Modeling the SeaStar Interconnect

SAND2006- 4907C

Jason Wertz
Sandia National Laboratories
Albuquerque, NM 87185-0806
E-mail: jswertz@sandia.gov

Abstract

Cray’s SeaStar interconnect performance was modeled using
Opnet Modeler. This is the interconnect used in Sandia National
Laboratories’ Red Storm supercomputer. Two versions of the
model have been created so far. The first uses a very detailed
node model with a small number of nodes. Simple bandwidth,
latency, and routing tests were performed. The model results
compared favorably with data measured from Red Storm. The
second model, which is currently under development, uses a
variety of simplified node models derived from the original
detailed model. Complex traffic patterns are currently being
developed to test the second model.

1.0 Introduction

Sandia National Laboratories is home to the recently built Red
Storm Supercomputer. Red Storm is an important resource used
to verify and validate the integrity and safety of the US nuclear
stockpile. One of its critical components is the Cray proprietary
SeaStar interconnect, which allows nodes to communicate with
each other in an efficient manner. In order to better understand
the SeaStar interconnect chip without using up precious cycles
on the live system, a model of it was developed using Opnet
Modeler.

There are several broad categories of tests that the model can
help with. It can be used to find hidden protocol effects,
architecture effects, and congestions effects. It can show where
problems might be expected in the real system. It can also
demonstrate how certain traffic patterns might affect the system.

Since a model of the system was desired, one of the first
questions to be answered was "What would be an appropriate
tool to create the SeaStar model with?" The answer was "Opnet
Modeler". The main reason behind this was that we didn't want
to start from scratch. Modeler provided a framework which
simplified the work. It has prebuilt components such as links,
queues, and interrupt. It has a well laid out framework for
creating custom process models, which can be aggregated into
node models and network models. It has built in functions for
collecting and displaying statistics, it has debugging capabilities,
a memory checker, and it could import/export XML topology
files. This last ability to import XML files was very important to
this project as it allowed a variety of topologies to be created
with a simple C++ program and then imported into Opnet.

2.0 The Model basics

The basic model can be broken down into two main parts. The
first part is the node model, which contains many custom built
process models detailing the critical functions of the SeaStar
chip. The second is the network which connects the SeaStars
together. The network portion is modeled after Red Storm and
uses a 3-D torroidal mesh.

2.1 Packet Models

There are three basic types of packets needed for the SeaStar
model. The first is a header packet, which contains information
regarding the source and destination of a flow. The second is a
data packet. The third type of packet is a network packet, which
consists of one header packet and eight data packets.

2.2 SeaStar Node Model

The node model of the SeaStar contains eight process models.
The first seven, which comprise the SeaStar NIC, are a router,
the LCB (Link control block), a PowerPC™, the Rx_DMA, the
Tx_DMA, the RAM, and the bus controller. The eighth process
model is for the AMD Opteron processor which is attached to
the SeaStar NIC.

AMD

LCB X+ Opteron

o]

Router RAM

LCB X-

LCB Y+

LCB Y-

LCB Z+

L

Power PC

LCB Z- Control Bus

Figure 1: Block diagram of the SeaStar Chip [2]

Transriit_4Receive_4

Tranismil

t_5 Regkive &

5
0

=7 T¥_engine

Transmit_1 Receive_1 Power_PC

Transmit_2 Receive_2

Figure 2: Opnet node model of SeaStar Chip

The router model has six external routing ports and one internal
port. Header packets and data packets are sent out the external
ports. Network packets are sent between the router and the

DMA devices via the internal port. Routing decisions are based



on a packet’s destination, using a basic dimension-order routing
algorithm. Besides just routing the packets, the router model
also converts network packets into a header packet and eight
data packets and vice versa.

The LCB block sits between the router block and the
transmitter/receiver. It provides point-to-point link control. It
checks to make sure the next hop has queue space for a packet
and it provides a 16-bit CRC check and an ACK to make sure
data has been passed intact. If the CRC or ACK check fails, it
can retransmit the failed packet or packets.

