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Abstract: Optimization software is commonly used to solve simulation-based problems such as optimal
design and control, model parameter estimation, and best/worst-case scenario identification. While the
value of such software is widely recognized, user feedback indicates that these tools are difficult for non-
experts to use. In particular, users are unfamiliar with the details of the plethora of available optimization
algorithms and thus do not know which algorithm is appropriate for the problem at hand. In this paper,
we will present an approach based on modern machine learning techniques for automatically selecting an
optimization algorithm to solve a given problem. We will discuss the feature sets used to characterize the
optimization problems and algorithms, and we will review the metrics used to evaluate optimization algorithm
performance. Finally, we will present the results from our initial studies with the CUTEr optimization test
set and discuss the challenges of generalizing the methodology to simulation-based optimization problems.

1 Motivation

Optimization software is commonly used to solve simulation-based problems such as optimal design and
control, model parameter estimation, and best/worst-case scenario identification. While the value of such
software is widely recognized, user feedback indicates that these tools are difficult for non-experts to use.
In particular, users are unfamiliar with the details of the plethora of available optimization algorithms and
thus do not know which algorithm is appropriate for the problem at hand. While the user has a great deal
of intuition regarding the underlying simulation, he or she usually must consult an optimization expert to
determine the best algorithm or make a guess based on documentation written by optimization developers
for optimization developers. Our goal is to address these concerns by developing technology to automatically
choose an appropriate optimization algorithm to solve a given problem.

To state the problem more formally, given 1) a canonical representation of an optimization problem, 2) a
set of optimization algorithms, and 3) a performance metric, determine which algorithm is best for solving
the problem relative to the performance metric. This problem is a specific instance of the more general
algorithm selection problem and as such, has no analytical solution [15]. Therefore, our approach is based
on machine learning algorithms coupled with computational experiments.

The remainder of the paper is organized as follows. In Section 2, we will briefly mention related work in
the area of automatic algorithm selection. Section 3 provides a summary of the machine learning algorithms
was have considered to date, and we discuss the feature sets and metrics needed to make use of machine
learning in Section 4. We will present the results from our initial studies with the CUTEr optimization
test set in Section 5. Finally, in Section 6, we discuss the next steps and the challenges of generalizing the
methodology to simulation-based optimization problems.

2 Related Work

Algorithm selection is a problem that is pervasive throughout the realm of computational mathematics;
however, we are aware of very little work in the area of automatic algorithm selection. Nonetheless, there
are a number of recent efforts that show promising results. Perhaps the most established of these efforts
is PYTHIA [19] and its successors. In this work, the authors use Bayesian networks and neural networks
to choose and appropriate numerical solver for elliptic partial differential equations. Bhowmick, et al. [2]
have recently published work in which they use decision trees and boosting to select sparse linear solvers for
systems arising in various physics applications.

With regard to choosing optimization algorithms, there are a couple of notable tools intended to aid the
user in choosing an optimization algorithm. Those are the NEOS Server for Optimization (URL: http://www-
neos.mes.anl.gov) and Decision Tree for Optimization Software web page published by Mittelman (URL:



http://plato.asu.edu/guide.html). While they provide a nice categorization of optimization problems and
approaches, they do not provide an automated selection capability. In addition, Ong studied a range of
machine learning approaches for choosing and optimization algorithm in his Ph. D. thesis [12]. His work
was focused on scenarios where the user is solving the same, or a very similar, problem over and over again
as opposed to solving a diverse set of problems.

3 Summary of Selected Machine Learning Algorithms

While there is a wide range of machine learning algorithms to choose from, we focus our proof of concept
on ensemble methods. Ensemble classifiers have become popular in modern machine learning. The basic
approach consists of constructing a set of classifiers, training each on a subset of the training data. New
data points are then classified by taking a weighted vote of the individual predictions of each classifier. One
particularly nice featuer of ensemble classifiers is that they are often more accurate than a single classifier.
A nice survey of ensemble methods, their features, and their performance can be found in [5].

In the following sections we describe the two types of base classifiers we consider in the context of ensemble
methods.

