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Increasing Emphasis
on Modeling and Simulation

• Roles of modeling and simulation
– High consequence decisions
– High consequence design

• Goals of modeling and simulation
– (Credible) science-based predictive capability rather 

than extrapolations based on calibration and expert 
judgment

– Calculating, measuring, and understanding the 
uncertainty in predictions

How do you measure and communicate 
progress in predictive capability?
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Do We Really Want to Reveal What's Under 
the Hood of Our Models and Codes?
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What Does it Mean “to Predict”?

American Heritage Dictionary:
– Predict: To state, tell about, or make known in advance, 

especially on the basis of special knowledge*

What special knowledge do we demand 
of M&S to assert a predictive capability?

*A CS&E prediction is a M&S-based evaluation prior to or in lieu 
of physical measurement
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Some Attributes of Predictive Capability
You can’t measure and communicate “it”

unless you know what “it” is
• Representational (geometric) fidelity
• Physics and material model fidelity (predictive 

science)
• Code readiness for stockpile computing (SQE, code 

verification)
• Evidence that numerical errors are not polluting 

decisions i.e., solution verification
• Validated models
• Quantified margins and uncertainties with sensitivity 

analysis
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How Much is Enough?

• Sufficiency (or Adequacy) should be discussed in 
conjunction with measures of progress and this 
can only be discussed in an application context

• Graded approach based on risk tolerance can 
help mold customer expectations:
– High risk tolerance (e.g., scoping studies)
– Risk tolerance (e.g., design support)
– Risk aversion (e.g., M&S-informed decisions) 
– High risk aversion (e.g., M&S-based decisions)

• Alternatively, communicate risk incurred for a 
given level of rigor
– You get what you pay for
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This is Where We Are Going
Predictive Capability Maturity Model (PCMM)

 

PREDICTIVIE 
ATTRIBUTE 

High Risk Tolerance 
(e.g., Scoping Studies) 

Risk Tolerance 
(e.g., Design Support) 

Risk Aversion 
(e.g., Qual. Support) 

High Risk Aversion 
(e.g., Qualification) 

Representation 
(Geometry) 

Fidelity 

• Grossly defeatured or stylized 
representation based on 
practical considerations 

• Significant defeaturing or 
stylization based on judgment  

• or lower fidelity representation 
justified w a significantly 
defeatured or stylized 
representation 

• Limited defeaturing or stylization 
judged to retain the essential 
elements of “as built” 

• or appropriate lower fidelity 
representation justified w a 
slightly defeatured or stylized 
representation 

• Highest fidelity representation 
"as is" w/o sig defeaturing or 
stylization 

• or appropriate lower fidelity 
representation justified w 
highest fidelity representation 

Physics and 
Material Model 

Fidelity 

• Unknown model form 
• Empirical model form 

speculated or calibrated to 
represent trends applied w 
significant or unknown 
extrapolation 

•  Empirical model form 
speculated or calibrated to 
represent trends applied w/o 
extrapolation 

• Physics informed models applied 
w significant or unknown 
extrapolation 

•  Physics informed models 
applied w/o significant 
extrapolation 

• Physics-based model applied w 
significant or unknown 
extrapolation 

• Well accepted physics-based 
model applied w/o significant 
extrapolation 

Code Readiness 

• Judgment only • Code managed to SQE 
standards 

• Sustained unit/regression 
testing w  significant coverage 
of required features and 
capabilities (F&Cs) 

• Code managed and assessed 
against SQE standards 

• Sustained verification test suite w 
significant coverage of required 
F&Cs 

• Code managed and assessed 
against SQE standards 

• Sustained verification test suite 
w significant coverage of 
required F&Cs and their 
interactions 

Solution 
Verification 

• Judgment only • Sensitivity to discretization and 
algorithm parameters explored 

•  Numerical errors estimated • Rigorous numerical error 
bounds quantified 

Validation 

• Judgment only 
• Qualitative validation w/o SET 

coverage or w/o IETs 

• Qualitative validation with 
significant SET coverage and 
IETs  

• Quantitative validation w/o 
assessment of var/unc in 
diagnostics and IC/BC and w/o 
significant SET coverage or w/o 
IETs 

• Quantitative validation w 
assessment of var/unc in 
diagnostics and IC/BC w 
significant SET coverage and 
IETs 

QMU and 
Sensitivities 

• Judgment only • Deterministic assessment of 
margins (bounding analyses) 

• Informal "what if" assessment of 
var/unc, margins, and sens 

•  Formal quantification var/unc, 
margins, and sens w/o 
confidence assessments 

• Comprehensive quantification of 
var/unc, margins, and sens w 
explicit confidence assessments 
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Why PCMM?

