

Measuring Residual Stress in Glasses and Ceramics using Instrumented Indentation

Thomas Buchheit¹ and Rajan Tandon²

¹Microsystems Materials Dept.

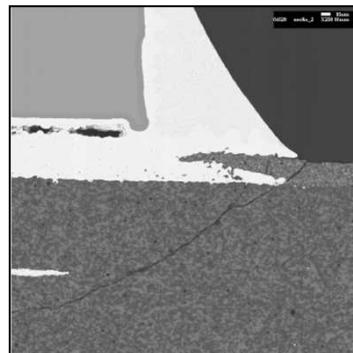
²Materials Reliability Dept.

**Materials and Processes Science Center
Sandia National Laboratories
Albuquerque NM 87185**

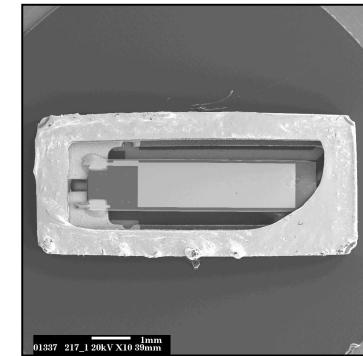
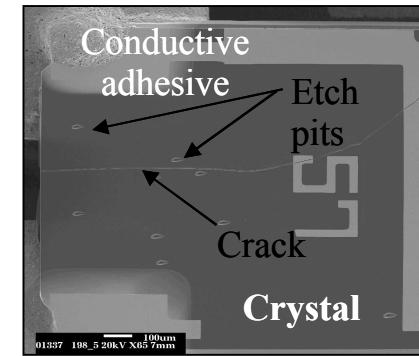
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Problem: Processing and thermally induced residual stresses lead to failure of ceramic-based microsystems components

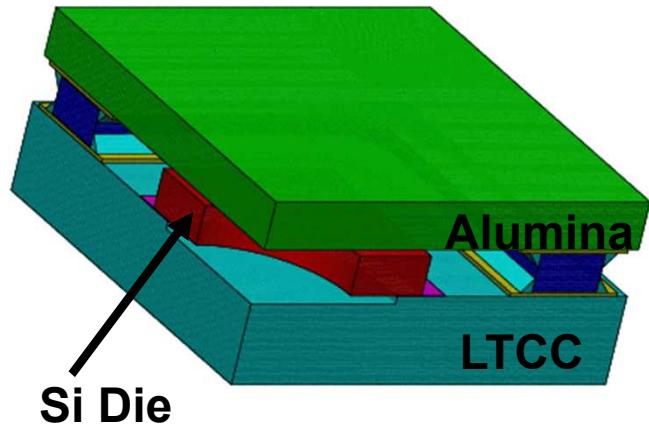
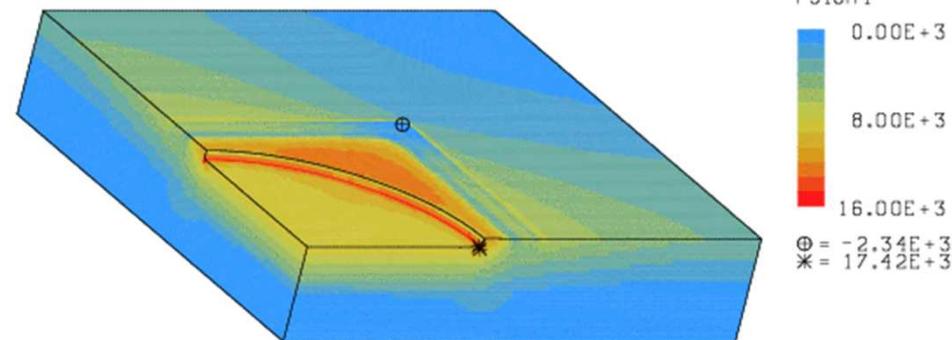
Examples of cracks in LTCC ceramic substrates



Quartz AT Strip SAW Device



FE simulation of Die Attached Microsystems assembly

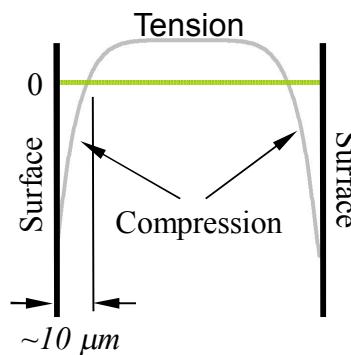


Can nanoindentation be used as a method to measure residual stress in brittle materials?

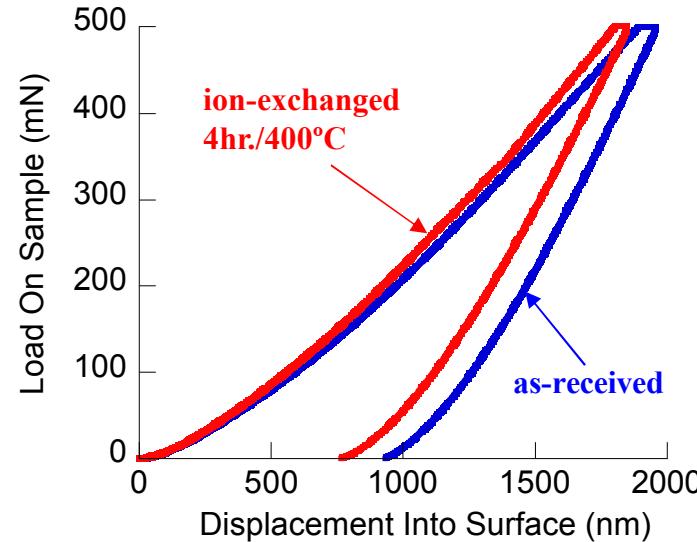
An initial observation:

- A very noticeable and repeatable difference in measured indentation response between unstressed and stressed glass.
- $E/\sigma_y \approx 25$ in glass, $E/\sigma_y \approx 150$ or greater in most metals.