The PowerPC is the brain of the SeaStar NIC. It controls most
of the other pieces of the NIC. It polls the other devices and
determines which ones need servicing. The normal events that it
deals with are:

1. Does the Opteron have any new messages to be sent?

2. Hasthe Tx DMA finished transmitting a message?

3. Is there a new message coming in the Rx DMA?

4. Does the Rx DMA have a completed message for the

Opteron?

The Tx_DMA block takes messages, as directed by the
PowerPC, from the Opteron processor block and breaks them
into network packets and creates a seader packet for the
message. It forwards the network packet to the router on a token
bucket scheme (the router must have credits available before the
Tx DMA sends anything to it). The Rx DMA reassembles
network packets into full messages. It holds reassembled
message until the PowerPC directs it to pass it on. The
Rx_DMA also has a mechanism to keep track of incoming
messages from up to 256 sources. If more than 256 sources are
trying to send to one source, the Rx_ DMA will start dropping
the excess messages until one or more of the earlier messages
finishes.

The RAM block emulates the 384K bytes of RAM the SeaStar
NIC has. This is used to hold state information and to handle
interactions with the Opteron processor.

The final block is the bus controller. The bus connects many of
the pieces of the SeaStar together. It acts as a series of queues
between all of the other devices in order to control the flow of
data. It can sense when each block is ready to send data and
when each block is ready to receive data. The bus also is used as
a control channel. The PowerPC and the Opteron are considered
master devices, which send signals to other devices through the
bus. The Tx DMA, Rx DMA, and the RAM are all slave
devices to the bus. They receive orders via the bus.

The last process model is for the AMD Opteron processor. This
is not technically part of the SeaStar NIC, but it is the tie-in
between the host machine and the SeaStar. This block generates
messages to be sent out and is where completed messages are
sent for processing. The actual system uses HyperTransport™™
to talk to the bus. For this model, a simple link is used.

For more details on the SeaStar NIC, see Reference 1.

2.1 Network Model

Once the node model was finished, the nodes needed to be
placed into a torroidal mesh. The basic shape of this is a cubic
3D mesh with formed by X, Y, and Z planes with the Z-plane
wrapped around to itself (i.e., Zmax links to Zmin). Each non-
edge node has 6 neighbors (+-X,+-Y, and +-Z).

For the full sized model of Red Storm, the XxYxZ dimensions
of the compute nodes are 27x16x24 for a total of 10,368 total
compute nodes. There is also a bank of special I/O nodes on two
ends of the machine, which to date haven't been included in the
model, that are 2x8x16 meshes for a total of 512 I/O nodes.

3.0 Modeling Methodology

3.1 Tools

The SeaStar model was created using Opnet Modeler 11.0 for
Windows. All the process models were built as finite state
machines. The router and the LCB process models were based
on Opnet’s acb_fifo model. The acb_fifo model was chosen as a
basis for these two models because it had the basic functionality
that was required: a FIFO scheme and a way to control service
time. The acb_fifo model was also laid out in such a way that
coding for these blocks was straight forward and easy for others
to follow. The arrival section was used for starting service and
receiving packets, the departure section was used for sending
packets and ending service and the service time section was used
to create proper timing for the whole block. All of the other
process models were built from scratch. The three basic packet
models were created using the packet formatter.

(server_busy &8 insert_ok] (GUELE_EMPTY)

=t

[ARRIVAL)

q | _.-...-"' T .

1 L
a Y
It
4 (aRRIAD |, efld
! %

Figure 3: Router process model
-based on acb_fifo process model.

One non-Opnet tool was used for this model. Since it would be
difficult to hand create large topologies and because there isn't
an Opnet cubic mesh generator, XML generators were written in
C++ to generate 2D and 3D topologies. The 3D generator would
take in X, Y, and Z dimensions and create a topology. The X-Y
plane was created as a subnet on a 100x100 grid (See Figure 4).
The Z-planes were handled as a series of connected subnets (See
Figure 5). Names were created for each node, which described
where the node was in the subnet. (Ex. 'Node 2,3,4' where 2,3,
and 4 are the X,Y, and Z coordinates). The links were also
generated by the program. The XML file from the generator
could be imported directly into Opnet Modeler for testing. The
simplified 2D version of the generator set Z as '1' and created a
single X-Y subnet.



