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A variety of fabrication methods can be used to construct 
microsystems

Bulk Micromachining
– subtractive process; pattern and etch
– well established for Si; also done in GaAs

Surface Micromachining
– additive process; structural (Si) and sacrificial (SiO2) layers
– dissolve sacrificial layers to free structures

Lithographie, Galvanoformung und Abformung (LIGA)
– plate or press into thick polymer mold
– micron to centimeter scale parts

Meso-Machining
– subtractive process; push machining methods to micron scale
– micro-milling, micro-EDM, plunge EDM
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Schematic illustration showing the fabrication route for 
polymer-derived ceramics
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Polymer Micromachining

Micro-casting Direct Photopolymerization

SiCN MEMS Polysilazane MEMS SiCN MEMS Polysilazane MEMS

Cast in SU8 molds, followed 
by de-molding

Treat precursor as a negative 
photoresist
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Composition diagram and the properties of SiCN PDC 
materials

SiCN SiC Si3N4
Density (g/cm3)

E Modulus (GPa)

Poisson’s Ratio

CTE (x 10-6/K)

Hardness (GPa)

Strength (MPa)
Toughness (MPa.m1/2)

Thermal Shock FOM*

2.35
150
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 ~ 3
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1100
3.5

2300

3.17
405
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3.8
30
418

4 - 6
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3.19
314
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5 - 8
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* strength/(E-modulus.CTE)

Creep rate at 1350 oC (s-1)
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(cm/hr1/2)

< 10-8

~ 10-5
~ 10-9 ~ 10-9

~ 10-5 ~ 10-5
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Tribology @ Micro-level: a systems property
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No  material can act as a solid lubricant in all environments and 
under all operating conditions

Mo/W Disulfide

S

Mo
S

MoS2: Extremely low COF (0.01-0.05) and long wear 
life, but only in dry environments.

They form thin transfer films on the counterface

S. V. Prasad and J. S. Zabinski, J. Mater. Sci. Lett. 12 (1993) 1413-1415
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• Graphite needs moisture or adsorbed gases in the 
environment (>100 ppm) (they either act as intercalants, 
or passivate the dangling covalent bonds) to lubricate.

• In vacuum, graphite exhibits high friction and wear—a 
phenomenon known as “dusting”, first observed in the 
late 1930’s when graphite brushes in aircrafts 
experienced accelerated wear at high altitudes.
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A simplified process was used for making tribology
test coupons (Courtesy of Sandeep Shah)

UV 365 nm
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Tribological measurements were made in controlled 
environments 

Linear Wear Tester
(Ball-on-Flat configuration)

Environmental Control

Counterfaces: Si3N4 and 440C Steel Balls (3.175 mm dia) 

Normal Loads: 0.44 GPa, 0.75 GPa, 0.95 GPa

Environments: Dry Nitrogen, Dry Air, Air with 20, 40, 50 
and 80% RH
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Pyrolysis cycles
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Raman spectra (Argon laser: 458 nm wavelength, Spot Size: 1 µm)
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Mechanical behavior and composition
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Friction behavior in dry nitrogen 
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Summary of tribological data showing environmental effects 
on friction and wear transitions 
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Schematic depiction of dual-phase structure in 
SICNO
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Conclusions Remarks

• SiCNO showed two distinct regimes of tribological behavior: one 
identified by low µ, and negligible wear, and the other by high friction 
and high wear. 

• The onset of fracture under a critical value of the applied contact stress 
is believed to lead to the transition from low friction to high friction 
behavior. The transition apparently moved to contact stresses beyond 
the experimental regime in humid environments (where only the low 
friction behavior was seen). 

• This result is thought to be related to an increase in the work of 
fracture of the PDC in the presence of water molecules at the crack tip 
when the crack propagation velocity is of the same order as the sliding 
friction velocity (that is, non-stress-corrosion type of fracture 
conditions).
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