Stress Profile in
Ion-Exchanged Glass



PPG Glass – 500 mN load
spherical tip- 10 um nominal radius



A series of finite element simulations were performed to investigate the role residual stress on the indentation response

- 8 simulations- displacement control to 1 μm depth

material properties	tip geometry	residual stress
$E=72 \text{ GPa}$ $\sigma_y=3 \text{ GPa}$	spherical- 10 μm radius	1) none 2) -500 MPa
$E=72 \text{ GPa}$ $\sigma_y=3 \text{ GPa}$	conical- 70.3° half-angle	3) none 4) -500 MPa
$E=72 \text{ GPa}$ $\sigma_y=600 \text{ MPa}$	spherical- 10 μm radius	5) none 6) -500 MPa
$E=72 \text{ GPa}$ $\sigma_y=600 \text{ MPa}$	conical- 70.3° half-angle	5) none 6) -500 MPa

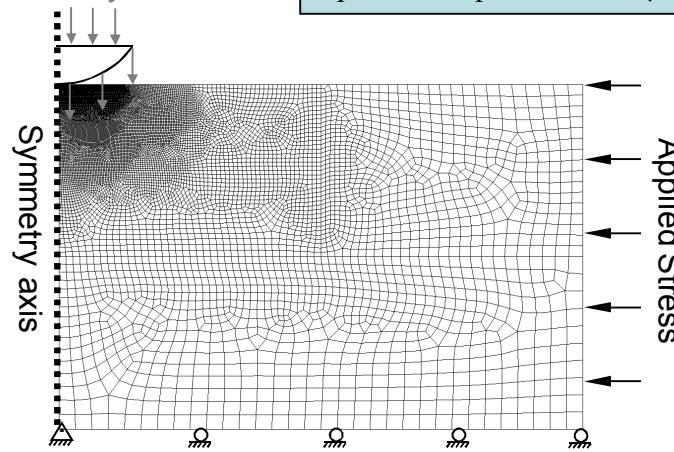
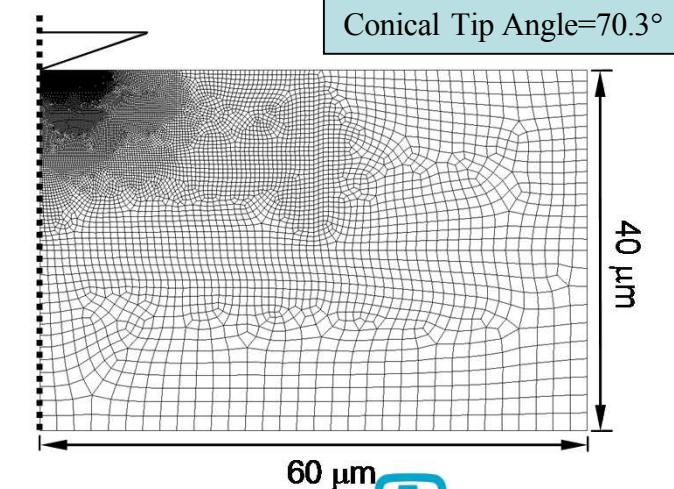
Simulation Details:

- frictionless
- *rigid tip*
- substrate 30x40 μm -fixed
- approx. 20,000 elements
- axisymmetric elements

- FE meshes and boundary conditions

1 μm displacement boundary condition

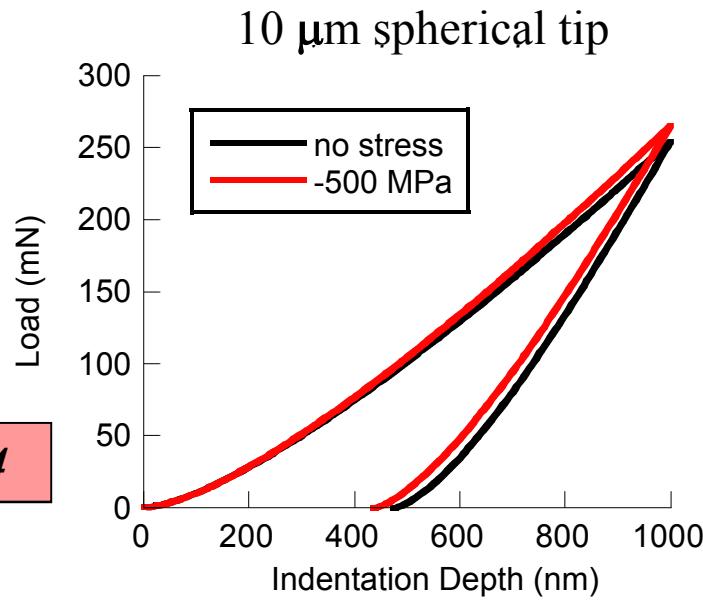
Spherical Tip Radius=10 μm



Stressed substrates gave a significantly different load-displacement response in every simulated case