2 2,32

ode_2,2,2

Mode_1,1,2 ode_2,1,2

s /

Mode_0,0,2

Figure 4: The X-Y Plane for subnet Z=2. [2]
-The red lines connect the nodes to the adjacent Z-planes

o fo—io— o

r/

Mode_2,0,2

S35 1-120 -108 a0 75 &0 45 30 -15 1} 15

75

£
4

a0

15

30 /6

B 6

B0 =0

75

-30

Figure 5: Z-plane, as connected subnets [2]
-Each subnet is an X-Y plane

3.2 Model Tuning
Message timing is the primary parameter that had to be tuned for
this model. The basic equation for the message delay is:

Msg Delay ~= Msg. Preprocessing Time
+
Transmission Time
+
Msg. Post processing [2]

The message preprocessing time includes the conversion of the
message into packets and the time to add a header. The
transmission time includes the time to traverse all the devices in
the message path, such as the Tx_DMA, router, LCB, etc. The
message post processing time is primarily the time it takes to

convert a string of packets back into a message. For small
messages, the two processing steps are the dominate time
factors. For large messages, the transmission time is the
dominate factor. Since small messages and large messages had
different timing parameters affecting them, Red Storm data for
very small packets and very large packets was used to tune the
model. Mid-sized packets were essentially self-tuned in the
model once the extreme cases were taken into account.

3.3 Model Validation

Early on in this project there were a lot of questions raised about
how accurate a model could be. To answer this, it was important
for this model to be validated against real data generated on Red
Storm. To do this, simple tests were devised to test latency and
throughput against a variety of message sizes. These were tests
that could be run on Red Storm and would give a clear answer as
to how well the model compared to the actual machine.

3.4 Modeling Compromises

There were a variety of compromises made to smooth out the
modeling process. Compromises such as using small meshes,
simple traffic patterns, simplified nodes, and time scaling were
all used at various points.

The original model used a very detailed set of process models
for the SeaStar, but limited the number of nodes used. Early on,
it was found that just to import the full 10,368 node mesh took
about 30 minutes on a 2GHz machine. Simpler meshes (ex.
3x3x1, 8x16x1, and 4x8x16) were much easier to import and run
basic functionality tests on. Simpler meshes are much to
simulate.

Simple traffic patterns were also used. In order to test the
system, a number of simple tests were created which used many
lines of debugging code. Some of these tests were an all-to-one
test, each node talking to a specific neighbor test, all-to-one-
plane test, tree based traffic patterns, and one-way
communication tests (ACKS returned, but no response data
returned) were used. Simple traffic patterns make it easier to
follow individual flows and simpler to debug problems.

Once the basic testing was completed, it was desired to increase
the mesh size. Before doing this, several types of simplified
nodes were created. Unnecessary pieces were removed from
some nodes. For example, if a node was only passing data
through, not generating or receiving, it only needed a router
block and dummy sinks for the rest of the NIC. For all the
nodes, the LCB was removed. The LCB was deemed
unnecessary since Opnet doesn't accidentally corrupt packets.
The vital next-hop queue checking function of the LCB was
simply added to the Router process model for these nodes. Less
complicated nodes made for a slightly faster and smaller run-
time model. See Figure 6 for an example of a simplified node
model that is used for generating and receiving messages,
without all the overhead that the removed pieces would have
created. A simple delay was used to simulate the time the other
devices would have added.



Transmifs 4 Recelye_4 Transfit_5 Réceive S

Transmit_0

- T¥_enagine Hamrmer

Receive_0 R¥_enagine

Receive_1 Transrnit_3 Receive_2
)
Transmit_2 Recehve_2
Figure 6: Example of a simplified node model
-no Bus, no PowerPC, no LCB

Another compromise made was that the model was time-scaled
by a factor of 1,000,000. One nanosecond of real time became 1
millisecond of model time. This was done to simplify the
modeling process and to make the output graphs easier to read.

4.0 Results
4.1 Early models

The earliest model created used a 3x3x1 mesh with fully
functional nodes.

