SAND2006- 3183C

Measuring MPI Send and Receive Overhead and
Application Availability in High Performance Network
Interfaces

Douglas Doerfler and Ron Brightwell

Center for Computation, Computers, Information and Math
Sandia National Laboratories!
Albuquerque, NM 87185-0817
{dwdoerf, rbbrigh} @sandia.gov

Abstract. In evaluating new high-speed network interfaces, the usual metrics of
latency and bandwidth are commonly measured and reported. There are
numerous other message passing characteristics that can have a dramatic effect
on application performance, and they too should be analyzed when evaluating
an new interconnect. One such metric is overhead, which dictates the networks
ability to allow the application to perform non-message passing work while a
transfer is taking place. A method for measuring overhead, and hence
calculating application availability is presented. Results for several next
generation network interfaces is also presented.

Keywords: MPI, High Performance Computing, High Speed Networks,
Message Passing Overhead.

Introduction

Scaling efficiency of parallel applications in many instances depends on the ability to
overlap communication with computation. In MPI codes, the pre-posted send and
receive calls are the primary means of achieving overlap. Unlike other MPI
communication metrics, e.g. latency and bandwidth, there is a lack of readily
available open source microbenchmarks that measure MPI overhead for non-blocking
calls. A method for measuring overhead and application availability is presented and
then applied to several current state-of-the-art high performance network interfaces.

! Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy's National Nuclear Security
Administration under contract DE-AC04- 94AL85000.

2 Douglas Doerfler and Ron Brightwell

Method

There are multiple methods an application can use to overlap computation and
communication using MPI. The method assumed by this paper is to use the MPI non-
blocking MPI_Isend() and MPI_Irecv() calls to post the respective transfer, perform
some work, and then wait for the transfer to complete using MPI_Wait(). This method
is typical of most applications and hence makes for the most realistic measure of a
microbenchmark. Periodic polling methods have also been analyzed [1], but that
method only makes sense if the application knows that MPI progress will not be made
without periodic MPI calls during the transfer. Overhead is defined to be [2]:

... the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; during this time, the processor cannot
perform other operations.

Application availability is defined to be the fraction of total transfer time? that the
application is free to perform non-MPI related work.

Application Availability = 1 — (overhead / transfer time) @))]

Figure 1 illustrates the method used for determining overhead and message transfer
time. For a given iteration of the post-work-wait loop, the total amount of time for
message completion is measured. For each iteration, the amount of work is increased.
Initially, the work performed by the application does not effect the total iteration time
as it can be completed before the message transfer completes. As the work increases,
at some point the interval time starts to increase because the work interval is greater
than the transfer time. After this point, the iteration time becomes the amount of time
required to perform the work plus the overhead time required by the host processor to
complete the transfer. The overhead can then be calculated by measuring the amount
of time to perform the same amount of work without a message transfer and
subtracting this value from the iteration time.

As mentioned above, the iteration time measurements before the work time
becomes a factor is the message transfer time. For this analysis, in order to get a more
accurate transfer time value, the measurement values are averaged over the samples
taken before the iteration time begins to increase due to work. In the figure, a
threshold is shown which when exceeded, the iteration time values are no longer used
in the average calculation. This threshold must be set sufficiently high to avoid a pre-
mature stop in the accumlation of the values used for the average calculation, but it
must be low enough such that values measured after the work becomes a factor are
not used. A typical value that worked well for most systems is 1.02 to 1.05 times the
transfer time.

The figure also shows an iteration stop threshold. This threshold is not critical and
can be of any value as long as it is ensured that the total iteration time is significantly
larger than the transfer time. A typical value is 1.5 to 2 times the transfer time. In
practice, it is not necessary to calculate the work interval without messaging until the

2 Per the MPI non-blocking call definitions, the MPI_Wait() call only signifies that for a send
the buffer can be reused and for a receive the data can be accessed in the receive buffer [3].

Measuring MPI Send and Receive Overhead and Application Availability in High
Performance Network Interfaces 3

final sample has been taken. Figure 2 illustrates the actual measured values for each
iteration at a message size of 64K bytes on the Myrinet 10G test cluster Odin.

MPI Overhead Theory

250
200 r

150 / base_t threshold

ISR, | . — — iter_t threshold
work_t
——iter_t
100

+ calculation point

Time (microseconds)

50

Work interval

Fig. 1. A conceptual illustration of the message transfer time (iter_t) of a given message size
for each iteration of the algorithm, with the work performed (work_t) increasing for each
iteration. The message transfer time average calculation threshold (base_t) and iteration stop
threshold (iter_t) are also shown along with the point at which the overhead calculation is
taken.