3.1 Decision Trees

There are a number of examples of ensemble classifiers based on decision trees, including ([6], [10]). As a
brief review, a decision tree algorithm recursively partitions the feature space. Each partition is determined
in such a way as to achieve some level of purity in the resulting subsets while not making those subsets so
small as to be meaningless for prediction purposes. Each partition is encoded as a branch in the decision
tree. One example of a decision tree is depicted below.
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Figure 1: This figure depicts one example of a decision tree. Each partition in feature space is encoded as a
branch in the tree. (Figure courtesy of Philip Kegelmeyer.)

3.2 Support Vector Machines

Support vector machines (SVMs) were developed by ([3], [4], [17]). Using support vector machines for
pattern recognition is a two-stage process, which consists of training data and classifying testing data.
Training support vector machines requires the solution of a convex quadratic programming problem that
depends on the number of examples in the dataset. In general, SVMs operate by finding a discriminant
function, which separates a multidimensional data set into two or more classes. SVMs have been applied
successfully to a wide variety of problems such as handwritten digit recognition, vehicle identification, and
face recognition [14].



4 Feature Set for Optimization

In order to effectively use machnie learning algorithms, and attribute set relevant to the problem space
is required. In our work, optimization problem, algorithm, and runtime environment features comprise the
attribute set. The list of features that is used by an optimization expert to describe problems and algorithms
is extensive, some are not easily quantified or verified. Thus, we initially focus on a reduced set of features
that are easily defined and readily accessible. Table 1 contains the list of features of interest in this work.
For similar reasons, we focus on a reduced set of performance metrics and treat them as independent in our
initial proof of concept. Those metrics are also shown in Table 1.

Problem Features | Algorithm Features Runtime Environment Features | Performance Metrics
e smoothness e means of globalization | e processor type e number of function
e convexity e method of gradient e operating system evaluations

e availability of approximation e compilers (and optimizations) | e optimal function
analytic e method of Hessian e number of processors values

derivatives approximation e availability e stopping criteria

e degree of e constraint handling e solution robustness
nonlinearity e parallelization

e types, number e algorithmic parameters

of variables

e types, numbers

of constraints

Table 1: This table shows the list of features on which we initially focus. They are categorized according to
whether they describe optimization problem, algorithm, or runtime environment.

5 Numerical Experiments

We conducted a range of numerical experiments to demonstrate proof of concept for our machine learning-
based approach to automatic algorithm selection. The high-level concept is illustrated in Figure 5. Starting
with a set of optimization problems and a set of optimization algorithms, we executed all of the algorithms
on all of the problems to determine which performed best according to our metrics. The data we generated
was used to train the machine learning algorithms. Given these trained classifiers, we then used them to
predict the best algorithms for a new set of problem instances. More details on the various components
follow.

The set of optimization test problems we chose are those in the Common Unconstrained Testing Envi-
ronment, revisited (CUTEr) [8]. The CUTEr test problems are often used by optimization developers to
stress test their algorithms due to the quantity and diversity of the available problems. Due to the diversity
of this set of problems, we were able to ensure coverage of the problem feature set listed in Table 1. Our
test set contains 776 CUTEr problems excluding problems with more than 1025 combined variables and/or
constraints.

Optimization algorithms were taken from, OPT++ [11], a library of nonlinear optimization algorithms
written in C++. The focus of the library is on robust and efficient algorithms for problems in which the
function and constraint evaluations require the execution of an expensive computer simulation. OPT++
includes the classic Newton methods, conjugate gradient, generating set search, limited memory BFGS
method, parallel direct search, a trust-region parallel direct search hybrid, a nonlinear interior-point method,
and a wrapper to NPSOL [7]. In Table 2, we summarize the problem features of each class of algorithm can
address. Note that for each feature, there are at least two algorithms from which to choose.

To generate experimental data for our machine learning algorithm, we created an OPT++ interface to
the (CUTEr) test set and used PERL scripts to postprocess the data into a format that could be used as
input to machine learning software. All experiments were conducted on a 750 MHz Pentium III processor
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Figure 2: This figure illustrates the high-level concept behind our approach. Computational experiments in
which we solve a set of optimization problems with a range of algorithms generate training data for machine
learning algorithms. The trained classifiers are then used to choose an algorithm for a new problem instance.
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Table 2: This table depicts how the optimization algorithms in OPT++ cover the problems feature set.