0.0 125 250 375 i S0.0 B2.5 750 87,5

@ ® @

Iode 10,2,0 Mode_1,2,0 Mode_2,2,0

250

7.5

ode 10,1,0 Mode_1,1,0 Mode_2,1,0

E2.5

5.0

=7 5

|
lode [0,0,0 Mode :1,0,0 Mode_2,0,0

@ ®

Figure 7: 3x3x1 basic mesh useld for early tests

After basic functionality tests were completed on the model, two

types of simple tests were run: latency tests and throughput tests.

Data from Red Storm was used to validate the model. The Red
Storm tests ran transfers between contiguous nodes using a wide
range of message sizes from 8 bytes up to 4 million bytes, by
powers of two.

4000

3500

3000 - —

2500

2000

1500

Latency in MicroSeconds

1000

Size in log2(Bytes)

Figure 8: Message Size vs. Delay on Contiguous Nodes [2]

As can be seen from Figure 8, the latency number from the
model provided a good match (0.5 percent difference or less).

1200

1000

800

600

Throughput in (MB/s)

400

200

Size in log2(Bytes)

Figure 9: Message Size vs. Throughput on Contiguous Nodes
(2]

Examining Figure 9, it can be seen that the throughput results
weren't as close as the latency results. The model predicts a
smooth curve for the range of message sizes, whereas the Red
Storm data showed some anomalies between 2k bytes and 32k
bytes.

4.2 Recent Models

The most recent models that have been developed used
simplified node models. Currently, newer more complicated
traffic flows are being designed to test these models, but so far
no reportable results have been generated.

4.3 Issues

One major issue with this model has caused some headaches.
When switching between node models, all the links are
seemingly randomly reassigned. The expected behavior for
changing between nodes which have the same set of external
links (same number and same names), would either be that all
the links would be reset to having no endpoints or that the
endpoints would remain the same as before the change. Having
the endpoints reassigned randomly is a pain to fix for small
meshes and prohibitively time consuming for larger meshes.



5.0 Future Work

There are several areas for future work. The first is to create
more realistic traffic patterns based on actual Red Storm traffic.
The second would be to try and import real traffic traces from
Red Storm. This may prove difficult if not impossible since it is
desired to not only have traces of the traffic passing between
nodes, but also to have low level internal traces from the SeaStar
chip as well. A third area to look at will be a move from a pure
Discrete Event Simulation to a Hybrid simulation. By
incorporating realistic background flows and loads, more
complicated scenarios can be examined, while only minimally
affecting run times. One final piece that may need to be
examined is the interface between the compute nodes and the
I/O nodes. The I/0 nodes have both internal facing interfaces
and external facing interfaces, which will require a new node
model to simulate. They also use specialized algorithms in order
to translate traffic coming from internal compute nodes into
traffic that can be passed to external devices.

6.0 Conclusions

There have been many successes with this project. The most
important one is that this model proved to a number of people
the feasibility of using Opnet to model the internal workings of a
hardware chip and its external interactions with other chips.
Going into this project there were some doubts about the ability
of a 'network modeling tool' to simulate the internal functions of
a NIC.

One question arises out of this project: Was Opnet the right tool
for this job? The answer is ‘Yes.” Looking back on the project,
choosing to use Opnet has saved a lot of time. The wide array of
tools and functions that are built into made the process of
building a new model fairly painless. Time was spent creating
the required state machines for the model, not in reinventing the
wheel.

7.0 Acknowledgements

The author would like to acknowledge Anand Ganti for helping
code the SeaStar model, helping with the Opnetwork 2006
presentation, and for running many of the model tests. The
author would also like to acknowledge Keith Underwood for
providing briefings on the SeaStar chip, data from Red Storm,
and answering many questions.

8.0 Reference

[1] Ron Brightwell, Trammel Hudson, Kevin Pedretti, and Keith
Underwood. “SeaStar Interconnect: Balanced Bandwidth for
Scalable Performance.” IEEE Micro, vol 26, num. 3, May/June
2006.

[2] Anand Ganti and Jason Wertz. “Supercomputing
Interconnects.” Winter Simulation Conference, 2005.

9.0 Disclaimer

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL8500.