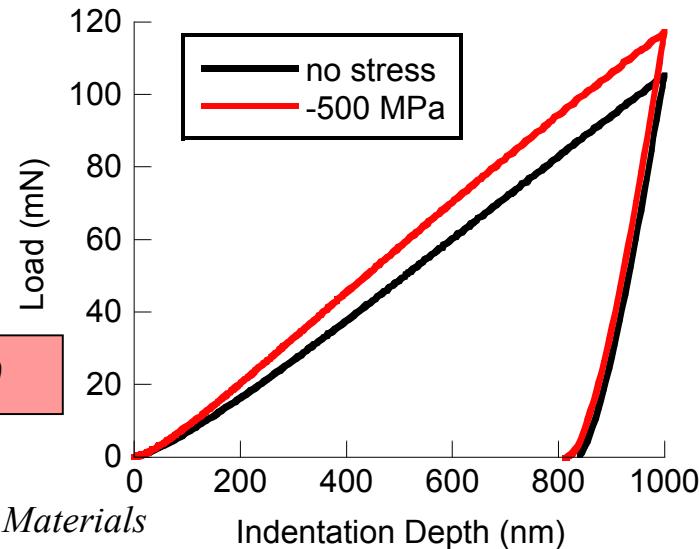
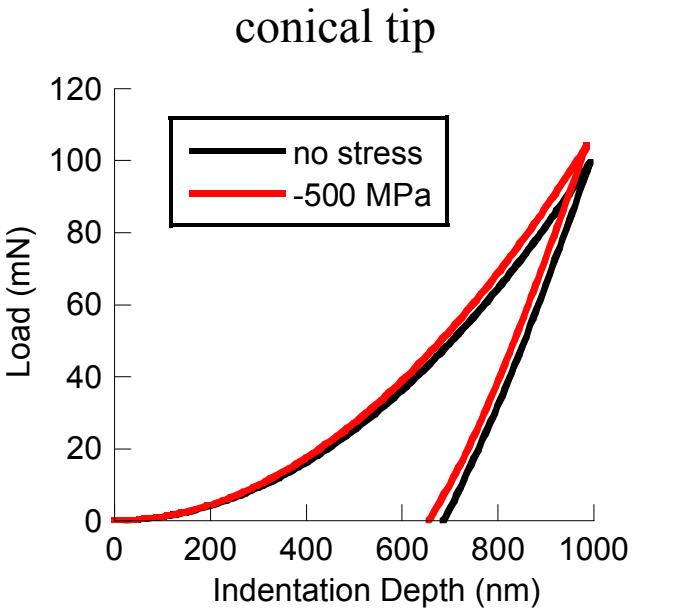
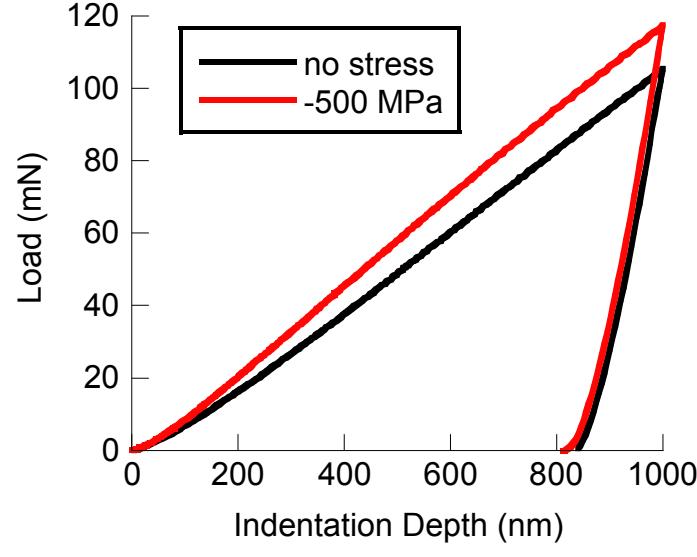
$$E = 72 \text{ GPa}$$
$$\sigma_y = 3 \text{ GPa}$$

$$E/\sigma_y = 24$$



$$E = 72 \text{ GPa}$$
$$\sigma_y = 600 \text{ MPa}$$

$$E/\sigma_y = 120$$



Tabular analysis of FE results begins to reveal trends:

E/ σ_y Ratio (E=72 GPa)	Tip Geometry	Substrate Stress (MPa)	β^* Modulus O-P method (GPa)	β^* Modulus True A_c (GPa)	Hardness O-P Method (GPa)	Hardness True A_c (GPa)
24 (v=0.2)	Spherical <i>10 μm rad.</i>	0 -500	83 81	82 81	6.04 6.49	6.04 6.45
24 (v=0.2)	Conical <i>70.3° half-angle</i>	0 -500	81 83	79 80	6.48 7.05	6.22 6.56
120 (v=0.3)	Spherical <i>10 μm rad.</i>	0 -500	93 98	84 83	1.97 2.17	1.59 1.55
120 (v=0.3)	Conical <i>70.3° half-angle</i>	0 -500	95 103	80 81	2.19 2.50	1.56 1.56

β is a correction factor dependent on tip geometry $\approx 1.04-1.1$

- **O-P method** relies on unloading portion of indentation load-displacement curve for computing contact stiffness, S, contact area, A_c , and ultimately hardness, H, and modulus, E_r , material properties