IBM Thinkpad running the Red Hat Linux operating system. Results were computed using OPT++ version
2.2 with default algorithmic-specific parameter settings.

The two machine learning software packages we used to classify the generated data were OpenDT version
0.52 [1] and use SvmFu version 3.1 [16]. OpenDT is an open source ensemble classifier software package. In
particular, it uses ensembles of decision trees and supports a variety of feature types and voting schemes.
SvmFu is an open source support vector machine package that can handle multiple as well as binary class
categorization.

With OpenDT, we tested ensembles of varying size using C4.5 and INFOGAIN style splitting for the
decision trees. We also experimented with bagging, boosting, and random forests for ensemble construction.
We used 75% of 835 examples to train the classifiers and the remaining data to test their predictive capability.
A confusion matrix that exemplifies our results is shown in Table 3. In particular, it shows results for the
number of function evaluations metric and illustrates that we achieved 81% accuracy. This result was
insensitive to the size, splitting, and ensemble construction choices. The optimal function values metric
demonstrated more sensitivity and ranged for 65-75% accuracy. In cases when the OpenDT classifiers did
not choose the correct algorithm, the algorithm chosen was viable from the perspective of an optimization
expert.

With SvmFu, we compared two multiple class categorization approaches, one-vs-all (or one-vs-rest) and
one-vs-one. Assume that k classes are represented in the dataset. As its name suggests, the one-vs-all method
performs binary classification to construct a separating hyperplane between class ¢ and the remaining k& — 1
classes. The one-vs-all method yields k classifiers and corresponding discriminant functions f;(x). The point



True/Assigned | 1| 2 [ 3| 4 |5 6| 7 |8|9|10]| 11|12 13
1 2
2 31 4
3 1
4 26
) 2 4
6 9 3
7 12
8 4 2
9 1 3
10 3 18
11 1 1 24
12 8
13 51 3 42

Table 3: This table shows the confusion matrix generated by OpenDT for the number of function evaluations
metric. The rows represent the “true” best algorithm, and the columns represent the algorithm assigned by
the classifier. The desired outcome is large entries on the diagonal.

x belongs to the class that maximizes f;(x). The one-vs-one method computes @ models for pairwise

binary classification. Without loss of generality, assume that we want to categorize examples into either
class i or j. Given @ discriminant functions, membership in class ¢ is determined by a voting algorithm.
Our training set consists of 14 classes of 984 examples with 11 features. The first test set contains 646

examples and the second set 364 examples. In both cases, the prediction accuracy was 97.4%.

6 Future Work

Future work will focus on increasing the complexity of the problems that we can address. One aspect of this
includes expanding the feature set to include algorithmic parameters such as finite difference approximation
and globalization strategy as well as runtime features such as operating system, compiler, linker and number
of processors. Moreover, we will introduce algorithm stopping criteria and robustness of the solution as
additional performance metrics.

As we expand the list of features, we will begin to include features that are uncertain. Examples of
uncertain features include smoothness and convexity of the optimization problem. Managing these uncer-
tainties will become increasingly important as we move away from standard test sets and begin to work with
simulation-based problems. We will explore the use of Bayesian networks to handle the uncertainties and
develop the means to integrate them into decision tree-based ensemble classifiers.

To date, we have treated the performance metrics as independent. Furthermore, in our studies, we found
that there are numerous examples with conflicting algorithm labels in the training data. Thus, there are
open question regarding how to break ties and how to consider tradeoffs betweeen. We will investigate the
use of heterogeneous data fusion techniques in the context of ensemble classifiers to address these questions.
Our work will be based on that described in [9].

One final aspect that we will address is the computational expense associated with generating training
data for simulation-based optimization problems. Unlike for the CUTEr test problems, we will be unable to
conduct an extensive set of computational experiments to generate the training data. Instead, we will take
an approach based on statistically sampling the simulation-based problems, constructing computationally
inexpensive surrogates, and applying the methodology used for the CUTEr test problems to the surro-
gates. As part of this process, it will be necessary to characterize the surrogates according to our feature
set. To accomplish this, we will investigate the use of Dr. AMPL [13] in conjunction with input from the user.
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