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Abstract
Cray’s SeaStar interconnect performance was modeled using 
Opnet Modeler.  This is the interconnect used in Sandia National 
Laboratories’ Red Storm supercomputer.  Two versions of the 
model have been created so far.  The first uses a very detailed 
node model with a small number of nodes.  Simple bandwidth, 
latency, and routing tests were performed. The model results 
compared favorably with data measured from Red Storm.  The 
second model, which is currently under development, uses a 
variety of simplified node models derived from the original 
detailed model.  Complex traffic patterns are currently being 
developed to test the second model.

1.0 Introduction
Sandia National Laboratories is home to the recently built Red 
Storm Supercomputer.  Red Storm is an important resource used 
to verify and validate the integrity and safety of the US nuclear 
stockpile.  One of its critical components is the Cray proprietary 
SeaStar interconnect, which allows nodes to communicate with 
each other in an efficient manner.  In order to better understand 
the SeaStar interconnect chip without using up precious cycles 
on the live system, a model of it was developed using Opnet 
Modeler. 

There are several broad categories of tests that the model can 
help with.  It can be used to find hidden protocol effects, 
architecture effects, and congestions effects.  It can show where 
problems might be expected in the real system.  It can also 
demonstrate how certain traffic patterns might affect the system.

Since a model of the system was desired, one of the first 
questions to be answered was "What would be an appropriate 
tool to create the SeaStar model with?"  The answer was "Opnet 
Modeler".  The main reason behind this was that we didn't want 
to start from scratch.  Modeler provided a framework which 
simplified the work.  It has prebuilt components such as links, 
queues, and interrupt.  It has a well laid out framework for 
creating custom process models, which can be aggregated into 
node models and network models.  It has built in functions for 
collecting and displaying statistics, it has debugging capabilities, 
a memory checker, and it could import/export XML topology 
files.  This last ability to import XML files was very important to 
this project as it allowed a variety of topologies to be created 
with a simple C++ program and then imported into Opnet.  

2.0 The Model basics
The basic model can be broken down into two main parts.  The 
first part is the node model, which contains many custom built 
process models detailing the critical functions of the SeaStar 
chip.  The second is the network which connects the SeaStars 
together.  The network portion is modeled after Red Storm and 
uses a 3-D torroidal mesh.

2.1 Packet Models
There are three basic types of packets needed for the SeaStar 
model.  The first is a header packet, which contains information 
regarding the source and destination of a flow. The second is a 
data packet.  The third type of packet is a network packet, which 
consists of one header packet and eight data packets. 

2.2 SeaStar Node Model
The node model of the SeaStar contains eight process models.  
The first seven, which comprise the SeaStar NIC, are a router, 
the LCB (Link control block), a PowerPCTM, the Rx_DMA, the 
Tx_DMA, the RAM, and the bus controller.  The eighth process 
model is for the AMD Opteron processor which is attached to 
the SeaStar NIC.

Figure 1:  Block diagram of the SeaStar Chip [2]

Figure 2: Opnet node model of SeaStar Chip

The router model has six external routing ports and one internal 
port. Header packets and data packets are sent out the external 
ports.  Network packets are sent between the router and the 
DMA devices via the internal port.  Routing decisions are based 
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on a packet’s destination, using a basic dimension-order routing 
algorithm.  Besides just routing the packets, the router model 
also converts network packets into a header packet and eight 
data packets and vice versa.  

The LCB block sits between the router block and the 
transmitter/receiver.  It provides point-to-point link control.  It 
checks to make sure the next hop has queue space for a packet 
and it provides a 16-bit CRC check and an ACK to make sure 
data has been passed intact.  If the CRC or ACK check fails, it 
can retransmit the failed packet or packets.

The PowerPC is the brain of the SeaStar NIC.  It controls most 
of the other pieces of the NIC.  It polls the other devices and
determines which ones need servicing.  The normal events that it 
deals with are:
1. Does the Opteron have any new messages to be sent?
2. Has the Tx_DMA finished transmitting a message?
3. Is there a new message coming in the Rx_DMA?
4. Does the Rx_DMA have a completed message for the 

Opteron?

The Tx_DMA block takes messages, as directed by the 
PowerPC, from the Opteron processor block and breaks them 
into network packets and creates a header packet for the 
message.  It forwards the network packet to the router on a token 
bucket scheme (the router must have credits available before the 
Tx_DMA sends anything to it).  The Rx_DMA reassembles 
network packets into full messages.  It holds reassembled 
message until the PowerPC directs it to pass it on.   The 
Rx_DMA also has a mechanism to keep track of incoming 
messages from up to 256 sources.  If more than 256 sources are 
trying to send to one source, the Rx_DMA will start dropping 
the excess messages until one or more of the earlier messages 
finishes.

The RAM block emulates the 384K bytes of RAM the SeaStar 
NIC has.  This is used to hold state information and to handle 
interactions with the Opteron processor.  