O-P method does not account for indentation pile-up

Key Formulas →

$$S = \frac{2\beta}{\sqrt{\pi}} E_r \sqrt{A_c}$$

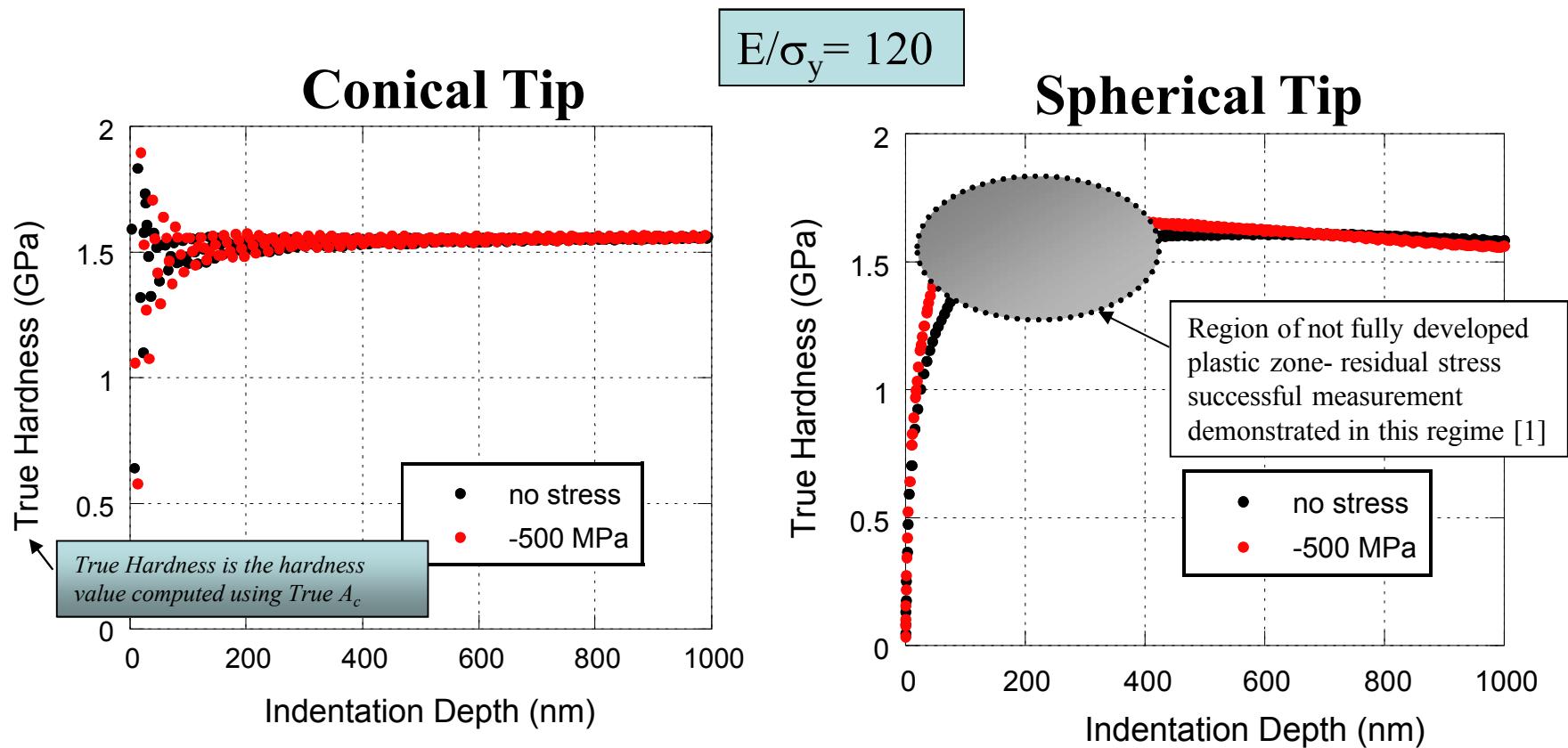
$$H = P / A$$

Oliver, W.C., and Pharr, G.C., "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments" J. Mater. Res., Vol. 7, No. 6, 1992, p 1564.

- Properties determined using **True A_c** rely on the contact area between the indenter tip and substrate material determined by the finite element simulation