• Goals of the table
– Measure/communicate maturity of evidence (not adequacy 

of results) associated with M&S in a decision context
– Provide program vision so that technical and infrastructure 

needs can be leveraged across multiple funding lines to 
enhance the credibility of M&S results

– Speak to the whats, not dictate the hows
• Target audience

– Decision makers and analysts who rely on CS&E
• Focus on codes that solve PDEs

– Program managers and academics who can make credible 
M&S a reality
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Measuring Progress in Representational  Fidelity
Are you overlooking important effects because of 

judgment-based Defeaturing or Stylizations?

Limited D&S judged 
to retain the 
essential elements 
of “as built” or 
justified lower 
fidelity 
representation

Highest fidelity 
representation 
“as built” w/o 
significant D&S 
or justified 
lower fidelity 
representation

Significant D&S 
based on judgment 
or justified lower 
fidelity 
representation
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or stylized
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Measuring Progress in Physics Fidelity
What physics is important for the application and 

how predictive are the models?
Physics-informed 
model applied w/o 
sig extrap or 
physics based 
model applied w 
sig/unk extrap

Empirical model 
form applied w/o 
sig extrap or 
physics informed 
model applied w 
sig/unk extrap

Unknown model 
form or empirical 
model form applied 
w sig extrap

Physics-based 
model applied 
w/o sig extrap
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Measuring Code Readiness
From An Application Perspective

Are you solving the equations right?
Code managed to SQE 
standards

Sustained 
unit/regression tests w 
sig coverage of F&C

SQE(A) + 
VERTS w sig
coverage of 
F&C 
interactions

SQE +assessment + 
sustained VERTS w sig
coverage of F&C

Judgment
only

Features & 
Capabilities Unit Tests VERT 1 VERT 2 VERT 3 Ideal

Code A FC1 VT1
FC2 UT1 VT1
FC3 UT2 VT1
FC4 UT3 VT1
FC5 VT2

Code B FC6 UT4 VT2
FC7 UT5 VT3
FC8 UT6 VT3
FC9 UT7 VT3

FC10 UT8 VT3
Code or Appl 
Perspective

Line or Cap 
Coverage

80%

Verification Test Suite

Capability+Interaction Coverage
3.22%
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Measuring Progress in Solution Verification
Are numerical errors polluting decisions?

Explore 
sensitivity to 
discretization and 
algorithm 
parameters

Quantify 
rigorous 
numerical 
error bounds

Estimate 
numerical 
errors

Judgment
only
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Risk 
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Risk 
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Measuring Progress in Validation
Are you solving the right equations?

Quantitative 
validation w 
assessment of 
var/unc in 
diagnostics & IC/BC 
and SET coverage 
and IETs

Judgment
only or qual
m/p comp 
w/o SET 
coverage or 
w/o IETs

Quantitative validation 
w/o assessment of 
var/unc and w/o SET 
coverage or w/o IETs

Qual m/p comps 
w SET coverage 
and IETs

H Risk 
Tolerant

Risk 
Tolerant

Risk 
Adverse

H Risk 
Adverse

304 SS

Foam

Enclosure

X-ray Model

304 SS

Foam

Enclosure

X-ray Model
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Measuring Progress in UQ/Sensitivity Analyses
What is the impact of variabilities and uncertainties

in the decision context?

Formal 
quantification of 
margins, var/unc, 
and sens w conf 
assessments

Deterministic 
margins, informal 
“what if”
assessment of 
var/unc and sens

Formal 
quantification of, 
var/unc, margins, 
and sens w/o conf 
assessment

Judgment
only

H Risk 
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Risk 
Tolerant

Risk 
Adverse

H Risk 
Adverse
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Predictive Capability Maturity Model (PCMM)
PREDICTIVIE 
ATTRIBUTE 

High Risk Tolerance 
(e.g., Scoping Studies) 

Risk Tolerance 
(e.g., Design Support) 

Risk Aversion 
(e.g., Qual. Support) 

High Risk Aversion 
(e.g., Qualification) 

Representation 
(Geometry) 

Fidelity 

• Grossly defeatured or stylized 
representation based on 
practical considerations 

• Significant defeaturing or 
stylization based on judgment  

• or lower fidelity representation 
justified w a significantly 
defeatured or stylized 
representation 

• Limited defeaturing or stylization 
judged to retain the essential 
elements of “as built” 

• or appropriate lower fidelity 
representation justified w a 
slightly defeatured or stylized 
representation 

• Highest fidelity representation 
"as is" w/o sig defeaturing or 
stylization 

• or appropriate lower fidelity 
representation justified w 
highest fidelity representation 

Physics and 
Material Model 

Fidelity 

• Unknown model form 
• Empirical model form 

speculated or calibrated to 
represent trends applied w 
significant or unknown 
extrapolation 