The final block is the bus controller.  The bus connects many of
the pieces of the SeaStar together.  It acts as a series of queues 
between all of the other devices in order to control the flow of 
data.  It can sense when each block is ready to send data and 
when each block is ready to receive data.  The bus also is used as 
a control channel.  The PowerPC and the Opteron are considered 
master devices, which send signals to other devices through the 
bus.  The Tx_DMA, Rx_DMA, and the RAM are all slave 
devices to the bus.  They receive orders via the bus.

The last process model is for the AMD Opteron processor.  This 
is not technically part of the SeaStar NIC, but it is the tie-in 
between the host machine and the SeaStar.  This block generates 
messages to be sent out and is where completed messages are 
sent for processing.   The actual system uses HyperTransportTM 

to talk to the bus.  For this model, a simple link is used.

For more details on the SeaStar NIC, see Reference 1.

2.1 Network Model

Once the node model was finished, the nodes needed to be 
placed into a torroidal mesh.  The basic shape of this is a cubic 
3D mesh with formed by X, Y, and Z planes with the Z-plane 
wrapped around to itself (i.e., Zmax links to Zmin).  Each non-
edge node has 6 neighbors (+-X,+-Y, and +-Z).

For the full sized model of Red Storm, the XxYxZ dimensions 
of the compute nodes are 27x16x24 for a total of 10,368 total 
compute nodes.  There is also a bank of special I/O nodes on two 
ends of the machine, which to date haven't been included in the 
model, that are 2x8x16 meshes for a total of 512 I/O nodes.

3.0 Modeling Methodology

3.1 Tools
The SeaStar model was created using Opnet Modeler 11.0 for 
Windows.  All the process models were built as finite state 
machines.  The router and the LCB process models were based 
on Opnet’s acb_fifo model.  The acb_fifo model was chosen as a 
basis for these two models because it had the basic functionality 
that was required: a FIFO scheme and a way to control service 
time.  The acb_fifo model was also laid out in such a way that 
coding for these blocks was straight forward and easy for others 
to follow. The arrival section was used for starting service and 
receiving packets, the departure section was used for sending 
packets and ending service and the service time section was used 
to create proper timing for the whole block.  All of the other 
process models were built from scratch.  The three basic packet 
models were created using the packet formatter.

Figure 3:   Router process model 
    -based on acb_fifo process model.

One non-Opnet tool was used for this model.  Since it would be 
difficult to hand create large topologies and because there isn't 
an Opnet cubic mesh generator, XML generators were written in 
C++ to generate 2D and 3D topologies.  The 3D generator would 
take in X, Y, and Z dimensions and create a topology.  The X-Y 
plane was created as a subnet on a 100x100 grid (See Figure 4).  
The Z-planes were handled as a series of connected subnets (See 
Figure 5).  Names were created for each node, which described 
where the node was in the subnet. (Ex. 'Node_2,3,4' where 2,3, 
and 4 are the X,Y, and Z coordinates).  The links were also 
generated by the program.  The XML file from the generator 
could be imported directly into Opnet Modeler for testing.  The 
simplified 2D version of the generator set Z as '1' and created a 
single X-Y subnet.
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Figure 4: The X-Y Plane for subnet Z=2.  [2]  
-The red lines connect the nodes to the adjacent Z-planes

Figure 5:  Z-plane, as connected subnets [2]
-Each subnet is an X-Y plane

3.2 Model Tuning
Message timing is the primary parameter that had to be tuned for 
this model.  The basic equation for the message delay is:

Msg Delay ~= Msg. Preprocessing Time
       + 

        Transmission Time 
       + 

        Msg. Post processing [2]

The message preprocessing time includes the conversion of the 
message into packets and the time to add a header.  The 
transmission time includes the time to traverse all the devices in 
the message path, such as the Tx_DMA, router, LCB, etc.  The 
message post processing time is primarily the time it takes to 

convert a string of packets back into a message.   For small 
messages, the two processing steps are the dominate time 
factors.  For large messages, the transmission time is the 
dominate factor.  Since small messages and large messages had 
different timing parameters affecting them, Red Storm data for 
very small packets and very large packets was used to tune the 
model.   Mid-sized packets were essentially self-tuned in the 
model once the extreme cases were taken into account.

3.3 Model Validation
Early on in this project there were a lot of questions raised about 
how accurate a model could be.  To answer this, it was important 
for this model to be validated against real data generated on Red 
Storm.  To do this, simple tests were devised to test latency and 
throughput against a variety of message sizes.  These were tests 
that could be run on Red Storm and would give a clear answer as 
to how well the model compared to the actual machine. 

3.4 Modeling Compromises
There were a variety of compromises made to smooth out the 
modeling process.  Compromises such as using small meshes, 
simple traffic patterns, simplified nodes, and time scaling were 
all used at various points.