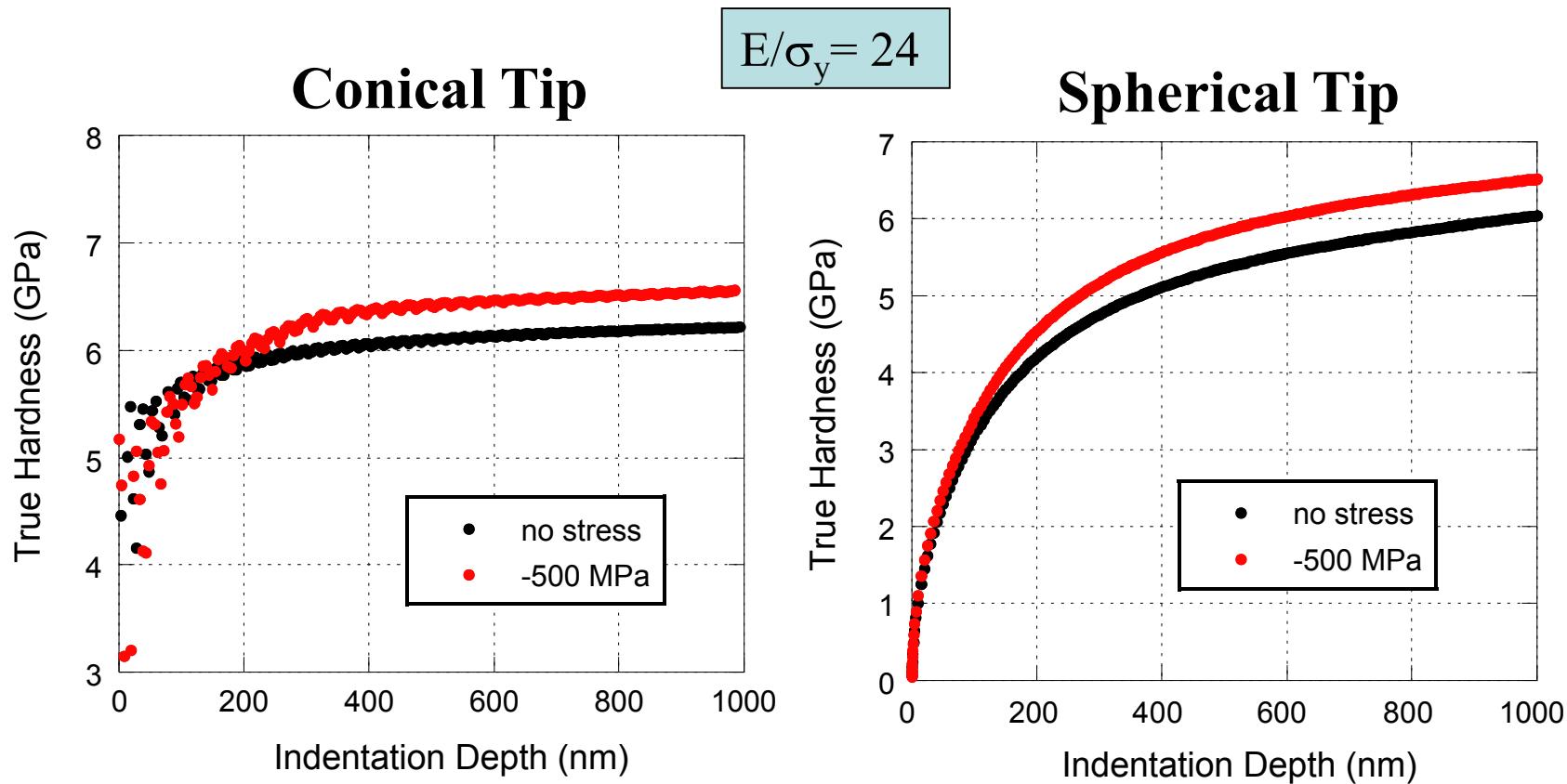
Using True A_c determined by FE accounts for indentation pile-up

Using true contact area in hardness determination removes the influence of indentation pile-up



- Compressive residual stress does not impact the true hardness when a material with a high E/σ_y ratio is indented with a conical tip
- Compressive residual stress measurably impacts the true hardness when a material with a high E/σ_y ratio is indented with a spherical tip *only over a certain range of indentation depths*

Measurable difference in instrumented indentation response in materials with low E/σ_y ratio

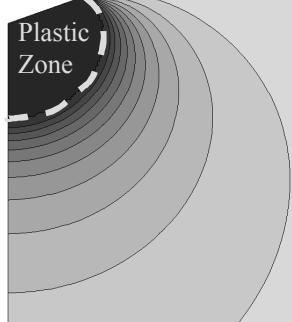


- Compressive residual stress measurably impacts the true hardness when a material with a low E/σ_y ratio is indented with either a conical or spherical tip across a wide range of indentation depths, *why?*

Stress distributions at 1 μ m indentation depth conical tip

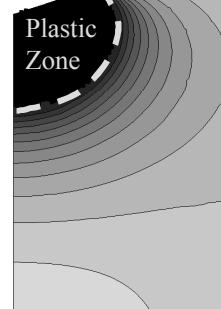
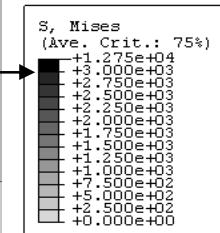
$E/\sigma_y = 24$