Actual Data from Odin (Myrinet 10G)
Message Size = 65536 bytes

250
200 r

150 /
—iter_t
—e—base_t
[work_t

100

Time (microseconds)

50

1 10 100 1000 10000 100000 1000000
Work Interval

Fig. 2. Actual measured values for a 65K bytes MPI_Isend() operation on the Myrinet 10G
cluster. Note that the base_t calculation is not a running average, but an equally weighted
average of all values obtained up to that iteration. The work without messaging value is only
calculated after the iteration threshold has been exceeded. Overhead is the difference between
iter_t and work_t at that point.

4 Douglas Doerfler and Ron Brightwell

Platforms

Overhead and availability was measured on a variety of platforms, summarized in
Table 1.

Table 1. Overview of Test Platforms

Red Storm Thunderbird CBC-B Odin Red Squall

Interconnect Seastar 1.2 InfiniBand InfiniBand Myrinet 10G ~ QsNetll

Manufacturer Cray Cisco/Topspin PathScale Myricom Quadrics

Adaptor Custom PCI-Express InfiniPath Myri-10G Elan4

HCA

Host Interface HT 1.0 PCI-Express HT 1.0 PCI-Express PCI-X

Programmable Yes No No Yes Yes

COprocessor

MPI MPICH-1 MVAPICH InfiniPath MPICH-MX MPICH
QsNet

All of the platforms except Red Storm are Linux Clusters using the respective
vendors commercial software stacks. The Thunderbird Cluster’s MPI software stack
has been modified and parameters have been set to reduce the memory required by
the MPI stack at a scale of several hundred to a thousand processes. These
modifications do affect the real world application performance, but it is unknown how
those modifications affect the MPI overhead microbenchmark used in this analysis.
The Red Storm platform uses the Catamount light-weight kernel [4]. The Seastar
interconnect implements the Portals API [5]. All of the platforms use MPICH 1.x for
their MPI software stack, although it is fair to say that this stack may have been
optimized for their respective network interface, in particular the collective routines.

Results

From a practical perspective, application availability is usually not a concern for small
message sizes, as there is little to be gained trying to overlap computation with
communication when transfer times are relatively small. Most applications will only
try to overlap computation when they know the message size is sufficiently large.
However, as an academic exercise, it still may be interesting to view availability for a
large message as it provides information on how an interface’s characteristics change
at a protocol boundary, such as the switch from a short message protocol to a large
message protocol. If an application writer is trying to optimize to a given platform,
he/she may want to know where the protocol boundaries are and modify the code to
better suit the platform.

Measuring MPI Send and Receive Overhead and Application Availability in High
Performance Network Interfaces 5

Figure 3 charts the MPI_Isend() overhead as a function of message size for the
platforms tested®. Figure 4 charts application availability. The first thing to note is that
the overhead for the Red Storm (Seastar) and Red Squall (Elan4) interconnects is
relatively constant for all message sizes. As such the application availability increases
with message size until it is nearly 100% for large message transfers. The other
interconnects are unable to make MPI progress for large messages without the host
CPU becoming involved in the transfer. This can be seen in the availability chart for
the Thunderbird (InfiniBand) and CBC interconnects (InfiniPath), once the host
becomes involved in the transfer host application availability drops significantly. For
the Odin cluster (Myri-10G), availability remains high at approximately 80% to 90%,
even though overhead rises with message size for large transfers. However, the
overhead is a small fraction of the overall transfer time and hence availability remains
high.

MPI Overhead for a Posted Send

10000.0 -

1000.0 /.
100.0 / Red Storm
: ~#- Third
—&—CBC-B
odin

—#—Squall

overhead (microseconds)

0.1

O N ¥ ® © N ® © N X ¥X X X ¥X ¥X X X X X = =
rnzgg;vuvegggaﬁsvuv
-

message size (bytes)

Fig. 3. Overhead as a function of message size for MPI_Isend().

3 Note that this figure uses a logarithmic axis for overhead. Although the Odin overhead does
increase with message size for large messages, it is still an order a magnitude less than the
InfiniBand based interconnects.

6 Douglas Doerfler and Ron Brightwell

Application Availability for a Posted Send

110 4
100

% MW
80 1

70)

g .T‘* Red Storm
i T il
= Odin
s 40 \\. \\ —#— Squall
30

20 |

ON‘BWNS@@N"‘:“S“SEEE

- ™ N O v ~N @ © N ® © N

R v pngugs'“v
N

message size (bytes)

Fig. 4. Application availability as a function of message size for MPI_Isend().