•  Empirical model form 
speculated or calibrated to 
represent trends applied w/o 
extrapolation 

• Physics informed models applied 
w significant or unknown 
extrapolation 

•  Physics informed models 
applied w/o significant 
extrapolation 

• Physics-based model applied w 
significant or unknown 
extrapolation 

• Well accepted physics-based 
model applied w/o significant 
extrapolation 

Code Readiness 

• Judgment only • Code managed to SQE 
standards 

• Sustained unit/regression 
testing w  significant coverage 
of required features and 
capabilities (F&Cs) 

• Code managed and assessed 
against SQE standards 

• Sustained verification test suite w 
significant coverage of required 
F&Cs 

• Code managed and assessed 
against SQE standards 

• Sustained verification test suite 
w significant coverage of 
required F&Cs and their 
interactions 

Solution 
Verification 

• Judgment only • Sensitivity to discretization and 
algorithm parameters explored 

•  Numerical errors estimated • Rigorous numerical error 
bounds quantified 

Validation 

• Judgment only 
• Qualitative validation w/o SET 

coverage or w/o IETs 

• Qualitative validation with 
significant SET coverage and 
IETs  

• Quantitative validation w/o 
assessment of var/unc in 
diagnostics and IC/BC and w/o 
significant SET coverage or w/o 
IETs 

• Quantitative validation w 
assessment of var/unc in 
diagnostics and IC/BC w 
significant SET coverage and 
IETs 

QMU and 
Sensitivities 

• Judgment only • Deterministic assessment of 
margins (bounding analyses) 

• Informal "what if" assessment of 
var/unc, margins, and sens 

•  Formal quantification var/unc, 
margins, and sens w/o 
confidence assessments 

• Comprehensive quantification of 
var/unc, margins, and sens w 
explicit confidence assessments 
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Measured Credibility, on Demand, for 
Diverse Applications

• Decision makers need to understand predictive 
capability in order to make informed decisions and to 
efficiently leverage and make use of research dollars 

• Progress in predictive capability needs to be measured 
in each individual decision context
– Predictive capability is more than geometric fidelity or even 

physics fidelity
– There is a need to define sufficiency (or adequacy) in each 

attribute of predicative capability based on risk tolerance
• The Predictive Capability Maturity Model provides a 

graded approach to assessing and measuring 
predictive capability for specific applications
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The Credibility of M&S is Critical

“Due diligence means asking the questions,
even if you don’t think you’ll like the answers.”
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Representational (Geometric) Fidelity

Hyperlinks
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Progress in Representational Fidelity
in Structural Dynamics
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Progress in Representational Fidelity
Thermal Modeling

weak link

firing subsystem

arming, fuzing, and 
firing system

stronglinks

warhead 
(full system)

C6/V&VC6/V&V

C6/FT-1

AET-3, JT4A-13,14

springs

physics package, etc.Other Components
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Physics Fidelity

Hyperlinks
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Phenomena Identification
and Ranking Tables (PIRT)

Establish efficiency and sufficiency of activities
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Low Physics Fidelity

• Conduct blast test

• Calibrate model to blast test using 
global stiffness and damping 
parameters: knobs that act as 
surrogates for missing or 
unknown physics

• Use calibrated model to make 
prediction in tactical environments
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Improving Physics Fidelity

Shock Front

Fireball

Entry-Exit presents 
double pulse

Shock Front

Fireball

Entry-Exit presents 
double pulse

Shock Front
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Entry-Exit presents 
double pulse

Shock Front

Fireball
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• Validate against 
blast test and make 
prediction in tactical 
environments

Material Model
Validation 
(foam)

Material 
Parameter
Characterization 
(foam)

5. LFU Subsystem 
Validation

2. Code Suitability

Jointed Structure 
Validation

Joint Parameter
Characterization

Joint Model 
Validation

1. Validation Plan

3. Material/Component 
Validation

4. Benchmark Level 
Validation

Potted 
Components 
Validation 
(foam)

6. Data/Documentation Archiving

Joints and 
foam models

Material Model
Validation 
(foam)

Material 
Parameter
Characterization 
(foam)

5. LFU Subsystem 
Validation

2. Code Suitability

Jointed Structure 
Validation

Joint Parameter
Characterization

Joint Model 
Validation

1. Validation Plan

3. Material/Component 
Validation

4. Benchmark Level 
Validation

Potted 
Components 
Validation 
(foam)

6. Data/Documentation Archiving

Joints and 
foam models

• Physics-informed 
models validated 
against separate 
effects tests
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Well Established Physics Fidelity

e~2K for conduction 
and radiation
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Code Readiness

Hyperlinks
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Attributes of Verification
Demonstrating Convergence to Correct Answer

for the Intended Application

SQE(A)