substrate stress = 0 MPa



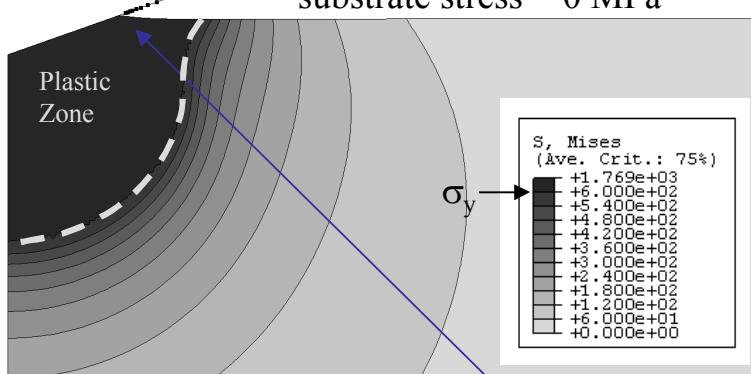
$E/\sigma_y = 24$

substrate stress = -500 MPa



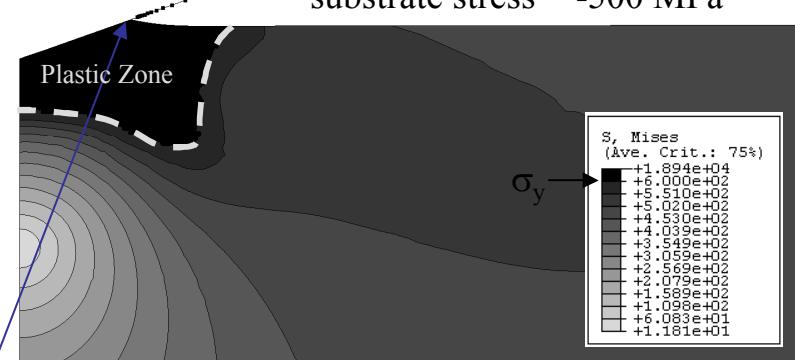
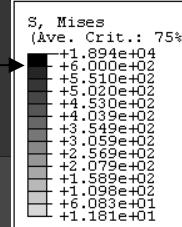
$E/\sigma_y = 120$