Posted receive performance is charted in Figures 5 and 6. As with posted sends, the
Red Storm and Red Squall (Elan4) platforms have essentially a constant overhead
independent of message size. This translates to near 100% host availability for large
message transfers. The Thunderbird (InfiniBand), CBC-B (InfiniPath), and Odin
(Myri-10G) clusters require significant host involvement for large message transfers,
and thus limit an applications ability to overlap computation and communication.

MPI Overhead for a Posted Receive

10000

1000

Red Storm
~— Third
—4—CBC-B

Odin
—#— Squall

100

10

overhead (microseconds)

O N T ® O N TP NX XX X X X X XX X E S =

N B

- ‘_N;vnvaggggﬁgvﬂv
-

message size (bytes)

Fig. 5. Overhead as a function of message size for MPI_Irecv().

Measuring MPI Send and Receive Overhead and Application Availability in High
Performance Network Interfaces 7

Application Availability for a Posted Receive

110

100 ———MM——eeieieA—K

70 \ \ Red Storm
60 ‘\\A —#- Third
X\ —&— CBC-B

Odin
40

|
\ —#— Squall
o |\
1\

20

10 LN |

availability (%)

0
O N ¢ @ © o ® © N ¥ ¥ ¥ X X X X X X X F = =
FPRBIREENVEERIREACESE
8

message size (bytes)

Fig. 6. Application availability as a function of message size for MPI_Irecv().

Related Work

Numerous work has been done to measure overhead and study its effect on
application performance [1], [6], [7] and [8]. Lawry [1] looks at application
availability, but the analysis and results are for a given message size and charts are a
function of the polling interval. Other references do not quantify the overhead as a
function of message size, but look at it’s effect on application performance. In
addition, this paper presents overhead results for some realatively new networking
technologies, such as Red Storm’s Seastar, Pathscale’s InfiniPath and Myricom’s
Myri-10G.

Conclusion

Even though a network has impressive latency and bandwidth numbers, if the
application can take advantage of communication and computational overlap, one
network may provide significant performance advantages over another. As such,
when analyzing a network interface, one needs to look at more than simple ping-pong
and bandwidth metrics. Some of the more recent, and seemingly very popular, high-
speed networking solutions, such as InfiniBand, do not provide overlap. Which in
some ways is surprising given the fact that the importance of communication offload
and its effects on application performance have been common knowledge for several
years. However, for many applications it is sufficient to provide low latency and high
bandwidth to achieve excellent performance and scaling.

8

Douglas Doerfler and Ron Brightwell

Future Work

It is the intent of the authors to make the source to the code used in this study
generally available and downloadable from an open web site. With the hope that this
will allow overhead and application availability to become a common
microbenchmark in the evaluation of next generation interconnects. This will also
encourage contributions to make the code more robust and accurate in its reports.

References

1.

W. Lawry, C. Wilson, A. Maccabe, R. Brightwell. COMB: A Portable Benchmark Suite for
Assessing MPI Overlap. In Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER 2002), p. 472, 2002.

. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian and

T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACM
SIGPLAN symposium on Principles and Practice of Parllel Programming, pp. 262-273,
1993.

. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, J. Dongara. MPI: The Complete

Reference. p. 52, The MIT Press, Cambridge, Massachusetts, 1996.

. S. Kelly, R. Brightwell. Software Architecture of the Light Weight Kernel, Catamount. In

Proceeding of the 47" Cray User Group (CUG 2005), 2005.

. Portals API, http://www.cs.sandia.gov/Portals.

R. Martin, A. M. Vahdat, D. E. Culler, T. E. Anderson. The Effects of Communication
Latency, Overhead, and Bandwidth in a Cluster Architecture. In Proceedings of the
International Symposium on Computer Architecture, 1997.

D. Culler, L. T. Liu, R. P. Martin, C. O. Yoshikawa. Assessing Fast Network Interfaces.
IEEE Micro, pp. 35-43, Feb., 1996.

. C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome,

K. Yelick. An Evaluation of Current High-Performance Networks. In Proceedings IEEE
International Parallel & Distributed Processing Symposium (IPDPS ’03), 2003.

. R. Brightwell, D. Doerfler, K. D. Underwood. A Preliminary Analysis of the InfiniPath and

XD1 Interfaces. In Proceedings IEEE International Parallel & Distributed Processing
Symposium (IPDPS ’06), 2006.

