflection responses offers a controlled environment for testing hypotheses and exploring alternatives.

The U.S. Department of Energy has conducted CO₂ sequestration and monitoring tests at West Pearl Queen (WPQ) field in southeastern New Mexico. High-quality 9C/3D seismic reflection data were acquired before and after injection of ~2 kt of CO₂ into a depleted sandstone unit at ~4200 ft depth. Images developed from time-lapse seismic data appear to reveal strong reflectivity changes attributed to displacement of brine by CO₂.

We are pursuing seismic numerical modeling studies with the goal of understanding and assessing the reliability and robustness of the time-lapse reflection responses. A 3D time-domain finite-difference isotropic elastic wave propagation algorithm generates realistic synthetic data. With this capability, we examine how various types of errors and noise in the 4D data degrade the ability to image a deep CO₂ plume. Source/receiver sampling, subsurface illumination, correlated geologic heterogeneity, and static shifts are considered. As a result, we are able to make quantitative estimates of the tolerable errors for monitoring CO₂ injection at WPQ field. Future plans include incorporating 3D poroelastic wave propagation modeling into the analysis.

Sandia National Laboratories is a multiprogram science and engineering facility operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy under contract DE-AC04-94AL85000.