substrate stress = 0 MPa



$E/\sigma_y = 120$

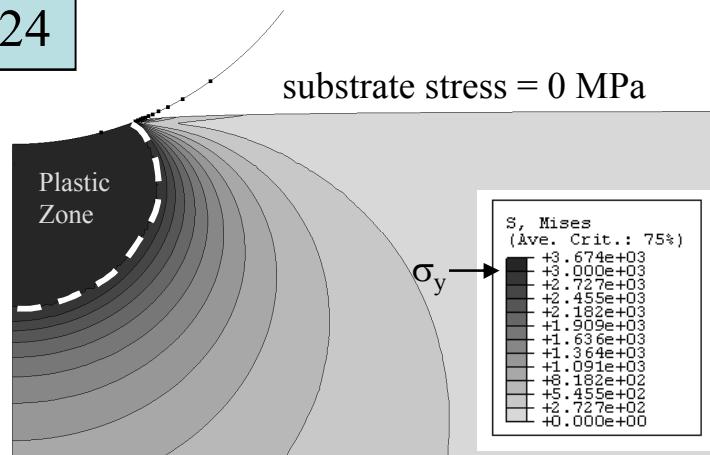
substrate stress = -500 MPa



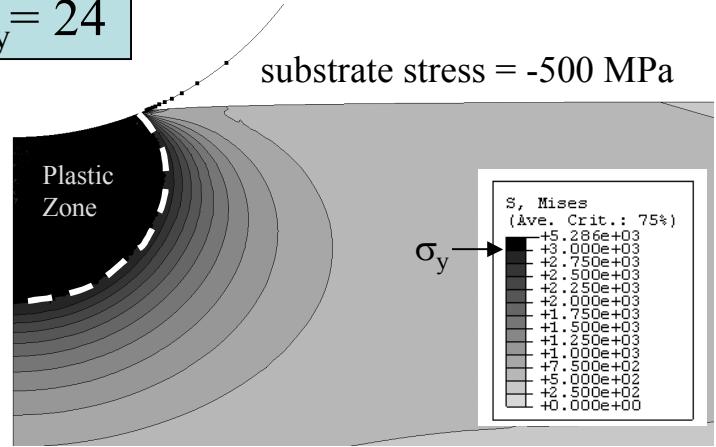
Indentation Pile-up

Stress distributions at 1 μ m indentation depth spherical tip

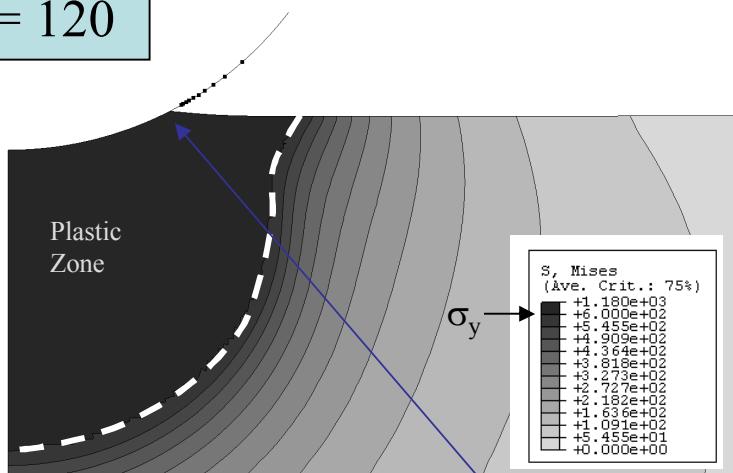
$E/\sigma_y = 24$



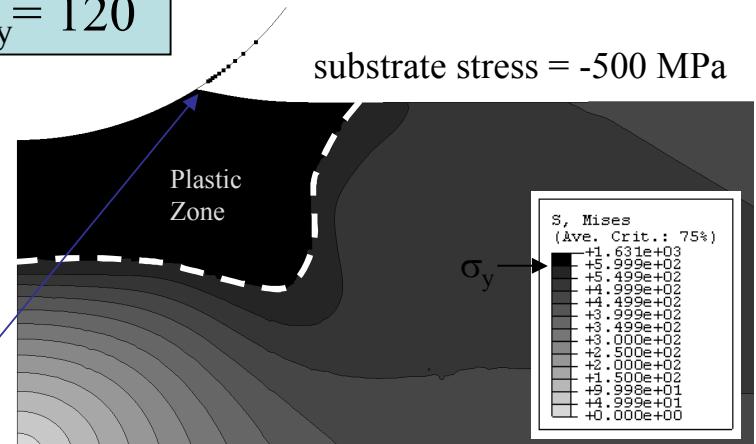
$E/\sigma_y = 24$



$E/\sigma_y = 120$

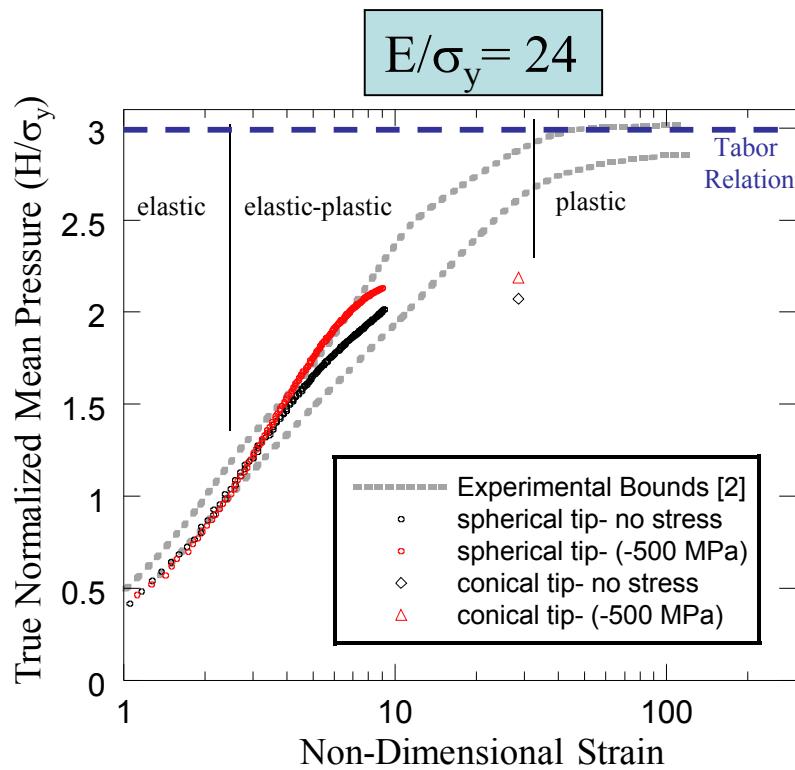
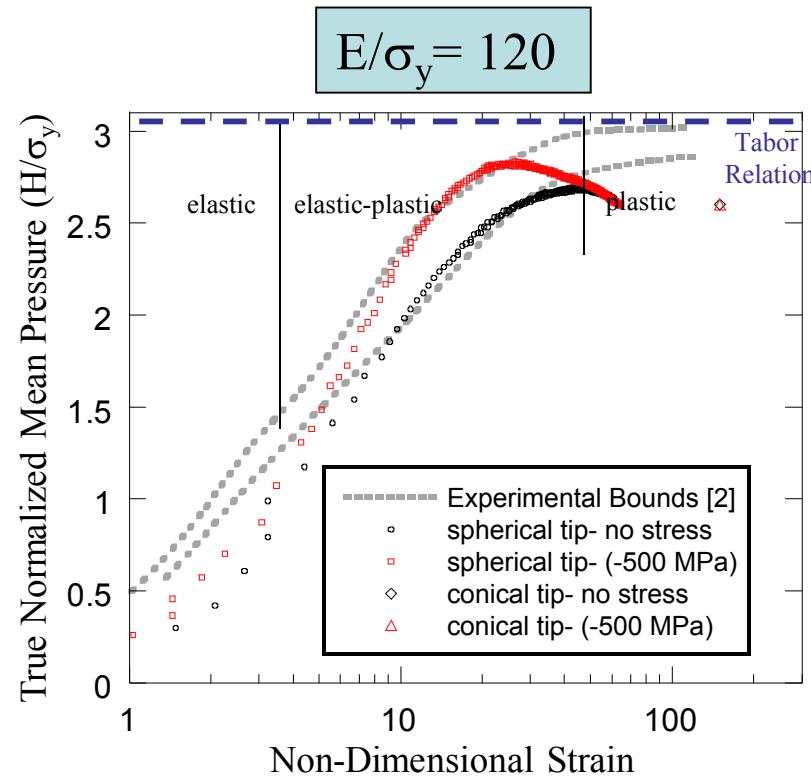


$E/\sigma_y = 120$



Indentation Pile-up

When measuring residual stress, the "Universal Curve" shows the benefit of performing experiments in the elastic-plastic regime



Non-Dimensional Strain

$$\left(\frac{E_r a}{\sigma_y r} \right) \text{ for spherical tip, } (a/r) \text{ is depth to tip radius ratio}$$

$$\left(\frac{E_r \tan \beta}{\sigma_y} \right) \text{ for conical tip}$$

- plastic refers to "fully developed" plastic zone underneath tip. In the absence of indentation pile-up, this result demonstrates that distinguishing between stress and unstressed material using nanoindentation is not possible in the plastic region of the universal curve.
- A fully developed plastic zone may never be achieved during indentation of a low E/σ_y material

Observations and conclusions drawn from simulated results

- A plastic zone always constrained to region underneath tip, as demonstrated in the low E/σ_y simulated results corresponds to a not fully developed plastic zone.

These results showed a measurable difference in indentation response between stressed and unstressed substrates for both spherical and pyramidal tip geometries

- A plastic zone that breaks out to the substrate surface, as demonstrated in the high E/σ_y simulated results corresponds to a fully developed plastic zone.