The original model used a very detailed set of process models 
for the SeaStar, but limited the number of nodes used.  Early on, 
it was found that just to import the full 10,368 node mesh took 
about 30 minutes on a 2GHz machine.  Simpler meshes (ex. 
3x3x1, 8x16x1, and 4x8x16) were much easier to import and run 
basic functionality tests on.  Simpler meshes are much to 
simulate.

Simple traffic patterns were also used.  In order to test the 
system, a number of simple tests were created which used many 
lines of debugging code.  Some of these tests were an all-to-one 
test, each node talking to a specific neighbor test, all-to-one-
plane test, tree based traffic patterns, and one-way 
communication tests (ACKS returned, but no response data 
returned) were used.  Simple traffic patterns make it easier to 
follow individual flows and simpler to debug problems.

Once the basic testing was completed, it was desired to increase 
the mesh size.  Before doing this, several types of simplified 
nodes were created.  Unnecessary pieces were removed from 
some nodes.  For example, if a node was only passing data 
through, not generating or receiving, it only needed a router 
block and dummy sinks for the rest of the NIC.  For all the 
nodes, the LCB was removed.  The LCB was deemed 
unnecessary since Opnet doesn't accidentally corrupt packets.  
The vital next-hop queue checking function of the LCB was 
simply added to the Router process model for these nodes.  Less 
complicated nodes made for a slightly faster and smaller run-
time model.  See Figure 6 for an example of a simplified node 
model that is used for generating and receiving messages, 
without all the overhead that the removed pieces would have 
created.  A simple delay was used to simulate the time the other 
devices would have added.
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Figure 6:  Example of a simplified node model
-no Bus, no PowerPC, no LCB

Another compromise made was that the model was time-scaled 
by a factor of 1,000,000.  One nanosecond of real time became 1 
millisecond of model time.  This was done to simplify the 
modeling process and to make the output graphs easier to read.

4.0 Results

4.1 Early models
The earliest model created used a 3x3x1 mesh with fully 
functional nodes.   

Figure 7: 3x3x1 basic mesh used for early tests

After basic functionality tests were completed on the model, two 
types of simple tests were run: latency tests and throughput tests.    
Data from Red Storm was used to validate the model.  The Red 
Storm tests ran transfers between contiguous nodes using a wide
range of message sizes from 8 bytes up to 4 million bytes, by 
powers of two.

Figure 8:  Message Size vs. Delay on Contiguous Nodes [2]

As can be seen from Figure 8, the latency number from the 
model provided a good match (0.5 percent difference or less).

Figure 9:  Message Size vs. Throughput on Contiguous Nodes
[2]

Examining Figure 9, it can be seen that the throughput results 
weren't as close as the latency results.  The model predicts a 
smooth curve for the range of message sizes, whereas the Red 
Storm data showed some anomalies between 2k bytes and 32k 
bytes.

4.2 Recent Models
The most recent models that have been developed used 
simplified node models.  Currently, newer more complicated 
traffic flows are being designed to test these models, but so far 
no reportable results have been generated.

4.3 Issues
One major issue with this model has caused some headaches.  
When switching between node models, all the links are 
seemingly randomly reassigned.  The expected behavior for 
changing between nodes which have the same set of external 
links (same number and same names), would either be that all 
the links would be reset to having no endpoints or that the 
endpoints would remain the same as before the change.  Having 
the endpoints reassigned randomly is a pain to fix for small 
meshes and prohibitively time consuming for larger meshes.
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5.0 Future Work
There are several areas for future work.  The first is to create 
more realistic traffic patterns based on actual Red Storm traffic.  
The second would be to try and import real traffic traces from 
Red Storm.  This may prove difficult if not impossible since it is 
desired to not only have traces of the traffic passing between 
nodes, but also to have low level internal traces from the SeaStar 
chip as well.  A third area to look at will be a move from a pure 
Discrete Event Simulation to a Hybrid simulation.  By 
incorporating realistic background flows and loads, more 
complicated scenarios can be examined, while only minimally 
affecting run times.  One final piece that may need to be 
examined is the interface between the compute nodes and the 
I/O nodes.  The I/O nodes have both internal facing interfaces 
and external facing interfaces, which will require a new node 
model to simulate.  They also use specialized algorithms in order
to translate traffic coming from internal compute nodes into 
traffic that can be passed to external devices.

6.0 Conclusions
There have been many successes with this project.  The most 
important one is that this model proved to a number of people 
the feasibility of using Opnet to model the internal workings of a 
hardware chip and its external interactions with other chips.  
Going into this project there were some doubts about the ability 
of a 'network modeling tool' to simulate the internal functions of 
a NIC.     

One question arises out of this project: Was Opnet the right tool 
for this job?  The answer is ‘Yes.”  Looking back on the project, 
choosing to use Opnet has saved a lot of time.  The wide array of 
tools and functions that are built into made the process of 
building a new model fairly painless.  Time was spent creating 
the required state machines for the model, not in reinventing the 
wheel.
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