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A variety of fabrication methods can be used to construct
microsystems

— subtractive process; pattern and etch anisotropic isotropic

— well established for Si; also done in GaAs '
Surface Micromachining

— additive process; structural (Si) and sacrificial (SiO,) layers

— dissolve sacrificial layers to free structures SNL &
Lithographie, Galvanoformung und Abformung (LIGA) go

— plate or press into thick polymer mold

— micron to centimeter scale parts
Meso-Machining

— subtractive process; push machining

— micro-milling, micro-EDM, plunge EDM

G. Benavides, SN



Schematic illustration showing the fabrication route for
polymer-derived ceramics
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Polymer Micromachining

Micro-T:asting Direct Phot|opo|ymerization
SICN MEMS Polysilazane MEMS SICN MEMS Polysilazane MEMS
Cast in SU8 molds, followed Treat precursor as a negative
by de-molding photoresist

~2mm

- 7/

Preceramic polymer buffaloes, 500
AcerS_05:4 microns thick



Composition diagram and the properties of SiCN PDC

materials

L SIC-nSiaMN4g-xC

Si
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SiCN | SIiC| Si,N,
Density (g/cm?) 2.35 3.17 3.19
E Modulus (GPa) 150 405 314
Poisson’s Ratio 0.17 0.14 0.24
CTE (x 10-5/K) ~3 3.8 2.5
Hardness (GPa) 25 30 28
Strength (MPa) 1100 418 700
Toughness (MPa.m'?2) 3.5 4-6 5-8
Thermal Shock FOM* | 2300 270 890
Creep rate at 1350°C s) | < 10% | ~10° | ~107
Oxidation rate at 1350°C | ~ 105 | ~10% | ~10-
(cm/hr1’2)
* strength/(E-modulus.CTE) Raj et. al.




Tribology @ Micro-level: a systems property
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No material can act as a solid lubricant in all environments and
under all operating conditions

MoS,: Extremely low COF (0.01-0.05) and long wear

life, but only in dry environments.
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They form thin transfer films on
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S. V. Prasad and J. S. Zabinski, J. Mater. Sci. Lett. 12 (1993) 1413-1415
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Graphite needs moisture or adsorbed gases in the
environment (>100 ppm) (they either act as intercalants,
or passivate the dangling covalent bonds) to lubricate.

In vacuum, graphite exhibits high friction and wear—a
phenomenon known as “dusting”, first observed in the
late 1930’s when graphite brushes in aircrafts
experienced accelerated wear at high altitudes.



A simplified process was used for making tribology
test coupons (Courtesy of Sandeep Shah)
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Tribological measurements were made in controlled
environments

Counterfaces: Si;N, and 440C Steel Balls (3.175 mm dia)
Normal Loads: 0.44 GPa, 0.75 GPa, 0.95 GPa

Environments: Dry Nitrogen, Dry Air, Air with 20, 40, 50
and 80% RH

Linear Wear Tester

(Ball-on-Flat configuration)

i Environmental Control
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Pyrolysis cycles
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Raman spectra (Argon laser: 458 nm wavelength, Spot Size: 1 um)
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Mechanical behavior and composition
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Friction behavior in dry nitrogen

Type Il: 097 GPa, u~0.7
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Summary of tribological data showing environmental effects
on friction and wear transitions
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Schematic depiction of dual-phase structure in
SICNO
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Conclusions Remarks
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SICNO showed two distinct regimes of tribological behavior: one
identified by low u, and negligible wear, and the other by high friction
and high wear.

The onset of fracture under a critical value of the applied contact stress
is believed to lead to the transition from low friction to high friction
behavior. The transition apparently moved to contact stresses beyond
the experimental regime in humid environments (where only the low
friction behavior was seen).

This result is thought to be related to an increase in the work of
fracture of the PDC in the presence of water molecules at the crack tip
when the crack propagation velocity is of the same order as the sliding
friction velocity (that is, non-stress-corrosion type of fracture
conditions).
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