Regression 
Testing

Application

Code Verification: Convergence to correct answer, wrong application

• Eliminate code bugs AND inadequate algorithms
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Code to Code Comparisons
Are a Poor Substitute for Formal Verification

 Truth2Code2Code1CodeTruth1Code −+−≤−

Code Comparison Principle (CCP)
Code 1 = assessed code      Code 2 = benchmark code

2Code1Code +−≤ What if this term is not negligible?
•Could be that Code 1 models are different 
from Code 2 models 

•Could be a bug in Code 1 or Code 2
•Could be an algorithm flaw in Code 1 or 
Code 2

•Could be that Code 1 or Code 2 model is 
not converged

Points to path for better code-to-code comparisons; but if Code 2 is 
formally verified, why not verify Code 1 to the same verification test 
suite? And if not, why bother with the code-to-code comparison?

 Truth2Code2Code1CodeTruth1Code −+−≤−

Code Comparison Principle (CCP)
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suite? And if not, why bother with the code-to-code comparison?
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SQE(A): Demonstrated Due Diligence
in the Stewardship of Codes 

Requirements
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Verification with Manufactured Solution
CEPTRE: Radiation Transport
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Expected convergence rate = 3.0
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Measuring Progress in Code Verification
Coverage and Interactions

Features & 
Capabilities Unit Tests VERT 1 VERT 2 VERT 3 Ideal

Code A FC1 VT1
FC2 UT1 VT1
FC3 UT2 VT1
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Solution Verification

Hyperlinks
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Attributes of Verification
Demonstrating Convergence to Correct Answer

for the Intended Application

SQE(A)

Regression 
Testing

Application

Code Verification: Convergence to correct answer, wrong application

• Eliminate code bugs AND inadequate algorithms
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Issues: non-smooth solutions, contact, 
constitutive laws, internal constraints, 
multiscale physics, global/local norms, etc.
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Sensitivity to Mesh Parameters
Structural Dynamics
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Solution Verification on
High Fidelity Models is Hard

Solution Verification: Is the Discretization Adequate?
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Calorimeter Fire
BVG Solutions

Coarse FineMediumCoarseCoarse FineMediumMedium Fine
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Solver Resolution Over UQ Parameter Space
Solution Verification: Are the solver settings adequate?

Solver Parameter
Res 1 Res 2 Res 3 Res 4 Res 5

minimum time step 0.5 0.25 0.1 0.05 0.01
time-marching truncation error 10-1 10-2 10-3 10-4 10-5

solver residual norm 10-3 10-4 10-5 10-6 10-7

hemicube resolution (viewfactor) 20 50 100 200 300
hemicube maximum subdivisions 1 2 3 4 5
Zombie # of timesteps between foam death 200 100 50 20 1
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Dose Sensitivity to Electron Boundary 
Crossing Algorithm
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Numerical Errors
Pollute Validation Assessments 
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Verification of Error Estimator
and Adaptive Algorithm

• 2D Exact Solution:

• Linear elements
• ZZ error estimator

• Feedback adaptive 
algorithm:
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Validation

Hyperlinks
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Science-Based Validation Experiments
Validation: Are You Solving the Right Equations?

Single Device 
Characterization 
and Validation

Subcircuit
Validation

Single ASIC 
Validation

Hierarchal Validation: Right 
answer for the right reason System-Level 

Circuit 
Validation

Increasing complexity,

Decreasing number o
f te

sts

•Application relevant 
parameter space
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Science-Based Validation Experiments
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Science-Based Validation Experiments
Validation: Are You Solving the Right Equations?
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Neutron Attenuation
in Test Objects
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QMU and Sensitivities

Hyperlinks
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Aleatory and Epistemic Uncertainties

• Aleatory uncertainty: Inherent randomness in behavior of system 
under study (frequency interpretation)
– Alternatives: Variability, stochastic uncertainty, irreducible 

uncertainty, type A uncertainty
– Examples: component failures or material properties derived 

from statistically significant testing under conditions relevant
to intended application

• Epistemic uncertainty: Lack of knowledge about appropriate 
value to use for a quantity that is assumed to have a fixed value 
in the context of a specific analysis (confidence or belief 
interpretation)
– Alternatives: state of knowledge uncertainty, subjective 

uncertainty, reducible uncertainty, type B uncertainty
– Examples: representative scenarios, unknown parameters in 

frequency distributions, parameters or models with defensible 
bounds but no sense of frequency
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WIPP and NUREG-1150 Precedents
High Consequence Regulatory Issues in the National Interest

Addressed Primary Through Modeling and Simulation

WIPP Data

Lessons Learned: (1) Seek BE + Uncertainty

(2) It takes more than one shot to get it right

NUREG-1150
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