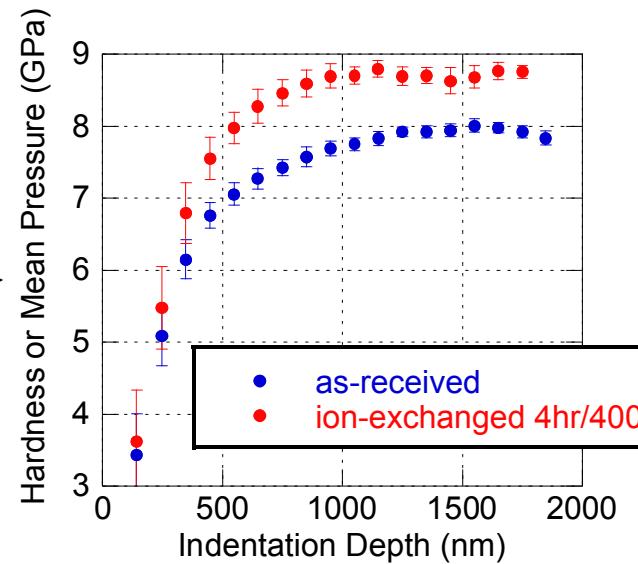
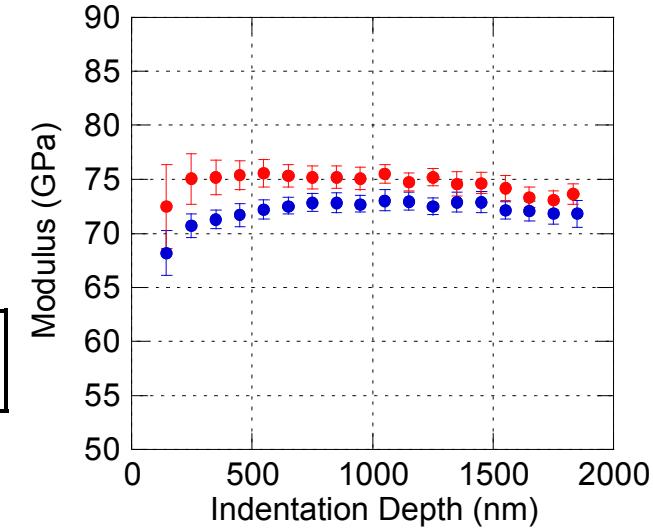
These results also showed a measurable difference in indentation response between stressed and unstressed substrates, that difference is completely attributable to "indentation pile-up" phenomenon

An indentation experiment that creates a large elastic zone and a small confined plastic zone is most useful for measuring influence of residual stress using nanoindentation. Glasses and Ceramics are favorable materials for this type of measurement because of their high E/σ_y ratio

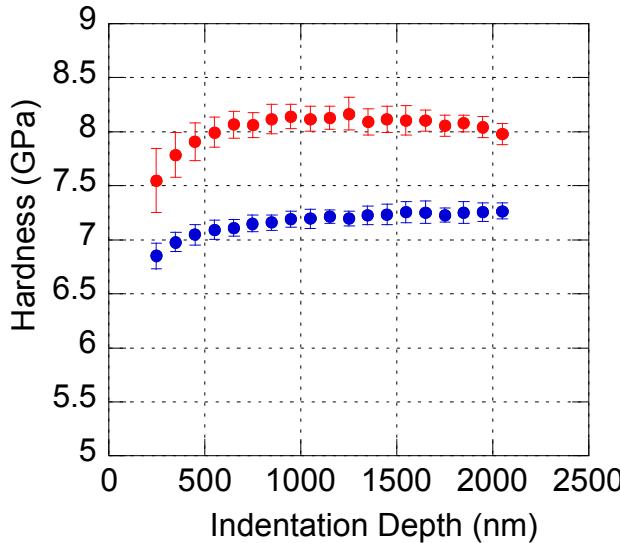
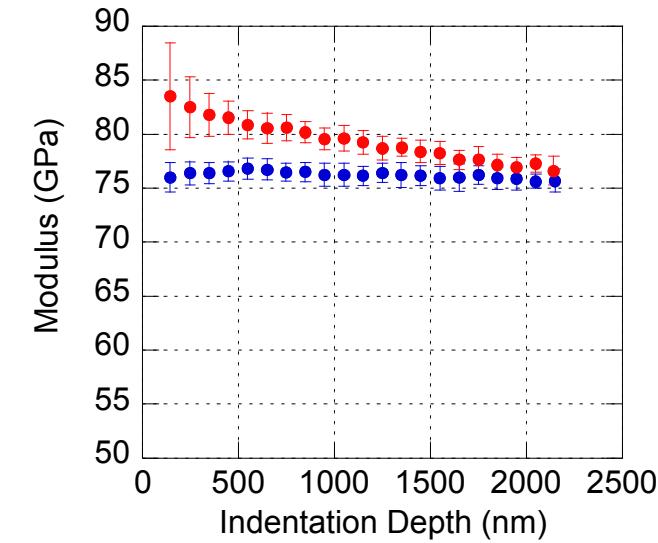
Instrumented indentation experiments showing a measurable difference between stressed and unstressed glass

Nanoindentation
results on PPG
Glass-500 mN load

10 μ m spherical tip



berkovich tip



Conclusions
